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Cell migration requires establishment and maintenance of directional polarity,

which in turn requires spatial heterogeneity in the regulation of protrusion,

retraction, and adhesion. Thus, the signaling proteins that regulate these various

structural processes must also be distinctly regulated in subcellular space.

Protein Kinase A (PKA) is a ubiquitous serine/threonine kinase involved in

innumerable cellular processes. In the context of cell migration, it has a

paradoxical role in that global inhibition or activation of PKA inhibits

migration. It follows, then, that the subcellular regulation of PKA is key to

bringing its proper permissive and restrictive functions to the correct parts of

the cell. Proper subcellular regulation of PKA controls not only when and where

it is active but also specifies the targets for that activity, allowing the cell to use a

single, promiscuous kinase to exert distinct functions within different

subcellular niches to facilitate cell movement. In this way, understanding

PKA signaling in migration is a study in context and in the elegant

coordination of distinct functions of a single protein in a complex cellular

process.
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1 Introduction

Cellular migration is an important process in many normal and pathophysiological

biological functions from development to cancer metastasis. Migrating cells are constantly

attuned to chemical and mechanical cues from the extracellular environment which

regulate the mode, path, and extent of migration (Carter, 1965; Petrie et al., 2009). To

efficiently move through the extracellular matrix (ECM), cells must sense and integrate

these cues to iteratively build new attachments, sever old attachments, and push

organelles and the cell body forward, all while constantly remodeling the cytoskeleton

in a manner and direction that maximizes directionality (Ridley et al., 2003). Thus, cell

migration is a balance of construction and deconstruction, protrusion and retraction,

pushing and pulling, where polarity and the proper location of each of these actions is

crucial for efficient movement. This intricate process requires the precise spatial and

temporal coordination of myriad proteins and signaling pathways, working in concert to
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control cell shape and attachment (Ridley et al., 2003). Therefore,

the signals and proteins that coordinate these functions must be

present and active in specific, niche locations while absent or

quiescent in others, and this distribution must be able to

dynamically rearrange and adapt to changes in the chemical

and mechanical microenvironment (Petrie et al., 2009). From the

perspective of a single protein involved in cell migration,

signaling is highly contextual—proper function is dependent

on specific combinations of activators, inhibitors, partners,

and substrates in precise locations within the cell, all of which

may change as cell shape and position changes.

An example of such a contextual protein in cell migration is

Protein Kinase A (PKA), a promiscuous serine/threonine kinase

involved in innumerable cellular and biochemical processes.

PKA is a heterotetrameric holoenzyme in which two catalytic

subunits from two major families, Cα and Cβ (plus a third, rarer
Cγ isoform) combine with homodimers formed by any of four

R-subunits (RIα, RIβ, RIIα, RIIβ) to form a number of distinct,

functionally nonredundant R2:C2 holoenzymes (Taylor et al.,

2004; Taylor et al., 2005; Taylor et al., 2013; Taylor et al., 2022).

Classically, however, two main subtypes of PKA are specified by

the inclusion of either RI or RII regulatory subunits, each having

nearly ubiquitous expression, but distinct allosteric properties,

anchoring, and cellular localization, as expertly and extensively

reviewed elsewhere (Taylor et al., 2013; Turnham and Scott,

2016; Gold, 2019; Michel and Scott, 2022; Taylor et al., 2022).

Canonically, PKA is activated when cAMP binds to the

regulatory subunits triggering release of the catalytic subunits

[though recent work has challenged this cAMP gated free-release

dogma (Smith et al., 2013; Smith et al., 2017; Isensee et al., 2018)]

as reviewed in (Gold, 2019).

The importance of PKA activity and regulation for motile

cellular behaviors has been demonstrated in myriad cell types:

epithelia (e.g., Spurzem et al., 2002; Tkachenko et al., 2011);

fibroblasts (e.g., Edin et al., 2001; Howe et al., 2005); endothelia

(e.g., Kim et al., 2000; Nedvetsky et al., 2016; Adame-García et al.,

2019); smooth muscle cells (e.g., Raymond et al., 2009; Hirakawa

et al., 2007; Bornfeldt and Krebs, 1999); various leukocytes (e.g.,

Lang et al., 1996; Jones and Sharief, 2005; Canalli et al., 2007;

Watson et al., 2015; Wehbi and Tasken, 2016; Jung et al., 2019);

microglia and neurons (e.g., Kao et al., 2002; Golub and Caroni,

2005; Nasu-Tada et al., 2005; Han et al., 2007; Lee and Chung,

2009; Toriyama et al., 2012; Deming et al., 2015); and a wide

variety of tumor cell lineages (e.g., (O’Connor and Mercurio,

2001; Paulucci-Holthauzen et al., 2009; McKenzie et al., 2011;

Shaikh et al., 2012; Armaiz-Pena et al., 2013; Burdyga et al., 2013;

Ko et al., 2013; Feng et al., 2014; Ou et al., 2014; Feng et al., 2015;

Barquilla et al., 2016; Hung et al., 2016; Bensalma et al., 2019;

Jung et al., 2019; Tonucci et al., 2019; Huang et al., 2020; Jiang

et al., 2020; McKenzie et al., 2020; Han et al., 2021). As in many of

its other functional milieus, PKA has both a positive and negative

role in cellular migration, depending on the context (Diviani and

Scott, 2001; Howe, 2004). Moreover, PKA and its substrates can

be found in virtually every dark corner of a cell, and the list of

known PKA substrates numbers in the high hundreds with new

additions added regularly (Shabb, 2001; Ruppelt et al., 2009).

Therefore, the activity of PKA and the location of that activity

needs to be controlled tightly for cell migration to progress

(Howe, 2004). This facet of PKA regulation is achieved

through its association with A Kinase Anchoring Proteins

(AKAPs) which serve to anchor PKA to specific locations

within the cell (Diviani and Scott, 2001; Omar and Scott,

2020). Further, AKAPs scaffold higher order signaling

complexes and juxtapose PKA, proteins involved in regulating

PKA activity, and potential targets of PKA activity (Michel and

Scott, 2002). To this end, cell migration requires not only

regulation of PKA activity but also specific localization of that

activity (Lim et al., 2008; Paulucci-Holthauzen et al., 2009;

McKenzie et al., 2011). Biochemical and image-based

experimentation has identified active PKA in the leading edge

of migrating cells, putting it in the vicinity of many confirmed

and suspected substrates in actin and adhesion dynamics and

other spatially coordinated efforts in cell migration (Howe et al.,

2005; Lim et al., 2008; Paulucci-Holthauzen et al., 2009;

McKenzie et al., 2011; Tkachenko et al., 2011; McKenzie

et al., 2020). Further, this leading edge PKA activity is

sensitive to changes in actomyosin contractility (McKenzie

et al., 2020). Thus, PKA is a prime example of a signaling

node in migration that is highly contextual.

The goal of this review is not to summarize every known or

putative target of PKA in migration or to present an exhaustive

list of studies in this milieu. Other reviews have tackled these lofty

topics more completely (Diviani and Scott, 2001; Howe, 2004).

Rather, this review will draw attention to the need for spatial

organization of PKA activity during the specialized cellular

function of migration and some of the progress that has been

made in this area. Principally, our focus stems from the question

‘How is localized signal transduction achieved during

migration?’—Indeed, PKA may be used as a case study in this

respect. Lessons learned regarding the highly contextual

regulation of this pleiotropic protein kinase will shed light on

how the cell is able to regulate other far-reaching enzymes during

migration and other complex processes. Here, we will consider

where PKA is found, what some of its major targets are, and how

it is regulated in the context of cell migration.

2 Location, location, location

Several studies have shown the importance of PKA

localization for cell migration, as reviewed in (Howe, 2004;

2011). With AKAPs pinning PKA to many diverse structures

within the cell, it is clear that AKAPs have an important role in

PKA’s localization in this context. Pertinent to this review,

several AKAPs have been identified that associate with the

actin cytoskeleton (Diviani and Scott, 2001) and cell
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membrane (Burgers et al., 2012), delivering PKA to locations

involved in migration. Functionally, once PKA is localized, it is

the location of PKA activity that dictates its role in migration.

While other reviews have comprehensively discussed AKAPs

associated with the cytoskeleton (Diviani and Scott, 2001), the

focus of this section is on the detection of PKA activity in distinct

subcellular compartments relevant to migration.

2.1 The leading edge

The leading edge is the foremost protrusive structure, leading

the cell with a dense, growing actin meshwork (Abercrombie

et al., 1970; Pollard and Borisy, 2003; Ridley et al., 2003; Ridley,

2011). The best characterized pool of PKA activity in migrating

cells is that in the leading edge. An early biochemical study found

PKA RII subunit and PKA activity are both present in higher

amounts in protrusive pseudopodia than in the cell body during

chemotaxis (Howe et al., 2005). This agrees with the localization

of both PKA RI (Lim et al., 2007) and RII (Howe et al., 2005)

subunits in the leading edge as visualized via

immunofluorescence. Surprisingly, though PKA was more

active in pseudopods, there was not more PKA catalytic

subunit there than in the cell body (Howe et al., 2005), which

points to local differential regulation of PKA in the leading edge.

Since the advent of the AKAR series of FRET based

biosensors specific for PKA activity (Zhang et al., 2001; Zhang

et al., 2005; Allen and Zhang, 2006), many groups have

characterized the dynamics of PKA in migrating cells.

Confirming the above findings, AKAR biosensors have

revealed strong PKA activity in the leading edge of several cell

types (Lim et al., 2008; Paulucci-Holthauzen et al., 2009;

McKenzie et al., 2011; Tkachenko et al., 2011; McKenzie et al.,

2020). Notably, leading edge PKA activity is best detected by

biosensors targeted to the plasma membrane, in both raft and

non-raft domains (McKenzie et al., 2020). Further, at least one

report shows that this activity is present only at the basal

membrane in a two-dimensional imaging system (Paulucci-

Holthauzen et al., 2009). This pool of PKA activity is often

described as a gradient, with generally high PKA activity at the

leading edge that diminishes toward the cell body. Upon closer

examination, there are peaks in PKA activity within this gradient

that are separable and dynamic (Figure 1, left panel).

Morphodynamic studies revealed that peaks in leading edge

PKA activity are spatially and temporally correlated with

protrusion dynamics. This control of protrusion-retraction

cycles by PKA occurs through the phosphorylation of RhoA,

as discussed later (Tkachenko et al., 2011).

Still other studies have revealed that leading edge PKA

activity is mediated by integrins, extracellular matrix

receptors, as integrin-specific peptides can block the formation

of PKA gradients and events in the leading edge (Lim et al., 2008).

In fact, striped, patterned extracellular matrix (ECM) underlying

adhesive cells leads to correspondingly striped appearance of

leading edge PKA activity, exhibiting a strikingly similar pattern

above sites of adhesion to the ECM (Tkachenko et al., 2011).

Though PKA holoenzymes can associate with the plasma

membrane without AKAP function (Zhang et al., 2015), leading

edge PKA activity is dependent on type II AKAP anchoring as

shown by disruption of canonical AKAP anchoring to PKA RII

FIGURE 1
Schematic of PKA activity localized to distinct subcellular regions and structures in a migrating cell. Arrow highlights overall front to back
gradient of subplasmalemmal PKA activity in the leading edge while arrowhead highlights hotspots of PKA activity. Though leading edge PKA activity
has been well characterized, there are very few studies characterizing PKA activity in focal adhesions and microdomains. Images serve as
representation of the concentration of PKA activity in these structures.
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using the Ht31 peptide leading to ablation of the leading edge

PKA gradient and membrane protrusion (Paulucci-Holthauzen

et al., 2009). This study further identifies that the AKAP-Lbc

significantly contributes to leading edge PKA gradients but is

presumably not the only AKAP involved as knockdown only

partially disrupted leading edge PKA activity (Paulucci-

Holthauzen et al., 2009).

Finally, leading edge PKA activity can be induced in relatively

non-motile HeLa cells by simply asymmetrically recruiting RII

regulatory subunit to the plasma membrane. This study used a

rapamycin inducible recruitment system to recruit R subunit to

the plasma membrane and found that at moderate levels of

recruitment, PKA activity was increased, and the cell wouldmove

toward the rapamycin gradient (LaCroix et al., 2022). At high

levels of R subunit recruitment, PKA activity was ultimately

inhibited. Interestingly, in this case, gradients of PKA activity

formed in the obverse direction and cells moved away from

rapamycin stimulation. This suggests that simply changing the

ratio of regulatory to catalytic subunit can alter PKA signaling

and even induce leading edge PKA activity and cellular

movement.

It’s important to note that, given the exclusive use of

membrane-targeted AKAR biosensors, these studies describe

PKA activity that is occurring solely at the leading edge

plasma membrane. The identification and characterization

pools of PKA activity in the bulk cytoplasm and other

discrete locations during cell migration have yet to be as

thoroughly explored.

2.2 Integrin based adhesive structures

Integrins are extracellular matrix receptors that span the

plasma membrane and act as nucleators for focal adhesion

structures (Legerstee and Houtsmuller, 2021). Focal adhesions

(FAs) are rich protein complexes that anchor the actin

cytoskeleton to integrins. Focal adhesions are packed with

known and putative targets of phosphorylation by PKA,

examples of which are discussed later. Given PKA’s

established role in actin-based migration and activity near the

membrane, it follows that PKA is likely located within focal

adhesions (Figure 1, center panel).

α4β1 integrins have been identified as noncanonical AKAPs

for Type I PKA (Lim et al., 2007). Specifically, the cytoplasmic tail

of the α4 integrin anchors the entire PKA holoenzyme in a

manner that is not disrupted by common AKAP disrupting

peptides. Though the binding site was not specifically

identified, the interaction between PKA and α4 did not

disrupt and was not affected by binding of paxillin to α4, one
of the primary interactions in the formation of focal adhesions

(Lim et al., 2007). Thus, PKA is localized to at least some

integrin-based adhesive structures via a noncanonical AKAP

interaction with α4 integrins.

Though focal adhesion complexes are tightly associated with

the plasma membrane, membrane-targeted PKA biosensors

show that leading edge gradients and hotspots of PKA activity

aren’t directly correlated with adhesion structures (McKenzie

et al., 2020). However, in addition to α4 integrin-mediated

anchoring, PKA regulatory and catalytic subunits have been

reported in a variety of focal adhesion proteomes, prepared

from a variety of cells using distinct methods (Zaidel-Bar

et al., 2007; Kuo et al., 2011; Schiller et al., 2011; Horton

et al., 2015), strongly suggesting a specific FA pool of PKA.

Despite this, there are no reported studies observing PKA activity

directly within focal adhesions themselves. Clearly, further work

must be done to elucidate how PKA is anchored to focal

adhesions and the targets and consequences of PKA activity

within them during migration.

2.3 Other locations

Several other locations or structures pertinent to migration

have been identified as local PKA hotspots. Namely actin-based

protrusive structures and smaller micro domains (Figure 1, right

panel).

Invadopodia and podosomes are specialized projections

involved in the degradation of local extracellular matrix

material, clearing the way for cell migration (Murphy and

Courtneidge, 2011; Ridley, 2011). Active, phosphorylated PKA

has been found in invadopodia and is upstream of proteolytic

invadopodia activity (Debreova et al., 2019). Further, PKA

activity promotes the formation of invadopodia (Tonucci

et al., 2019). While one study in adrenal cells demonstrates a

dependence of podosome formation on PKA activity (Colonna

and Podestá, 2005), another study in angiogenic sprouting shows

an antagonistic effect of PKA on podosome rosette formation

(MacKeil et al., 2019).

Even smaller actin-based structures have also been found to

contain PKA activity. Filopodia are fine, actin-based, probing

protrusive structures in the leading edge. These structures are

important for guiding cells and sensingmechanical inputs (Mattila

and Lappalainen, 2008; Ridley, 2011; Bornschlögl, 2013; Heckman

and Plummer, 2013; Jacquemet et al., 2015). Signaling through

PKA is important for the formation of these structures (Gomez

and Robles, 2004; Deming et al., 2015). Type II PKA localized to

neuronal growth cone filopodia through AKAP binding

encourages growth cone mobility and turning (Han et al.,

2007). Further, tethering to AKAPs—for example Gravin (RII)

(Burgers et al., 2012) and smAKAP (RI) (Nauert et al., 1997)—has

been shown to be important for PKA localization and function in

filopodia in different cell types. Similarly, microspikes, which are

akin to filopodia but reside within the veil of the lamellipodium at

the leading edge of migrating cells and on neuronal growth cones,

display PKA RII subunit tightly associated with actin structures

(Rivard et al., 2009). This association is independent of canonical
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AKAP function and follows the dynamic nature of the actin

structures themselves. This study not only identifies PKA

localized to protrusive actin, but points to a more direct

coupling of the kinase to the actin cytoskeleton, without the use

of AKAPs or the AKAP binding motif. Given the small size and

highly specialized function of these cellular structures, it is likely

that PKA activity has heretofore unexplored functions within

filopodia and microspikes.

Going further down the scale of cellular structures, lipid rafts

and membrane microdomains such as caveolae are historically

and intimately associated with the regulation of migration

(Golub and Caroni, 2005; Head et al., 2014). Intriguingly,

such microdomains have been reported to contain many

components of the canonical PKA signaling pathway–adenylyl

cyclases, phosphodiesterases, and PKA itself–often scaffolded

together by AKAPs or other adapters (Head et al., 2006;

Swaney et al., 2006; Patel et al., 2008). However, despite the

aforementioned presence of PKA signaling machinery in

microdomains and some elegant observations of microdomain

regulation by PKA (Golub and Caroni, 2005), the contribution of

raft- or caveoli-associated PKA signaling to migration remains

largely unexplored. At an even smaller scale, a recent study

characterized droplets of liquid-liquid phase separated RII

which concentrate cAMP/PKA signaling (Zhang et al., 2020).

These microdomains contained elevated PKA activity and

sequestration of cAMP. The effect of this sequestration of

signaling and effector molecules is to concentrate PKA activity

for local signaling and prevent dissociation of cAMP and

degradation by phosphodiesterases (Zhang et al., 2020). This

type of microdomain presents evidence of AKAP independent

concentration of PKA signaling which could dynamically

regulate local signaling during a kinetic and iterative process

such as cell migration.

Finally, the smallest possible ‘location’ at which PKA

signaling specificity and localization can occur is at the

protein-level–specifically, the sphere of targets within

molecular proximity of the enzyme itself. AKAPs serve as a

nano scaffolds that bring together PKA, substrates, and

regulatory proteins such as phosphodiesterases (Omar and

Scott, 2020), supporting a discrete complex that is ‘hard-

wired’ to focus and control the PKA activity within. It is at

the level of anchoring that local PKA activity is truly specified and

connected with its substrates. Further, recent evidence shows

PKA may function and be regulated in a hyper-local manner.

These studies reveal that PKA catalytic subunits are catalytically

active without completely dissociating from the regulatory

subunits. This finding highlights the importance and

sophistication of the anchoring of PKA to precise locations

and exquisitely increases spatial regulation of target specificity

(Smith et al., 2013; Smith et al., 2017; Isensee et al., 2018). Given

both the importance and the scales of localized PKA function,

characterization of the specific targets regulated by these discrete

pools of activity is of considerable importance.

3 Targets of PKA activity

PKA is delivered to different subsets of targets by nature of

the high specificity of anchoring and localization of activity, as

discussed in other sections. As a ubiquitous kinase, PKA has

innumerable targets, many of which are associated with adhesion

or migration. Given that PKA activity has been most heavily

studied near the membrane, identifying membrane targeted

substrates is where the most progress has been made. There

are many intriguing examples of such targets, a few of which will

be discussed here.

3.1 Rho GTPases

Several Rho family GTPases are critical for the progression of

cell migration (Lawson and Ridley, 2018). For examples of the

seemingly paradoxical role of PKA activity on migration and the

need for local fluctuations in PKA activity, one need not look

further than Rho GTPases (Figure 2; Table 1). The following

examples are all active in the leading edge during cell migration

(Machacek et al., 2009), are critical to polarity, protrusion,

lamella and filopodia formation, and cell migration (Lawson

and Ridley, 2018), and are regulated by PKA activity.

3.1.1 RhoA
RhoA is classically associated with contractility and the

formation of actin stress fibers and focal adhesions (Ridley

and Hall, 1992). Rho is a direct substrate of PKA

phosphorylation (Lang et al., 1996). Historically, this

phosphorylation was considered to inhibit binding of RhoA to

Rho kinase, inhibiting Rho kinase (Dong et al., 1998). PKA

phosphorylation of RhoA at Ser188 leads to inhibition of Rho

membrane association (Lang et al., 1996). This dissociation from

the membrane is achieved through increased association of RhoA

with RhoGDI (Forget et al., 2002). RhoA is active at the foremost

edge of the leading edge and its activity is correlated with

membrane protrusion (Machacek et al., 2009). It is now

generally understood that fluctuations in PKA activity control

RhoA activity at the leading edge to promote extension of the cell

membrane and protrusion/retraction cycles. In a study

mentioned previously, using biosensors for both PKA and

RhoA and protein biochemistry, PKA was found to regulate

membrane protrusion-retraction cycles at the leading edge

through its direct phosphorylation of RhoA and subsequent

association of phosphorylated RhoA with RhoGDI

(Tkachenko et al., 2011).

3.1.2 Cdc42
Also active in the leading edge, Cdc42 is well known for its

role in the extension of protrusions such as filopodia and

microspikes (Machacek et al., 2009; Lawson and Ridley, 2018),

structures known to concentrate PKA activity, as described
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previously. Like RhoA, Cdc42 is a direct substrate of PKA, but the

functional consequences of this phosphorylation are not well

explored. Multiple studies reveal that like that of RhoA, PKA

mediated phosphorylation of Cdc42 increases its inactivation by

association with RhoGDI (Forget et al., 2002; MacKeil et al.,

2019), but the effects of PKA phosphorylation of Cdc42 remain

overall less well characterized than that of RhoA.

3.1.3 Rac1
Rac1 GTPase is critical for the formation of lamellipodia

through regulation of actin polymerization and turnover

(Lawson and Ridley, 2018). Rac1 possesses AKAP properties

and active Rac forms a complex with and stabilizes the PKA

holoenzyme (Bachmann et al., 2013a; Bachmann et al., 2013b).

Rac1 is not generally regarded as a direct substrate of PKA [save

for an observation in (Brandt et al., 2009)] and it lacks the serine

residue involved in PKA phosphorylation and consequent

RhoGDI sequestration of RhoA and Cdc42 (Forget et al.,

2002). However, PKA activity is linked to activation of Rac1

(O’Connor and Mercurio, 2001; Dormond et al., 2002; Howe

et al., 2005), demonstrating a functional connection between

PKA and Rac1 in migration. This relationship has been given

mechanistic foundations through the identification of several Rac

GAPs [ARHGAP17 (activating/binding partners) (Nagy et al.,

2015)] and Rac GEFs [ARHGEF6 (binding partners) (Nagy et al.,

2015), STEF/Tiam2 (activating) (Goto et al., 2011), DOCK180

(activating) (Feng et al., 2014; Feng et al., 2015), and P-Rex1

(inactivating) (Chávez-Vargas et al., 2016)] that are directly

phosphorylated by PKA. P-Rex1 is a particularly interesting

target of PKA phosphorylation. In addition to regulation by

direct phosphorylation by PKA, this Rac GEF is also a non-

canonical AKAP which reciprocally regulates PKA by bringing it

to the plasma membrane (Chávez-Vargas et al., 2016).

Expression of a phospho-resistant mutant of P-Rex1 not only

increased its activity but abrogated the migration-stimulating

effect of PKA activation on endothelial cell migration (Chávez-

Vargas et al., 2016). Interestingly, the inhibition of P-Rex1 by

PKA catalytic subunit is complemented by an activation of

P-Rex1 by PKA type I regulatory subunit (Adame-García

et al., 2019). Given this interesting dichotomous regulation,

one could argue that spatial regulation by PKA of P-Rex1

may be furthered by altered ratios of catalytic to regulatory

subunits in the leading edge versus cell body as described in

(Howe et al., 2005).

3.1.4 Rho GEFs and GAPs
Finally, the regulation of other Rho GEFs and GAPs by

PKA further implicates PKA as a master regulator of the

activity of these molecular switches in migration (Figure 2;

Table 1). This complexity is exemplified by PKA’s effects on

Cdc42-specific GEF β1Pix (activation, localization) (Chahdi

et al., 2005; Chahdi and Sorokin, 2006), Rho-specific GEF

GEF-H1 (inactivation) and Rho-specific GAP Myo9b

(activation) (Comer et al., 2020). Perhaps increasing its

FIGURE 2
Schematic of functional connections between PKA and its targets in a migrating cell. Relationships are simplified for visual clarity. See text and
Table 1 for details regarding functional connections.
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TABLE 1 Migration-related targets of PKA activity.

Class Substrate Sites Regulatory effect Functional details References

Rho GTPases RhoA S188 Inhibition Promotes binding to RhoGDI and
sequestration, regulates membrane
protrusion/retraction cycles

Lang et al. (1996), Forget et al. (2002),
(Tkachenko et al., 2011)

Cdc42 S185a Inhibition Promotes binding to RhoGDI and
sequestration

Forget et al. (2002)

Rac1 - Indirect activation Activation in pseudopods and other contexts O’Connor and Mercurio, (2001), Howe et al.
(2005)

Rho GEFs and
GAPs

ARHGAP17 S702 Activation, Binding
partners

Decrease Rac1 activity, dissociation from a
complex with Cdc42 effector CIP4, dynamic
stimulation of cell migration

Nagy et al. (2015)

Rac1 specific GAP

ARHGEF6 S684 Binding partners Promotes binding of 14-3-3 to ARGHEF in
complex with GIT1

Nagy et al. (2015)

Rac1 specific GAP S640

STEF/Tiam2 T749 Activation Activation of Rac1, neurite outgrowth Goto et al. (2011)

Rac1 specific GEF S782

S156

DOCK180 S1250 Activation Activation of Rac1, promotion of cell
migration

Feng et al. (2014), Feng et al. (2015)

Rac1 specific GEF

P-Rex1 S436 Inhibition, Activation
by PKA RI

Decreased Rac1 activity driven by
phosphorylation via PKA catalytic subunit,
increased Rac1 activity driven by PKA RI

Chávez-Vargas et al. (2016), Adame-García
et al. (2019)Rac1 specific GEF

β1Pix S516 Activation,
Localization

Activation of Cdc42, translocation of β1Pix
to FAs

Chahdi et al. (2005), Chahdi and Sorokin,
(2006)Cdc42 specific GEF T526

GEF-H1 S886 Binding partners,
Inhibition

Inhibition of RhoA activity through increased
binding to microtubules, increased
association with 14-3-3

Comer et al. (2020)

Rho specific GEF

Myo9b S1354 Activation Inhibition of RhoA activity Comer et al. (2020)

Rho specific GAP

AKAP-Lbc S1565 Binding partners,
Inhibition

Inhibition of RhoA activity through 14-3-
3 binding

Diviani et al. (2004), Diviani et al. (2006)

Rho specific GEF

Focal Adhesion
Components

VASP S153 Mixed Decreased control of actin dynamics,
inhibited maturation of FAs, accretion at
peripheral cellular structures

Howe, (2004), Benz et al. (2009), Lee and
Chung, (2009)S235

T274

LASP1 S99 Binding partners, Decreased affinity for F-actin, displacement
from FAs, translocation to the nucleus

Chew et al. (1998), Chew et al. (2002), Butt
et al. (2003), Keicher et al. (2004), Grunewald
and Butt, (2008), Mihlan et al. (2013)

S146 Localization

α4β1 integrins S988
(α4)

Binding partners Stabilization of lamellipodia at the leading
edge, disruption of paxillin binding to α4 tail

Goldfinger et al. (2003)

ArgBP2/SORBS2 S259 Binding partners Phosphorylation causes 14-3-3 binding,
disrupting binding with α-actinin and
therefore ArgBP2 function at stress fibers,
promoting cell migration

Anekal et al. (2015)

vinexin/SORBS3 - - Involved in PKA-mediated anchorage-
dependent signaling

Suwa et al. (2002)

Non-receptor
Tyrosine Kinases

Src S17 Increased catalytic
activity

Conformational change resulting in exposure
and phosphorylation of Y419 activating site,
promotes ovarian cancer cell migration

Schmitt and Stork, (2002), Armaiz-Pena et al.
(2013), Beristain et al. (2015)

Fyn S21 Increased catalytic
activity, Localization

Increased activity and localization to FAs,
promoting migration, FA dynamics, and
leading edge dynamics

Yeo et al. (2011)

FAK - Mixed Indirect positive regulation through Src and
Fyn, negative regulation in anchorage-
dependent signaling, likely required for full
FAK activation and cell migration

Howe and Juliano, (2000), Sanchez-Collado
et al. (2019)

(Continued on following page)
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importance and relevance in the leading edge, AKAP-Lbc

(described above in The leading edge) is a Rho-specific

GEF and target of PKA phosphorylation (inactivating)

(Diviani et al., 2004; Diviani et al., 2006). This type of

multipurpose scaffolding molecule/effector is an excellent

example of local contextual regulation of PKA and its targets.

3.2 Focal adhesion components

Many focal adhesion components have been implicated or

confirmed to be targets of PKA phosphorylation. Given the

localization of PKA to adhesive complexes, this abbreviated

list of targets draws attention to the need for further

investigation into the effects of PKA phosphorylation on

adhesion dynamics (Figure 2; Table 1).

3.2.1 VASP
Vasodilator-stimulated phosphoprotein (VASP),

thoroughly reviewed in migration with its Ena/VASP family

members in (Faix and Rottner, 2022), is a quintessential PKA

substrate involved in adhesion and migration (Krause et al.,

2003). Briefly, VASP and related proteins are involved in

cytoskeletal dynamics as actin assembly factors and anti-

capping proteins (Benz et al., 2009). VASP is essentially

ubiquitous, like PKA, and it exists and exerts differing

functions in different parts of the cell such as focal

adhesions, the edge of lamellipodia, or tips of filopodia

(Faix and Rottner, 2022). It’s long been shown to be a

direct substrate of PKA and the effects of this

phosphorylation are not unilaterally inhibitory or

stimulatory, rather VASP function and localization are

modulated by phosphorylation by PKA (Howe, 2004).

VASP phosphorylation by PKA is responsible for accretion

of VASP at the cell periphery, in lamellipodia and focal

adhesions, where dynamic actin remodeling is taking place

(Benz et al., 2009) and this phosphorylation is dependent on

PKA anchoring via ERM proteins (Deming et al., 2015).

Unsurprisingly, VASP phosphorylation by PKA must be

dynamic. Prolonged phosphorylation of VASP blocks

maturation of focal adhesions (Lee and Chung, 2009).

Thus, regulation of VASP by PKA can have different

consequences and outcomes depending on precisely where

and to what degree VASP is phosphorylated.

3.2.2 LASP1
LASP1 is an F-actin-binding protein that localizes to FAs,

lamellipodial edges, podosomes, and other microfilament-

associated structures. It also translocates into the nucleus to

regulate transcription (Butt and Raman, 2018). LASP1 has well-

established and increasingly important roles in cell motility,

cancer metastasis and prognosis (Ruggieri et al., 2017), neural

development (Butt et al., 2003), and many other cellular

functions (Grunewald and Butt, 2008; Butt and Raman, 2018).

It is directly phosphorylated by PKA in vitro and in vivo (Chew

et al., 1998; Chew et al., 2002; Butt et al., 2003; Keicher et al., 2004;

Grunewald and Butt, 2008; Mihlan et al., 2013), and this

modification decreases its affinity for F-actin (Chew et al.,

TABLE 1 (Continued) Migration-related targets of PKA activity.

Class Substrate Sites Regulatory effect Functional details References

Ion Channels L-type Calcium
Channel Cav1.2

S1928b Increased channel
activity, Binding
Partners

Positive regulation of channel activity
dependent on binding/scaffolding of several
AKAPs including AKAP79 and AKAP
Cypher/Zasp, changes binding of calmodulin,
mediates calcium response to adrenoreceptor
activation

Gray et al. (1998), Murphy et al. (2014),
Nystoriak et al. (2017), Yu et al. (2018),
Pallien and Klussmann, (2020)

S1700b

T1704b

S1458

TRPV1 S116 Receptor sensitization Phosphorylation dependent on scaffolding of
TRPV1 with AKAP150

Rathee et al. (2002), Por et al. (2013),
Mohapatra and Nau, (2003), Mohapatra and
Nau, (2005)

T144

T370

TRPV4 S824 Receptor sensitization Phosphorylation dependent on scaffolding of
TRPV4 with AKAP79

Fan et al. (2009)

TRPM7 S1269a Mixed Phosphorylation at S1269 decreases Ca2+

influx, unidentified regulation downstream of
PKA increases TRPM7 activity

Broertjes et al. (2019), Takezawa et al. (2004)

TRPC6 T69 Inhibition Decreased channel activity (Nishioka et al., 2011), Horinouchi et al.
(2012)S28

Piezo 2 - Activation Increased PKA activity increases Piezo
2 activity

Dubin et al. (2012)

aInsufficient evidence of direct phosphorylation.
bResidue numbering based off rabbit sequence.
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2002; Butt et al., 2003), displaces it from FAs (Keicher et al.,

2004), and facilitates its shuttling from the cytoplasm to the

nucleus (Mihlan et al., 2013).

3.2.3 α4β1 integrins
In addition to their AKAP function, α4β1 integrins are

phosphorylated by PKA specifically in the leading edge of

migrating cells (Goldfinger et al., 2003). Phosphorylation by

PKA blocks paxillin binding to the tail of the α4 integrin.

Further, this study showed that increased association of

paxillin to α4, as occurs in the inhibition of PKA or elsewhere

in the cell periphery, leads to destabilization of lamellipodia,

stymying migration progress (Goldfinger et al., 2003). This

spatially regulated phosphorylation of α4 by PKA is further

required for the alignment of endothelial cells to shear stress

and localized activation of Rac1 (Goldfinger et al., 2008).

3.2.4 SORBS
Members of the SORBS adaptor protein family, specifically

ArgBP2/SORBS2 and vinexin/SORBS3 (Kioka et al., 2002;

Roignot and Soubeyran, 2009), are found in FAs and F-actin

junctions, play important roles in motility, force generation and

mechanotransduction (Kioka et al., 2002; Cestra et al., 2005; Ichikawa

et al., 2017; Kuroda et al., 2018), and intersect with PKA as direct

substrates and/or modulators of PKA-mediated anchorage-

dependent signaling (Suwa et al., 2002; Anekal et al., 2015).

Given the number and variety of proteins found in focal

adhesions (Zaidel-Bar et al., 2007; Kuo et al., 2011; Schiller et al.,

2011; Horton et al., 2015) and that many of these components are

known or putative PKA substrates (Robertson et al., 2015), it is

likely that PKA may have myriad and complex roles in FA

dynamics. Current efforts in our lab and others aim to expand

our understanding of PKA’s roles in FA structures.

3.3 Non-receptor tyrosine kinases

Non receptor tyrosine kinases such as Src and Fyn, Src

family kinases, and Focal Adhesion Kinase (FAK) are critical

to integrin mediated adhesion and cell migration (Klinghoffer

et al., 1999; Cary et al., 2002; Mitra et al., 2005; Yeo et al.,

2011). Though classically thought of as distinct from one

another, connections and crosstalk between the cAMP/PKA

pathway and tyrosine kinase pathways have been identified

more and more over the past decade, most commonly with

PKA acting upstream of tyrosine kinase activity, but

increasingly the other way around (Figure 2; Table 1).

3.3.1 Src
Direct serine phosphorylation of Src increases Src activity

and downstream tyrosine phosphorylation (Schmitt and Stork,

2002; Beristain et al., 2015). Serine phosphorylation at this site,

downstream of PKA, promotes ovarian cancer cell migration

(Armaiz-Pena et al., 2013). Further, Src activity and subsequent

activation of FAK can be inhibited by PKA acting through

C-terminal Src kinase (Csk) in membrane microdomains

where all of the relevant signaling molecules coalesce

(Abrahamsen et al., 2003). Similar effects are realized through

Csk downstream in T cell activation (Vang et al., 2001) and

vascular sprouting (Jin et al., 2010). Importantly, as has been

shown for the EGF receptor (Caldwell et al., 2012), Src family

kinases can phosphorylate PKA and this modification increases

its catalytic activity (Schmoker et al., 2018).

3.3.2 Fyn
Phosphorylation of Fyn by PKA alters its tyrosine kinase

activity, localization to focal adhesion structures, and facilitates

cell migration (Yeo et al., 2011). Disruption of this

phosphorylation led to decreased migration and defective leading

edge dynamics. Further, this phosphorylation of Fyn is critical for

FAK activation and targeting to focal adhesions (Yeo et al., 2011).

In the reverse direction, tyrosine phosphorylation of PKA

by Fyn increases PKA activity and changes PKA complexing

with binding partners such as AKAPs and phosphodiesterases,

which further complex with Fyn in a glioblastoma cell line

(Schmoker et al., 2018).

3.3.3 FAK
In addition to the indirect effects of PKA activity on FAK

through Src and Fyn, as mentioned above, PKA negatively

regulates FAK tyrosine phosphorylation in anchorage-

independent signaling (Howe and Juliano, 2000). Adenylyl

cyclase 8, presumably upstream of PKA activity, is required

for full FAK activation and cell migration in MDA-MB-

231 cells (Sanchez-Collado et al., 2019). Despite these

observations, there are currently no published data supporting

the converse relationship, placing FAK upstream of PKA activity.

However, this is likely an important avenue of investigation given

the roles of FAK and PKA in migration, mechanosensation, and

cancer progression (Mitra et al., 2005; McKenzie et al., 2011;

Sulzmaier et al., 2014; Hytonen and Wehrle-Haller, 2016;

McKenzie et al., 2020).

3.4 Ion channels

Lastly, there are many known connections between PKA and

several classes of ion channels (Gray et al., 1998; Fraser and Scott,

1999; Howe, 2011; Soni et al., 2014; Omar and Scott, 2020; Pallien

and Klussmann, 2020). Particularly intriguing among these are

L-type Ca2+ channels, TRP-family channels, and Piezo channels

(Figure 2; Table 1).

3.4.1 L-type Ca2+ channels
L-type Ca2+ channels (LTCCs) are responsible for

retraction at the trailing edge (Yang and Huang, 2005), a
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front to rear Ca2+ gradient that maintains cell polarity (Kim

et al., 2016), regulation of filopodia stability (Jacquemet et al.,

2016), mechanosensation in filopodia (Efremov et al., 2022),

and other functions relating to cell migration (Cheli et al.,

2016; Martínez-Delgado and Felix, 2017; Guo et al., 2018;

Kamijo et al., 2018; Birey et al., 2022). LTCC activity is

positively regulated by PKA which is anchored to signaling

scaffolds surrounding LTCCs via AKAP79, AKAP Cypher/

Zasp, and others (Gray et al., 1998; Flynn and Altier, 2013;

Murphy et al., 2014; Nystoriak et al., 2017; Smith et al., 2018;

Yu et al., 2018; Pallien and Klussmann, 2020). As LTCCs have

been shown to be critical for the sensory function of filopodia

(Jacquemet et al., 2016; Efremov et al., 2022), a structure in

which PKA has been shown to localize and function (Nauert

et al., 1997; Han et al., 2007; Burgers et al., 2012), a hypothesis

arises that a PKA-AKAP79-LTCC complex may be found

within these structures.

3.4.2 Transient receptor potential channels
Transient Receptor Potential (TRP) channels, particularly

TRPC6 (Weber et al., 2015; Farmer et al., 2019; Asghar and

Törnquist, 2020), TRPV1 (Miyake et al., 2015), TRPV4

(Mrkonjić et al., 2015; Li et al., 2020; Yang et al., 2020; Lakk

and Križaj, 2021), and TRPM7 (Clark et al., 2006; Su et al., 2006;

Wei et al., 2009; Wang et al., 2014; Broertjes et al., 2019; Lefebvre

et al., 2020; Yankaskas et al., 2021) are increasingly recognized as

important regulators of cellular migration, as thoughtfully

reviewed in (Howe, 2011; Fiorio Pla and Gkika, 2013; Canales

et al., 2019). Importantly, all of the aforementioned channels

have been shown to be either direct substrates of PKA [TRPV1

(Rathee et al., 2002; Mohapatra and Nau, 2003; Mohapatra and

Nau, 2005; Por et al., 2013), TRPV4 (Fan et al., 2009; Cao et al.,

2018), TRPC6 (Nishioka et al., 2011; Horinouchi et al., 2012),

and likely TRPM7 (Tian et al., 2018; Broertjes et al., 2019)] or

regulated downstream of PKA activity (TRPM7 (Takezawa et al.,

2004), establishing these and possibly other members of the TRP

channel family as important players in PKA-mediated ion flux

during migration. Crosstalk between PKA and TRP channels

during cell migration has been well documented and is reviewed

in (Howe, 2011).

3.4.3 Piezo channels
Piezo channels are massive, mechanically sensitive ion

channels known to transmit mechanical signals, activate

integrins, and regulate cell migration in several ways

(Gottlieb, 2017; Nourse and Pathak, 2017; Canales Coutino

and Mayor, 2021; Dombroski et al., 2021; Holt et al., 2021).

PKA activity is potentiated by calcium influx downstream of

piezo1 in confined migration (Hung et al., 2016) and

piezo2 activity is enhanced by increased PKA activity

(Dubin et al., 2012), suggesting a link between PKA and

piezo channels in migration.

Clearly, given the number and variety of targets within these

various cellular contexts, it is a vast oversimplification to think of

PKA as either a positive or negative regulator of cell migration.

PKA needs to be tightly and locally regulated to act on the correct

targets to facilitate cell migration. This idea meshes well with the

very nature of cell migration. Cell migration itself is a process of

balance and of give and take. Cells must protrude and lay down

new adhesive structures in some places and contract and

disassemble contacts in others. At first glance, it may appear

that PKA’s role in migration is messy, but, in fact, there is a

simplicity and elegance to way a cell can express a single family of

kinases that then acts throughout the cell according to context

and local signals to carry out innumerable, specific local

functions.

4 Regulation

Though PKA has been studied for decades and even its

name, cAMP dependent protein kinase, implies its regulation

has been sorted, not enough is known on the subcellular and

micro regulation of its activity. In many cases it’s not evident

which class of PKA is doing the work of signaling during

migration, as the biosensors and assays do not generally

distinguish between them. However, it is quite clear that

both classes–type I and type II–of PKA activity can

contribute to migration-specific signaling (Howe et al.,

2005; Lim et al., 2007; McKenzie et al., 2011; Adame-

García et al., 2019). Given that the major differences

between types I and II PKA are the concentration of cAMP

required for activation and the mostly (but not always)

distinct anchoring proteins associated with them, type I vs.

type II PKA signaling may hold as yet undetermined

importance for subcellular regulation.

As discussed previously, the first layer of PKA regulation

often occurs by binding of the catalytic subunit by the

regulatory subunits, an interaction disrupted by the

availability of cAMP. cAMP is produced by adenylyl

cyclases (ACs), often downstream of G protein coupled

receptor activation and G protein Gαs (Neer, 1995). ACs

can also be directly inhibited by Gαi (Neer, 1995) and

regulated both positively and negatively by Gβγ (Tang and

Gilman, 1991; Taussig et al., 1994; Sunahara and Taussig,

2002; Diel et al., 2006), creating a complex combinatorial

network of regulators of AC. In addition, there are also reports

of cAMP-independent activation of PKA, adding an

additional layer of complexity onto the matter (Dulin et al.,

2001; Niu et al., 2001; Ferraris et al., 2002; Kopperud et al.,

2003; Ma et al., 2005; Kohr et al., 2010). Thus, when one

considers localized PKA activity in the context of cell

migration, one must also consider localized control of the

various upstream regulators of PKA in these contexts and
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niches, and the pathways that connect those regulators to the

machinery of migration.

PKA holoenzymes are docked to specific locations within

the cell through their interactions with AKAPs which can

serve as higher order scaffolds that bring together many

components of the cAMP pathway (Pidoux and Tasken,

2010; Stangherlin and Zaccolo, 2011). This allows for local

regulation of PKA activity in other processes, but the specifics

of the regulation of PKA in migration remain relatively

unexplored. Generally, studies that identify a role for PKA

in migration stop short of tackling the mode of spatial and

temporal regulation, apart from identification of AKAP-based

localization. Therefore, many questions remain as to how

PKA is delivered to sites of activation in migration and

how it is activated locally to achieve its specific functions

therein.

The strong link between α4β1 integrins and PKA activity

in the leading edge is certainly intriguing, but the details of

PKA regulation in this context remain unknown. Using cAMP

sensitive biosensors, leading edge gradients of cAMP have

been observed (Lim et al., 2008). Though they do not

categorically show that this cAMP gradient is driving PKA

activity directly, parsimony would suggest that it is. Even if it

is simply local cAMP that drives leading edge PKA, the

mechanism by which cAMP production is spatially

regulated is still unknown. Most attempts at directly

inhibiting leading edge PKA use the rather heavy-handed

application of PKA inhibitor H89. H89 is hardly specific to

PKA (Davies et al., 2000) and acts directly at the level of the

catalytic subunit, not interfering with cAMP availability or

binding.

Engagement of β1 integrins and application of mechanical

stress at the points of integrin engagement have been shown to

activate G protein Gαs and lead to local increases in cAMP

(Meyer et al., 2000; Alenghat et al., 2009). This gating of cAMP

production by integrins and mechanical stress is certainly

intriguing, particularly because leading edge PKA activity has

been shown to be tightly coupled to mechanical inputs

(McKenzie et al., 2020). Treatment with a potent inhibitor

of myosin II (and thereby actomyosin contractility)

diminishes leading edge PKA activity in under a minute.

Further, PKA activity can be potentiated by application of

mechanical stretch on a 2D hydrogel. Finally, PKA activity is

required for durotaxis, or mechanically gated cell migration

(McKenzie et al., 2020). The mechanism underlying the

mechanical regulation of PKA is still under investigation.

Cell migration itself is a process driven by iterative

mechanical inputs as the cell constantly forms new

connections and probes the extracellular environment for

elasticity and structure (Plotnikov et al., 2012; Wong et al.,

2014), so it stands to reason that the regulation of PKA is

guided by this iterative mechanical probing.

Recalling the study using rapamycin-inducible

recruitment of RII subunit, this manipulation had differing

effects on PKA activity and directional cell migration

depending on the level of induction (LaCroix et al., 2022).

Moderate amounts of recruitment of R subunit to the

membrane led to increased and sustained PKA activity

there whereas high levels ultimately inhibited PKA activity

(LaCroix et al., 2022). Though not completely unexpected, this

result highlights the complexity of PKA regulation—location,

relative abundance of subunits, and availability of upstream

activators, binding partners, and targets coalesce to create

higher order signaling complexes that bring PKA specifically

to bear on a variety of processes involved in cell migration.

If we are to understand how PKA functions in the complex

and contextual way outlined in this review, it is important to

drill down and explore what regulators of adhesion and

migration are proximally involved in regulating PKA

activity. If the PKA activity in question is, indeed,

regulated through the canonical pathway, there must be

communication between adhesive complexes, cytoskeletal

structures, and other migratory nodes and cyclases/

phosphodiesterases. This regulation will be very tightly

controlled and highly contextual. There is not a lot known

about these connections, and for good reason. PKA regulation

on this level is highly context specific in that it needs to be

studied at very high conceptual and practical resolution.

Needless to say, studying such a ubiquitous kinase at a

granular, subcellular level is complex, but identifying

signaling niches and the regulatory machinery within those

niches will be key to understanding how PKA functions in this

contextual manner during cell migration.

5 Discussion

Gradients and other heterogeneities in the extracellular

environment must be converted into asymmetries in the

intracellular biochemical processes that iteratively reshape and

reposition the cell to achieve cell movement. Understanding this

conversion requires detailed understanding of the interface

between signaling enzymes and cytoskeletal and adhesive

structures/machineries that execute the physical steps of cell

migration. Though PKA signaling is widely recognized as

important for migration and this topic has been the focus of a

fair number of studies throughout the past two decades, the sum

of these studies merely scratches the surface of the complexity
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therein. Anchored PKA complexes function as tethered, multi-

component sensors/relays for converting regional extracellular

stimuli into specific, precise, and highly localized intracellular

effects. Many such complexes, as well as known and putative

PKA substrates, are found in a variety of subcellular

compartments and structures involved in cell migration. Thus,

elucidation of the composition, regulation, and precise function

of these distinct PKA signaling complexes is an important

endeavor in understanding of the complexity of spatial

regulation of migration.
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