
plants

Article

Genome-Wide Identification and Expression Analysis of the
NRAMP Family Genes in Tea Plant (Camellia sinensis)

Jinqiu Li 1, Yu Duan 1, Zhaolan Han 1, Xiaowen Shang 1, Kexin Zhang 1, Zhongwei Zou 2 , Yuanchun Ma 1,
Fang Li 1, Wanping Fang 1 and Xujun Zhu 1,*

����������
�������

Citation: Li, J.; Duan, Y.; Han, Z.;

Shang, X.; Zhang, K.; Zou, Z.; Ma, Y.;

Li, F.; Fang, W.; Zhu, X. Genome-Wide

Identification and Expression

Analysis of the NRAMP Family

Genes in Tea Plant (Camellia sinensis).

Plants 2021, 10, 1055. https://

doi.org/10.3390/plants10061055

Academic Editor: Anja Schneider

Received: 29 April 2021

Accepted: 21 May 2021

Published: 25 May 2021

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2021 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

1 College of Horticulture, Nanjing Agricultural University, Nanjing 210095, China;
2018104081@njau.edu.cn (J.L.); 2018204034@njau.edu.cn (Y.D.); hanzl@njau.edu.cn (Z.H.);
2019104081@njau.edu.cn (X.S.); 2019104086@njau.edu.cn (K.Z.); myc@njau.edu.cn (Y.M.);
lifang@njau.edu.cn (F.L.); fangwp@njau.edu.cn (W.F.)

2 Department of Plant Science, University of Manitoba, 66 Dafoe Road, Winnipeg, MB R3T 2N2, Canada;
Zhongwei.Zou@umanitoba.ca

* Correspondence: zhuxujun@njau.edu.cn; Tel./Fax: +86-25-8439-5182

Abstract: The natural resistant-associated macrophage protein (NRAMP) is a kind of integral mem-
brane transporter which could function on a wide range of divalent metal ions in plants. Little is
known about the NRAMP family in Camellia sinensis. In this study, 11 NRAMP genes were identified
from the tea plant genome. Phylogenetic analysis showed that the 11 CsNRAMP proteins were split
into two groups. The proteins of group 1 contained the conserved motif 6 (GQSSTxTG), while most
proteins in group 2 (excepting CsNRAMP7 and CsNRAMP10) contained the conserved residues
of motif 6 and motif 2 (GQFIMxGFLxLxxKKW). The number of amino acids in coding regions
of 11 CsNRAMP genes ranged from 279–1373, and they contained 3–12 transmembrane domains.
Quantitative RT-PCR analysis showed that G1 genes, CsNRAMP3, CsNRAMP4, and CsNRAMP5,
were extraordinarily expressed in roots, while G2 genes showed higher expression levels in the stems
and leaves. The expression levels of CsNRAMPs in roots and leaves were detected to assess their
responses to Pb treatment. The results indicated that CsNRAMPs were differentially regulated, and
they might play a role in Pb transportation of tea plant. Subcellular localization assay demonstrated
that CsNRAMP2 and CsNRAMP5 fused proteins were localized in the plasma membrane. Overall,
this systematic analysis of the CsNRAMP family could provide primary information for further
studies on the functional roles of CsNRAMPs in divalent metal transportation in tea plants.

Keywords: Camellia sinensis; NRAMP; Pb treatment; gene expression

1. Introduction

As one of the most popular nonalcoholic beverage crops, the tea plant has been
widely cultivated throughout the world [1]. The tea plant can absorb various nutrients
and essential elements from soil to maintain growth and development [2]. However, some
toxic substances, such as Pb, are also accumulated, which could have adverse impacts on
morphological, physiological, and biochemical properties in plants [3,4]. Lead, as one of the
toxic heavy metals, could block the function of essential metals and induce the production
of ROS [5]. It could destroy the electron transport chain and induce lipid peroxidation [6].
Furthermore, toxic effects may appear in other cell mechanisms, such as water balance,
protein structure, and photosynthesis [7,8]. Additionally, 24.4% to 72% of the total lead
content in the dried black tea could be released into the tea infusion [9]. In a 74-sample
study, 17.57% of the samples had a higher concentration of Pb than the maximum limits
in tea leaves [10]. Thus, Pb pollution could cause significant damage to the tea plant,
and even be harmful for consumer health [11]. Due to the rapid development of modern
industry, urban activities, and transportation, lead contamination in tea has become a major
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concern [12–14]. Therefore, it is important to study the mechanisms of lead absorption and
transportation for Pb resistance and lessening in tea plants.

To minimize the toxicity of heavy metals, plants have developed a complex network
that controls metal uptake, transport, and storage [5]. Under heavy metal stress, some
plants could accumulate metal ions in the roots and restrict the root-to-shoot transport to
alleviate the toxicity in the overground part. Plant cells show defense against these heavy
metals by chelating the toxic ions through a metal-chelating protein, as well as transporting
into vacuoles or out the cell through metal membrane transporters [15].

The natural resistant-associated macrophage protein (NRAMP) is a kind of integral
membrane transporter which usually has 10–12 putative transmembrane domains (TMDs),
with consensus of residues between TMD-8 and TMD-9 [16]. The NRAMP was firstly
discovered in mice [17] and has been identified as a divalent metal transporter in bacteria,
fungi, insects, plants, and mammals [18,19]. The NRAMP protein family in Arabidopsis
was classified into two subfamilies based on phylogenetic analysis. AtNRAMP1 and
AtNRAMP6 form group I, while other AtNRAMP proteins belong to group II [20].

The NRAMP protein in plants is involved in the transport of multiple divalent cations,
such as Fe2+, Mn2+, Cu2+, Pb2+, and Cd2+ [21,22]. The roles of NRAMP proteins in plants
have been analyzed in Arabidopsis thaliana [20], Oryza sativa [23], Populus alba [24], Phaseolus
vulgaris [25], Theobroma cacao [26], and Brassica napus [27]. In Arabidopsis, AtNRAMP6 is
an intracellular cadmium transporter [28], while AtNRAMP1 locates in the root plasma
membrane and acts as a transporter for Mn. Additionally, AtNRAMP3 and AtNRAMP4
play a role in the transportation of Fe and Mn [29]. In rice, OsNRAMP3 and OsNRAMP5
have been identified as a transporter for Mn and Fe, respectively. OsNRAMP4 has been
identified as the trivalent Al ion transporter [16]. Many papers have presented studies on
the role of NRAMP proteins in Cd transport [16,23]. Overexpression of TtNRAMP1 could
enhance the transport of Cd [30]. However, the role of the NRAMP protein family and the
transport mechanisms for Pb in tea plants remain unknown.

In this study, we identified and characterized 11 NRAMP genes in the CSS reference
genome database, and then the expression levels of 11 CsNRAMP genes were investigated
in different tissues and under Fe, Mn, and Pb treatment. Also, we analyzed the subcellular
location of CsNRAMP2 and CsNRAMP5. The characterization and expression analysis of
the CsNRAMP family in tea plants could provide a theoretical basis for further studies of
the response of the CsNRAMP family on Pb treatment in tea plants.

2. Results
2.1. Identification and Characteristics of CsNRAMPs

Thirteen candidate CsNRAMP full-length sequences containing the NRAMP domain
were identified in a Blast search of the tea plant genome. However, TEA002429.1 and
TEA017931.1 were excluded because they are homologous with ethylene-insensitive protein
2 (EIN2) [20]. Thus, we identified 11 CsNRAMP genes in this study (Table 1).

The number of amino acids of 11 CsNRAMP proteins ranged from 279 (CsNRAMP7)
to 1373 (CsNRAMP11), while the molecular weight varied from 30,575.14–150,318.02 Da.
The theoretical pIs of CsNRAMP proteins were various from 4.94–9.18. The exon numbers
of CsNRAMPs ranged from 3–17. And the transmembrane domains of CsNRAMPs ranged
from 3–12 (Table 1).
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Table 1. Bioinformatics analysis of CsNRAMP genes.

Name Gene ID Number of
Amino Acids

Molecular
Weight

Theoretical
pI

Exon
Number

Transmembrane
Number Subcellular Localization

CsNRAMP1 TEA000600.1 525 57,407.13 5.23 4 11 Membrane bound
Vacuolar

CsNRAMP2 TEA000624.1 497 54,044.99 4.94 5 9 Membrane bound
Vacuolar

CsNRAMP3 TEA009385.1 589 64,295.88 8.75 13 10 Plasma membrane
CsNRAMP4 TEA002435.1 485 52,482.32 8.81 12 11 Plasma membrane
CsNRAMP5 TEA017264.1 512 56,070.19 8.05 12 11 Plasma membrane

CsNRAMP6 TEA012361.1 721 80,236.18 8.55 10 11 Membrane bound
Vacuolar

CsNRAMP7 TEA012584.1 279 30,575.14 9.18 3 6 Membrane bound
Vacuolar

CsNRAMP8 TEA022476.1 902 98,625.55 9.01 17 14 Plasma membrane

CsNRAMP9 TEA025235.1 527 58,851.23 8.17 5 6 Membrane bound
Vacuolar

CsNRAMP10 TEA032256.1 375 42,411.81 8.36 5 3 Membrane bound
Vacuolar

CsNRAMP11 TEA011223.1 1373 150,318.02 5.81 10 12 Membrane bound
Vacuolar *

*: asterisks correspond to the predicted result of the first 1200 amino acids of CsNRAMP11.

2.2. Phylogenetic Analysis and Duplication Analysis of CsNRAMPs

To explore the phylogenetic association among NRAMP homologs in plant genomes,
the sequences of 24 proteins from Arabidopsis thaliana, Oryza sativa, and Camellia sinensis
were used to align a phylogenetic tree analysis. According to AtNRAMP proteins, the 11
CsNRAMP proteins were divided into two groups (Figure 1). CsNRAMP3, CsNRAMP4,
CsNRAMP5, and CsNRAMP8 belonged to group 1, while other CsNRAMPs were included
in group 2. Additionally, it was predicted that the CsNRAMPs of G1 (group 1) would locate
on the plasma membrane, and the CsNRAMPs of G2 (group 2) on the membrane-bound
vacuolar. The exon numbers of G1 CsNRAMPs varied from 12–13, and the AtNRAMP1
and AtNRAMP6 from the same group displayed 11 and 13 exons [25]. In another group,
most members contained no more than five exons, which was similar to those for which
the exon numbers were restricted to four [25] (Table 1).
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To explore the evolutionary patterns of the NRAMP gene family in the tea plant
genome, gene duplication events were surveyed (Figure 2). Ten NRAMP genes were dis-
tributed unevenly in the 15 chromosomes in the tea plant genome. CsNRAMP7 was assem-
bled to the scaffold. An analysis of tea plant NRAMP family genes revealed that three par-
alogous gene pairs (CsNRAMP2&CsNRAMP11/CsNRAMP3&CsNRAMP4/CsNRAMP9&Cs-
NRAMP10) existed in CsNRAMP family genes. (The ‘&’ means the connector between
duplicated gene pairs.)
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2.3. Gene Structure and Conserved Motifs of CsNRAMP Proteins

Previous studies on Arabidopsis and rice indicated that the NRAMP protein family
usually contained 10–12 TMDs. Additionally, the most conserved amino acid residues,
GQSSTITGGTYAGQXXMXGFLX, were located between the eighth and ninth transmem-
brane domains [31]. Most of the CsNRAMPs contained the conserved amino acid residues
GQSSTxTGTYAGQFI MxGFLxLxxKKW, while CsNRAMP3 only had the latter part of
residues, while CsNRAMP8 contained some other residues (Figure 3). Some NRAMP
proteins contained broken NRAMP domains (Supplementary Materials, Figure S1).

There were 20 motifs identified in CsNRAMP proteins. The sequences of 20 motifs
are shown in Supplementary materials, Table S1. All CsNRAMP proteins contained motif
1 and 4, while most of the CsNRAMP proteins in group 2 had motif 2, 3, 5, 6, 7, 8, and
14; and all of CsNRAMP proteins in group 1 had motif 2, 3, 5, 8, 10, 11, 15, 17, 19 and 20
(Figure 4). Only CsNRAMP9 and CsNRAMP10 proteins contained motif 12 and motif 13;
motif 16 only existed in CsNRAMP6 and CsNRAMP9 proteins and motif 18 only existed in
CsNRAMP1, CsNRAMP2 and CsNRAMP11 proteins. The conserved amino acid residues
(Figure 3) consisted of motif 2 (GQFIMxGFLxLxxKKW) and motif 6 (GQSSTxTG) (Figure 5).
All members of group 1 lacked the conserved motif 6 (GQSSTxTG).
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2.4. Expression Analysis of CsNRAMP Genes in Different Tissues

We detected the expression of 11 CsNRAMP genes in different tissues of the tea plant.
The results indicate that different genes exhibit different expression patterns (Figure 6).
Three genes, CsNRAMP3, CsNRAMP4, and CsNRAMP5, showed extremely high specificity
in the root, while four, CsNRAMP1, CsNRAMP2, CsNRAMP10, and CsNRAMP11, were
highly expressed in the leaf, and CsNRAMP6 and CsNRAMP9 were highly expressed
in the stem. Also, two genes, CsNRAMP7 and CsNRAMP8, exhibited high expression
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in both shoot and leaf. The genes in group 1, including CsNRAMP3, CsNRAMP4, and
CsNRAMP5, showed similar expression patterns and reached higher expression levels
in the root. Conversely, the genes belonging to group 2 were highly expressed in other
tissues, such as stem and leaf. The CsNRAMP proteins might play different roles in the
transportation of metals.
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Figure 6. Expression of 11 CsNRAMP genes of Camellia sinensis in different tissues (root, stem, and 
leaf) of the tea plant. The expression level of tea actin was used as the internal control to standard-
ize the RNA samples for each reaction. Error bars represent the mean values of three replicates ± 
standard deviation (SD). Different lowercase letters indicate significant differences at p < 0.05. 
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leaves under Pb treatment. 

In leaves, the expression of CsNRAMP2 was downregulated earlier and then upreg-
ulated at 50 mg/L Pb treatment, and showed a double-peak pattern at 100 mg/L Pb treat-
ment. Additionally, CsNRAMP2 was significantly induced at 500 mg/L Pb treatment for 1 
and 7 days. The expression of CsNRAMP1 was downregulated under low Pb concentra-
tions (≤100 mg/L), but increased at first and then decreased at high concentration. 
CsNRAMP10 showed a pattern that decreased and then increased at low Pb concentration, 
while it could be induced by high concentration. CsNRAMP11 expression, except at 100 
mg/L for 1 day, was downregulated by Pb treatment. The expression of CsNRAMP7 and 

Figure 6. Expression of 11 CsNRAMP genes of Camellia sinensis in different tissues (root, stem, and leaf) of the tea plant.
The expression level of tea actin was used as the internal control to standardize the RNA samples for each reaction. Error
bars represent the mean values of three replicates ± standard deviation (SD). Different lowercase letters indicate significant
differences at p < 0.05.

2.5. Expression Analysis of CsNRAMP Genes under Lead Stress

To investigate potential responses of CsNRAMPs to Pb treatment, expression patterns
were detected by qRT-PCR in tea plants exposed to Pb. We noticed that CsNRAMP1, which
prefers to express in leaves, showed an extremely low expression level in roots, while
CsNRAMP3 CsNRAMP4 and CsNRAMP5 exhibited extremely low expression in leaves
under Pb treatment.

In leaves, the expression of CsNRAMP2 was downregulated earlier and then up-
regulated at 50 mg/L Pb treatment, and showed a double-peak pattern at 100 mg/L Pb
treatment. Additionally, CsNRAMP2 was significantly induced at 500 mg/L Pb treatment
for 1 and 7 days. The expression of CsNRAMP1 was downregulated under low Pb con-
centrations (≤100 mg/L), but increased at first and then decreased at high concentration.
CsNRAMP10 showed a pattern that decreased and then increased at low Pb concentra-
tion, while it could be induced by high concentration. CsNRAMP11 expression, except at
100 mg/L for 1 day, was downregulated by Pb treatment. The expression of CsNRAMP7
and CsNRAMP9 exhibited a tendency that was downregulated and then increased. The
expression of CsNRAMP6 and CsNRAMP8 was decreased (Figure 7A and Supplementary
Materials, Figure S2).
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heatmap of 8 CsNRAMP genes under different concentrations of Pb treatment in leaves. (B) Expres-
sion heatmap of 10 CsNRAMP genes under different concentrations of Pb treatment in roots. The
expression level of tea actin was used as the internal control to standardize the RNA samples for each
reaction and the expression at 0 day was set as CK. The underline with marks of Pb50, Pb100, Pb300,
and Pb500 indicated that the concentration of Pb treatment was 50 mg/L, 100 mg/L, 300 mg/L, and
500 mg/L, respectively. And the sampling time after each treatment was 1 day, 7 days, and 14 days.
Relative expression levels were shown in color as the scale.

In roots, CsNRAMP3 was significantly expressed in response to lead stress, and
showed a double-peak pattern. At 50 and 100 mg/L Pb treatment, the expression of
CsNRAMP4 and CsNRAMP5 was upregulated and showed the highest transcriptional
levels at 7 days, before decreasing. However, CsNRAMP4 and CsNRAMP5 were induced
and stably expressed at 500 mg/L and 300 mg/L Pb treatment. The CsNRAMP6 and
CsNRAMP10 showed an initial increase, but subsequently decreased under Pb treatments.
CsNRAMP2 and CsNRAMP8 showed a slight increase after treatment. The expression
of CsNRAMP7, CsNRAMP9, and CsNRAMP11 increased, and CsNRAMP9 was highly
expressed at 500 mg/L for 14 days. (Figure 7B and Supplementary Materials, Figure S3).

2.6. Cloning of CsNRAMP2 and CsNRAMP5 and Subcellular Localization

To understand the subcellular location of the CsNRAMP2 and CsNRAMP5 proteins,
full-length CsNRAMP2 and CsNRAMP5 without ending codes were cloned and inserted
into EGFP-fusion expression vector. The recombinant plasmid with a plasma membrane
(PM) marker AtPIP2A-mCherry was cotransformed through transient infiltration to tobacco
epidermis cells. The results indicated that both EGFP-CsNRAMP2 and EGFP-CsNRAMP5
fusion proteins were located in the plasma membrane (Figure 8). The subcellular local-
ization of EGFP-CsNRAMP5 was coincident with the result predicted on the SoftBerry
ProtComp website. However, the subcellular localization of CsNRAMP2 was the plasma
membrane, which was different from the prediction of the SoftBerry ProtComp website.
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Figure 8. Subcellular location of the fusion protein 35S::CsNRAMP2::EGFP and 35S::CsNRAMP2::EGFP in tobacco epidermis
cells (through transient infiltration). The vector 35S::EGFP was used as the control, and the AtPIP2A-mCherry was used as a
plasma membrane (PM) marker. Bar = 100 µm.

3. Discussion

Based on the conserved domain of AtNRAMPs (PF01566), we identified 11 NRAMP
genes from the Tea Plant Genome Database. Since the NRAMP genes were divided into
two groups in Arabidopsis, we also split the CsNRAMPs into two groups [20]: CsNRAMP3,
CsNRAMP4, CsNRAMP5, and CsNRAMP8 in group 1, and other CsNRAMPs in group 2.

The NRAMP proteins have been reported to contain 10–12 transmembrane domains
and consist of around 500 amino acid residues in different species. For example, Os-
NRAMP proteins contained 518–550 amino acid residues and 10–12 transmembrane re-
gions in rice [16]. Similarly, it was verified that there are 12 transmembrane domains
in PvNRAMPs, and that the length of amino acid residues ranged from 507–554 [25].
However, in this study, we learned that CsNRAMP proteins contain 3–12 transmembrane
regions and consist of 279–1373 amino acid residues. This may have been due to a bro-
ken NRAMP domain (Supplementary materials, Figure S1) or variation among species.
This result was similar to those of several members of BnNRAMPs, which only carried
100–200 amino acid residues [29]. NRAMP proteins have been reported to carry consensus
residues between TMD8 and TMD9, e.g., the AtNRAMP proteins in Arabidopsis contained
GQSSTITGTY AGQXXMXGFLX, while PvNRAMP proteins in Phaseolus vulgaris carried
GQSSTITGTYAGQFIMGGFLN [25,28]. According to our results, the CsNRAMP proteins
carried similar consensus residues, i.e., GQSSTxTGTYAGQFIMxGFLxLxxKKW, which con-
sisted of motif 2 (GQFIMxGFLxLxxKKW) and 6 (GQSSTxTG). For motif analysis, motifs
6 and 14 are only present in G2 CsNRAMP proteins, while motifs 10, 15, 17, and 20 are
only present in the G1 CsNRAMP proteins; this may be related to the differences between
groups. We also analyzed motifs of the tea plant, Arabidopsis and rice, finding that motifs
17 and 18 discriminated groups 1 and 2 (Supplementary Materials, Figure S4). This was
similar to the results of NRAMPs of cacao, Arabidopsis, and rice, which were split into
three clusters with a comparison of conserved motifs [26].
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In this study, we learned that G1 genes, CsNRAMP3, CsNRAMP4, and CsNRAMP5,
were extraordinarily expressed in roots, while G2 genes showed higher expression levels
in the stems and leaves. The NRAMP family genes of plants have been proven to func-
tion on a wide range of divalent metal ions, including absorption, transportation, and
homeostasis [32]. For example, AtNRAMP6 functions in the lateral root and young leaves
of Arabidopsis [33]. AtNRAMP1 plays a pivotal role in the Fe transportation in roots [34].
SaNRAMP1 can be strongly expressed in the young shoots and transportation of Cd, Mn,
and Zn [35]. To sum up, the members of G1 CsNRAMPs were mainly expressed in the root,
combing with their plasma membrane localization (Table 1), indicated that G1 CsNRAMPs
may participate in the absorption process of metal ions. AtNRAMP3 and AtNRAMP4 are
located on vacuolar membranes and function in vacuolar Fe mobilization [36,37], while it
was predicted that the G2 members would be located on the membrane bound vacuolar,
which might be related to the transport and distribution of metal in the tea plant.

In plants, NRAMPs were found to participate in multiple divalent metal transporta-
tion [22]. The expression of BnNRAMP2;1 and BnNRAMP4;2 could be increased after
exposure to Cd [38]. Nrat1 characterized as Al transporters in rice could be highly ex-
pressed in response to Al stress [39]. LeNRAMP1 could be significantly induced by iron
deficiency [40]. AtNRAMP3 and AtNRAMP4 proteins have been proved to function in
the transportation of Fe and Mn [36,37]. OsNRAMP6 and OsNRAMP5 have been shown
to be involved in the uptake of Fe and Mn [16]. According to our results, the members
of CsNRAMPs could be differently upregulated or downregulated under Pb treatment.
The expression levels of most CsNRAMPs in leaves were lower than in roots. This may
have been due to the fact that plants restrict most of the heavy metals to the roots to
alleviate toxicity on shoots and leaves [15]. In leaves, the expression levels of CsNRAMP1,
CsNRAMP2, CsNRAMP9, and CsNRAMP10 were upregulated, and CsNRAMP2 showed ex-
tremely sensitive response to Pb treatment. In roots, the transcription levels of CsNRAMP3,
CsNRAMP4, CsNRAMP5, CsNRAMP7, and CsNRAMP9 were accumulated after exposure
to Pb. In particular, the expression of CsNRAMP3 was sharply increased under Pb treat-
ment. This indicates that these genes may play a role in Pb transportation. Interestingly,
some CsNRAMPs showed a double-peak pattern after Pb treatment, which may be have
been due to a complicated interaction mechanism in the tea plants. The MTs also showed a
similar expression pattern under Cd stress [41].

Regarding G2 members, the NRAMP domain of CsNRAMP3 protein was broken
(Supplementary Materials, Figure S1). CsNRAMP7, CsNRAMP9, and CsNRAMP10 only
contained six, six, and three transmembrane regions respectively, in contrast to 10–12 TMDs.
Furthermore, CsNRAMP1 and CsNRAMP2 were close on the phylogenetic tree, and the
expression level of CsNRAMP2 increased more than CsNRAMP1 under Pb treatment in
leaves. Regarding G1 members, both expression levels CsNRAMP4 and CsNRAMP5 were
increased by Pb treatment in roots; however, the expression of CsNRAMP5 under 100 mg/L
Pb treatment for 14 days was increased around 12 fold in leaves (Supplementary Materials,
Figure S2). Overall, CsNRAMP2 from G2 and CsNRAMP5 from G1 were chosen for further
studies, since NRAMP genes function in metal ion transportation, especially Fe [42]. In this
study, the responses of CsNRAMP2 and CsNRAMP5 to Fe and Mn treatments were studied.
The results showed that Fe treatment (400 µM EDTA-Fe) increased the expression of
CsNRAMP2 and decreased the expression of CsNRAMP5, while Mn treatment up-regulated
the expression of CsNRAMP5 in roots (Supplementary Materials, Figure S5). As shown
in Figure 1, the CsNRAMP2 protein clustered together into a small phylogenetic branch
with AtNRAMP2, AtNRAMP3, and AtNRAMP4, which are known to be implicated in the
transportation of Fe and Mn [36,37]. Thus, CsNRAMP2 may play a role in transporting Fe
and Pb. Meanwhile, CsNRAMP5 was close to OsNRAMP6 and OsNRAMP5, which have
been shown to be involved in the uptake of Fe and Mn [16]. CsNRAMP5 may participate in
the transportation of Mn and Pb. All of these speculations need further study.

Proteins of the NRAMP family located on different organelles show various functions.
For example, AtNRAMP6 has been shown to be located in the Golgi/trans-Golgi network
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and play an important role in intracellular Fe homeostasis [33]. Additionally, AtNRAMP3
and AtNRAMP4 are located on vacuolar membranes and contribute to Fe mobilization [37].
OsNRAMP1 on the plasma membrane of endodermis and pericyle cells may assist in the
loading of arsenic from roots to shoots mobilization [32]. In this study, we analyzed the
subcellular locations of the CsNRAMP2 and CsNRAMP5 proteins. The results indicated
that both CsNRAMP2 and CsNRAMP5 fusion proteins are located in the plasma membrane.
CsNRAMP2 and CsNRAMP5 fusion proteins may function in the transmembrane transport
of metal ions.

In summary, we first identified 11 NRAMP genes in a genome-wide survey of the tea
plant. The expression profiles of CsNRAMP genes varied in tea plant tissues, implying
that CsNRAMPs perform functions in specific tissues. Based on the expression analysis
under Pb treatment, we speculated that certain CsNRAMP genes might contribute to Pb
transportation. Furthermore, the subcellular localization analysis in tobacco epidermis cells
confirmed the plasma membrane localization of CsNRAMP2 and CsNRAMP5 proteins.
These results provide basic information for understanding the functions of the NRAMP
family in tea plants, and suggest potential future study directions regarding transport
signaling pathways.

4. Materials and Methods
4.1. Identification of CsNRAMP Family Genes in the Tea Plant

The sequences of NRAMP genes of the tea plant were obtained derived from the Tea
plant Genome Database (http://tpia.teaplant.org/download.html (accessed on 1 October
2019)). The NRAMP domain (PF01566) of six AtNRAMP proteins was used to search
the local tea protein database for target sequences by using Bioedit version 7.0.9 soft-
ware. Pfam Database (http://pfam.xfam.org/ (accessed on 30 October 2019)) and SMART
(http://smart.embl-heidelberg.de/ (accessed on 30 October 2019)) were used to determine
predicted protein as a member of the transporter gene family.

4.2. Characterization of CsNRAMP Proteins

Six Arabidopsis NRAMP protein sequences and seven rice NRAMP protein sequences
were downloaded from the Arabidopsis Information Resource (TAIR) (https://www.
arabidopsis.org/ (accessed on 23 December 2020)) and The Rice Annotation Project Database
(https://rapdb.dna.affrc.go.jp/download/irgsp1.html (accessed on 23 December 2020)).
MEGA version 7.0 was used to construct a bootstrap neighbor-joining(NJ) phylogenetic tree
for NRAMP protein of Arabidopsis, rice, and tea with MUSCLE alignment and 1000 boot-
strap replicates [43]. The duplication events were analyzed using the DupGen_finder [44],
and then visualized using TBtools v.1.0692 [45]. The physicochemical properties of the
CsNRAMP proteins were analyzed using ExPASy-ProtParam (https://web.expasy.org/
protparam/ (accessed on 22 July 2020)). The exon organization was determined using
by TBtools v.1.0692 [45]. Prediction of subcellular localization and transmembrane he-
lices of the proteins encoded by CsNRAMP genes were displayed by SoftBerry Prot-
Comp (http://linux1.softberry.com/berry.phtml?topic=protcomppl&group=programs&
subgroup=proloc (accessed on 22 July 2020)) and TMHM M Server v.2.0 (http://www.
cbs.dtu.dk/services/TMHMM-2.0/ (accessed on 22 July 2020)). The conserved motifs
and domains of CsNRAMP proteins were obtained using the MEME (E < 1e−10) on-
line tool (http://meme-suite.org/tools/meme (accessed on 5 January 2021)) and Pfam
(http://pfam.xfam.org/ (accessed on 5 January 2021)) respectively, and then visualized
by visualizing the domain pattern of TBtools v.1.0692 [45]. Finally, multiple sequence
alignments of the CsNRAMP proteins were performed using DNAMAN version 7.0.

4.3. Plant Materials and Treatments

One-year-old seedlings of tea plants “zhongcha108” were grown in a growth chamber
at the Tea Science Research Institute of Nanjing Agricultural University (Nanjing, China).
These seedlings were cultivated in a nutrient solution [46], and were precultured in 1/4
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nutrient solution and then 1/2 nutrient solution for acclimatization. Then, seedlings were
cultured in a total nutrient solution for about two weeks. After that, the leaves, stems, and
roots were harvested for expression analysis of CsNRAMP genes of the tea plant.

Regarding lead treatment, the seedlings were cultivated in a nutrient solution contain-
ing 50, 100, 300, 500 mg/L Pb2+ (Pb(NO3)2), and then the leaves and roots were collected
at 1, 7, and 14 days after treatment. The CK leaves and roots were collected before lead
treatment.

To investigate the possible function of CsNRAMP2 and CsNRAMP5 in response to
divalent metal, tea plant seedlings were exposed to the treatments of iron and manganese
for 7 days, respectively. For iron treatment, excess Fe (200 µM or 400 µM EDTA-Fe) was
added for iron treatment. Additionally, 200 µM or 400 µM MnSO4·H2O was added for Mn
treatment. The seedlings cultivated in full-strength nutrient solution were sampled as the
control (CK, 6.27 µM Fe-Na-EDTA and 18.22 µM MnSO4·H2O).

All samples were frozen in liquid nitrogen, then stored at −80 °C for the following
experiments. All experiments were repeated with three biological and technical replicates.

4.4. Expression Profile Analyses

Total RNA was extracted from the leaves and roots using an RNA quick isolation
kit (Aidlab, Beijing, China), and reverse transcription was performed with TransScript®

One-Step gDNA Removal and cDNA Synthesis SuperMix (TransGen, Beijing, China). The
expression of CsNRAMPs was analyzed by quantitative real-time PCR using the SYBR
Premix Ex Taq II kit (Takara, Kusatsu, Japan). The primer pairs used for qRT-PCR were
designed by Primer Premier 5.0 and β-actin was used as an internal control (Table S2). The
qRT-PCR program was as follows: 95 °C for 30 s, 40 cycles at 95 °C for 5 s, 60 °C for 30 s [47].
All experiments were repeated with three biological and technical replicates. Relative gene
expressions were calculated using the 2−∆∆Ct method [48].

4.5. Subcellular Location Confirmation of CsNRAMP2 and CsNRAMP5

The full open-reading frame sequences of CsNRAMP2 and CsNRAMP5 gene with-
out the stop codon were amplified and then inserted into EGFP-fusion expression vector
pCAMBIA 2300 at XbaI and SmaI site using TreliefTM SoSoo Cloning Kit Ver.2 (Tsingke,
Beijing, China). The recombinant plasmid, EGFP-CsNRAMP2 or EGFP-CsNRAMP5, and
empty vector were transformed into Agrobacterium tumefaciens strain GV3101 cells. Further-
more, we cotransformed GV3101 containing recombinant plasmids or empty vectors with a
plasma membrane (PM) marker AtPIP2A-mCherry through transient infiltration to tobacco
epidermis cells [49]. Plants were incubated in the dark overnight and normal cycle for
two days and then detected using An LSM800 Ultra high-resolution confocal microscopy
imaging system (Zeiss Co., Oberkochen, Germany) [50].

4.6. Statistical Analysis

Excel 2010, SPSS 20.0, and GraphPad Prism 5 were used to analyze the experimental
data. Duncan’s method was used for multiple comparisons of variance analysis, and
p < 0.05 indicated a significant difference.

Supplementary Materials: The following are available online at https://www.mdpi.com/article/10
.3390/plants10061055/s1, Figure S1: Domain analysis of CsNRAMP proteins. Figure S2: Expression
of CsNRAMP2, -4 and -5 of Camellia sinensis in leaves. Figure S3: Expression of CsNRAMP1 of Camellia
sinensis in roots. Figure S4 Motif analysis of NRAMP proteins from Camellia sinensis (Cs), Arabidopsis
thaliana (At), and Oryza sativa (Os). Figure S5 Expression of CsNRAMP2 and CsNRAMP5 of Camellia
sinensis (leaf and root) in response to Fe and Mn treatments. Table S1: Motif consensus. Table S2:
Primers for expression analysis.
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