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Abstract
Physiological high frequency activities (HFA) are related to various brain functions. Factors,

however, regulating its frequency have not been well elucidated in humans. To validate the

hypothesis that different propagation modes (thalamo-cortical vs. cortico-coritcal projec-

tions), or different terminal layers (layer IV vs. layer II/III) affect its frequency, we, in the pri-

mary somatosensory cortex (SI), compared HFAs induced by median nerve stimulation

with those induced by electrical stimulation of the cortex connecting to SI. We employed 6

patients who underwent chronic subdural electrode implantation for presurgical evaluation.

We evaluated the HFA power values in reference to the baseline overriding N20 (earliest

cortical response) and N80 (late response) of somatosensory evoked potentials (HFASEP

(N20) and HFASEP(N80)) and compared those overriding N1 and N2 (first and second

responses) of cortico-cortical evoked potentials (HFACCEP(N1) and HFACCEP(N2)). HFASEP

(N20) showed the power peak in the frequency above 200 Hz, while HFACCEP(N1) had its

power peak in the frequency below 200 Hz. Different propagation modes and/or different

terminal layers seemed to determine HFA frequency. Since HFACCEP(N1) and HFA induced

during various brain functions share a similar broadband profile of the power spectrum, cor-

tico-coritcal horizontal propagation seems to represent common mode of neural transmis-

sion for processing these functions.
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Introduction
In the last decade, advancement in technology has made it possible to analyze ultra slow or
high frequency activities (HFAs), or high frequency oscillations (HFOs) in the human brain.
Neuronal functional networks show the broadband oscillatory activities ranging from 0.01 Hz
to 600 Hz or above. In particular, neuronal activities above the conventional gamma range are
reported to be specific to the each content of neuronal functional activities in both physiologi-
cal and pathological neuronal processes [1–3].

Physiologically, gamma oscillations, in particular, those above 60 Hz (60–200 Hz) are
closely associated with brain functions such as motor [1,4–6], language [7–8], attention [9],
auditory [10–11], and visual [12] functions. Neuronal activities of the conventional ‘narrow-
band’ gamma (below 60–80 Hz) have been reported to originate from neuronal synchroniza-
tion mainly by inhibitory interneuron networks [13–15], and those of ‘broadband’ high
gamma (80–200 Hz) have been reported to reflect increase of the multiunit activities or local
field potentials [16–18].

Much before the discovery of high gamma activities related with various brain functions,
faster activity around 600 Hz was discovered and intensively investigated in somatosensory
function by recording somatosensory evoked potentials (SEPs) [19–29]. This activity was dif-
ferent from the aforementioned activities in that it is an evoked activity that overrides the early
cortical component (N20) of median nerve SEP. The generator of HFOs or HFAs of SEP
(HFASEP) has been proposed at various locations: the terminal segments of the thalamocortical
fibers [30], the primary somatosensory cortex (SI) close to the generator of SEP N20 [31],
GABAergic inhibitory fast-spiking interneurons at SI [26], and subcortical neurons [32].
Among them, the main generator has been proposed at or around SI from findings obtained by
direct electrocorticographic recording. HFASEP seems to play an important role in sensory
information processing, and their impairment is reported in patients with multiple sclerosis,
migraine and epilepsy [33–36].

The pathological high frequency oscillations (HFOs) or HFAs have been recently explored
in the field of epilepsy, and nowadays are regarded as one of the possible biomarkers of epilep-
togenicity [37–39]. Pathological HFAs are generally divided into ripples between 100 and 200
Hz and fast ripples more than 250 Hz [2]. The generator of pathological HFAs, especially fast
ripples, is presumably single or recurrent population spikes that reflect summated hypersyn-
chronized discharges of principal cells [40–41].

Besides intrinsic physiological or pathological HFAs, external stimulation can generate cor-
tical HFAs. In addition to the peripheral nerve stimulation that generates HFASEP, direct elec-
trical cortical stimulation can produce HFOs. Electrical stimulation of the piriform cortex
produced oscillatory gamma responses (50–60 Hz) mainly at the layer Ia (superficial layer) in
normal rats [42]. Moreover a recent study has shown that pathological HFAs could reliably be
produced by electrical microstimulation of the hippocampus in the tetanus toxin-induced epi-
leptic rats and normal rats [43].

Although the mechanisms how HFAs are generated have been studied both in vivo and
vitro in animals [44–45], factors regulating the frequency of physiological (60–200 Hz for
cognitive HFA, ~600 Hz for HFASEP) and pathological (epileptic: 80–500 Hz) HFAs have not
been well elucidated in humans. We focused on the SI cortex to investigate factors regulating
physiological HFAs since HFASEP (~600 Hz) has been extensively studied in humans. We
hypothesized that different modes of propagation, vertical (thalamo-cortical) vs. horizontal
(cortico-cortical) projections, or different terminal layers, i.e., layer IV vs. layer II/III affect the
frequency of physiological HFAs. We compared HFAs in SI triggered by median nerve stimula-
tion with those elicited by single pulse electrical cortical stimulation (SPES). Cortico-cortical
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evoked potentials (CCEPs) have been widely used to evaluate the cortical evoked response to
SPES [46]. CCEPs are recorded from the adjacent and remote cortices by averaging electrocor-
ticograms (ECoGs) time-locked to the single pulse stimuli. CCEPs usually consist of an early
negative component (N1) and a late negative component (N2). This method has been used for
investigating cortico-cortical connections involved in functional brain systems [46–54] or sei-
zure networks [55–56]. In the present study, by applying SPES to the cortex connecting to SI,
we focused on the HFAs overriding CCEP N1 and N2 components in the SI cortex and com-
pared their feature with HFASEP. In the present study, we adopted the terminology of “HFAs”
for all the high frequency activities although “HFOs” have been used in the previous studies of
the high frequency activities overriding SEPs. This is because we do not only focus on the ‘nar-
rowband’ high frequency activities showing discrete oscillatory activities but also the ‘broad-
band’ activities.

Materials and Methods

Patients
Six patients (2 female), 4 with medically intractable partial epilepsy and 2 with brain tumor
were studied (Table 1). All underwent chronic subdural electrode implantation covering the
peri-rolandic area for the presurgical evaluation. In all but patient 5, the epileptic foci were
away from the peri-rolandic area. In patient 5, although the lesion (brain tumor) was in the
peri-rolandic area, the hand SI was located outside the lesion. Because of the ill-defined ictal
onset in the scalp EEG and normal MRI findings, patient 1 underwent electrode implantation
twice: the first implantation in the bilateral hemispheres to lateralize the seizure onset, and the
second one in the right hemisphere to localize the epileptic focus. Therefore we measured SEPs
and CCEPs in 7 hemispheres from 6 patient, i.e., 2 hemispheres from patient 1—patient 1L
and patient 1R. Neurological examination was normal except patient 5 who showed slight
paresis in the right lower extremity. The implanted electrodes were made of platinum with a
recording diameter of 2.3 mm and a center-to-center interelectrode distance of 1 cm (Ad-Tech,
Rachine, WI, USA) or with a recording diameter of 3 mm and a center-to-center interelectrode
distance of 1 cm (Unique Medical Co., Ltd., Tokyo, Japan). As a part of the clinical presurgical
evaluation, high frequency (50 Hz) electrical stimulation was performed for functional cortical
mapping. Cortical mapping of the peri-rolandic area was performed in patients 3–6. To define
the exact location of each electrode on the brain, subdural electrodes were co-registered to

Table 1. Patient profile.

Patient 1 2 3 4 5 6

Age, gender 23F 24M 29M 34M 40M 28F

Handedness R R L L R R

Epilepsy FLE FLE TLE Parieto-temporal Lobe Epilepsy Peri-rolandic Epilepsy PLE

Etiology FCD
type IA

FCD type
IB

FCD type IA
and HS

Posttraumatic injury and ischemic change (parietal)
and HS and dysplastic change (temporal)

Oligoastrocytoma DNT

Neurological
Examination

Normal Normal Normal Normal Slight right lower extremity
weakness

Normal

Recording
hemisphere

L R L L R L R

FLE = frontal lobe epilepsy, TLE = temporal lobe epilepsy, PLE = parietal lobe epilepsy, FCD = focal cortical dysplasia, HS = hippocampal sclerosis,

DNT = dysembryoplastic neuroepithelial tumor

doi:10.1371/journal.pone.0130461.t001
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three dimensional volume-rendered MRIs, which were reconstructed from MPRAGE taken
while electrodes were in place. The location of each electrode was identified on the 2D-MRI by
using its signal void due to the property of the platinum alloy. The methodological details have
been described elsewhere [46,57]. The central sulcus (CS) and its relationship to the electrodes
were also identified by anatomical landmarks on the 3D-MRI.

The present study was approved by the Ethics Committee of Kyoto University Graduate
School of Medicine (No. 443). Written informed consent was obtained from all patients.

Data Acquisition of SEPs
Electrocorticograms (ECoGs) were recorded with a bandpass filter of 0.016–600 Hz and a sam-
pling rate of 2,000 Hz in all patients (EEG-1100, Nihon Kohden, Tokyo, Japan) and analyzed
off-line using Matlab software (Matlab version 7.12.0; the MathWorks Inc., MA). Cortical
recordings from subdural electrodes were referenced to a scalp electrode placed on the skin
over the mastoid process contralateral (patient 1R and 2–6) or ipsilateral (patient 1L) to the
side of electrode implantation.

The median nerve contralateral to the side of electrode implantation was stimulated at the
wrist (a square wave pulse of 0.3 ms duration at 0.3 Hz) (Electrical Stimulator SEN-7203,
Nihon Kohden, Tokyo, Japan). The stimulus intensity was adjusted to 20% above the motor
threshold. In all the patiens, SEPs were recorded before tapering the antiepileptic drugs in the
first week of chronic electrode implantation. During recording, the patients were lying on the
bed and requested not to perform any specific task under awake condition. At least 2 trials of
150 sweeps were averaged to confirm the reproducibility of responses. SEPs were obtained by
off-line averaging ECoGs time-locked to the stimulus onset with a time window of 1,000 ms
(from 300 ms before to 700 ms after the stimulus onset). The baseline was set for the first 200
ms: from 300 ms to 100 ms before the stimulus onset.

Data Acquisition of CCEPs
The methodological details of CCEPs have been described elsewhere [46,49]. In brief, electrical
stimulation was applied in a bipolar manner to a pair of adjacently placed subdural electrodes
by a constant-current stimulator (MEE-1232, Nihon Kohden, Tokyo, Japan). The single pulse
electrical stimuli (a square wave pulse of 0.3 ms duration) were delivered in alternating polarity
at a fixed frequency of 1 Hz. In the previous CCEP study, the CCEP consisted of an early (N1)
and a late (N2) negative potentials, and the latencies of N1 and N2 usually ranged 10–50 ms
and 100–200 ms, respectively. The stimulus intensity was set at 6–12 mA after confirming the
absence of afterdischarges (ADs) and excessive artifacts that obscured the CCEP waveform.

ECoGs were recorded with a bandpass filter of 0.08–600 Hz. The sampling rate and refer-
ence electrode setting were the same as those for SEPs. During the recording of CCEPs, the
patients were lying on the bed and requested not to perform any specific task under awake con-
dition. In all the patients, CCEPs were recorded in the second week after returning the dosage
of antiepileptic drugs. At least 2 trials of 30–50 responses each were averaged to confirm the
reproducibility of responses. CCEPs were obtained off-line by averaging ECoGs time-locked to
the stimulus onset. The time window (1,000 ms) and baseline (200 ms) was set as the same as
those of SEPs. The method has been reported elsewhere in detail [46,58].

Definition of the Primary Sensory Cortex (SI) and Selection of CCEPs in
the hand SI
In this study, we aimed at comparing HFAs overriding SEPs and CCEPs in the hand SI. The
hand SI electrode was identified according to the largest cortical SEP component, N20. We
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confirmed the location of the hand SI electrodes on the postcentral gyrus anatomically by the
3D-MRI in all patients. The epileptic focus was away from the hand SI in all patients. No
patients showed interictal epileptic spikes at the hand SI electrode.

We usually perform SPES to most of the implanted electrodes in order to investigate the
cortico-cortical connections involved in seizure propagation and brain functions for clinical
purposes. For this particular study, we selected the stimulus sites (electrode pairs) that pro-
duced large outstanding CCEP waveforms at the hand SI electrode in each patient. The subse-
quent time frequency analysis was performed for the ECoG data for each CCEP stimulus site.
In other words, when the robust CCEP waveform was recorded in the hand SI from more than
1 stimulus site (e.g., 2 stimulus sites) in 1 patient, the time frequency analysis was performed
for each stimulus site separately.

Time Frequency Analysis
A time-frequency representation was built for each epoch of raw ECoG data recorded during
SEP and CCEP recording by using the short-time Fourier Transform (STFT). The epoch dura-
tion was the same as that used for SEP and CCEP analyses, i.e., from 300 ms before to 700 ms
after the stimulus onset. The analysis frequency range was 0–600 Hz. The Fourier Transform was
performed on 25 data-point window (12.5 ms; frequency resolution 80 Hz) at each time-step.
The step of the sliding window was set at 5 ms; in other words, 1 time bin was with width of 5 ms
centered at 2.5 ms. A Hanning window was imposed on each window to attenuate edge effects.

With the current amplifier (EEG-1100, Nihon Kohden, Tokyo, Japan), the stimulus artifact
lasts up to 3–4 ms from the stimulus onset. A preliminary CCEP latency analysis revealed that
N1 peaked between 7–27 ms at the SI electrode. In order to differentiate the stimulus artifact
from the N1 potential for the STFT anlaysis, we selected the short window size of 25 points
(12.5 ms) and sacrificed the frequency resolution to 80 Hz. When we analyze the high fre-
quency activities, it is important to distinguish the evoked response that is time-locked and
phase-locked to the stimulation from the induced response that is time-locked, but not phase-
locked. Induced (non-phase-locked) responses are analyzed by subtracting event-related
potential from the raw ECoG signal in each individual trial to minimize the contribution of
evoked (phase-locked) responses [59]. In this study, our aim was to analyze neuronal activities
induced by external stimulation upon individual trial basis. Therefore, in contrast to the most
of the previous somatosensory evoked HFA studies, we adopted induced HFA responses for
SEPs in the same condition as those of CCEPs.

After the STFT, we averaged the power spectrum across all the epochs. The logarithmic
power spectrum (base 10) was computed for the given frequency range and window. The base-
line for computation was set to the same as that for averaging SEP and CCEP: from 300 ms to
100 ms before the stimulus onset. We refer to the stimulus-locked induced HFA for SEP data
as “HFASEP” and that for CCEP data as “HFACCEP” herein for clarity. For HFACCEP analysis,
we focused on the induced HFA overriding the early N1 potential (HFACCEP(N1)) and the fol-
lowing N2 potential (HFACCEP(N2)). Since the N1 is regarded as the first volley reaching the tar-
get cortex [49,51,60], HFA overriding N20 (HFASEP(N20)) was analyzed as an N1 counterpart.
HFA overriding N80 (HFASEP(N80)), a late cortical component subsequent to the early cortical
component, was also analyzed since the peak latency was closest to that of N2. As for HFAs on
the early potentials (HFASEP(N20), HFACCEP(N1)), the power changes were calculated for 1 time
bin that included the peak of SEP N20 or CCEP N1. We carefully selected a bin after 15 ms for
evaluating HFACCEP(N1) and HFASEP(N20) so that the 25 data-point (12.5 ms) window did not
overlap with the stimulus artifact in all patients. CCEP N1 peaked, however, before 12.5 ms in
2 CCEP responses, and we selected the bin at 15 ms instead in order to avoid stimulus artifact
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on these rare occasions. We selected 4 bins (mean of 20 ms bin at and around the peak) for cal-
culating the power spectra of CCEP N2 and SEP N80. We confirmed the validity of the usage
of the bin after 15 ms for evaluating HFACCEP(N1) and HFASEP(N20), namely, that the 25 data-
point (12.5 ms) window did not overlap with the stimulus artifact, by performing an additional
stimulus artifact analysis using the dead pig brain (see S1 Text and S1 Fig).

Since most of the aforementioned induced HFA activities were within 200 ms from the
stimulus onset, we displayed the STFT results across the whole time points and frequencies in
3 dimensions (time, frequency, and power value) in a time window of 220 ms (from 20 ms
before to 200 ms after the stimulus onset) in figures (Figs 1B, 2B, 3A and 3B).

In order to compare the power trend across the frequency bands among HFASEP(N20), HFA-

SEP(N80), HFACCEP(N1), and HFACCEP(N2), we also drew additional figures plotting the change of
the logarithmic power spectra across the frequency bands at the timing of N1 and N2 of CCEP
and N20 and N80 of SEP. In each patient, we analyzed the power values for frequency bands
centered at 80, 160, 240, 320, 400, 480, and 560 Hz for the 4 groups (HFASEP(N20), HFASEP(N80),
HFACCEP(N1), HFACCEP(N2)). After the plot was made for each patient (see Fig 3G, 3H, 3I and
3J), all the power values from 7 hemispheres in 6 patients (N = 7 for HFASEP(N20) and HFASEP

(N80), N = 16 for HFACCEP(N1) and HFACCEP(N2)) were plotted in the same figure (see Fig 4).

Fig 1. SEPs and HFAsSEP recorded from the peri-rolandic area and 3D-MRI (patient 1, left hemisphere). A: SEPs to right median nerve stimulation are
plotted with subaverages (black and grey waveforms) across the CS identified on 3D-MRI (in a representative case). The vertical line corresponds to the time
of median nerve stimulation (a white arrowhead). N20 component showing the maximum amplitude is identified on the primary somatosensory cortex (SI) (a
black arrowhead). B: Time-frequency representation of SEP to right median nerve stimulation (HFASEP) by using the short-time Fourier Transform is shown
across the CS. The frequency range is from 40 to 600 Hz. The vertical line corresponds to the time of median nerve stimulation (a white arrowhead). The
averaged logarithmic power spectrum in reference to the baseline is calculated. Increase of power is indicated in red and decrease in blue. C: On 3D-MRI,
subdural electrodes are plotted as white circles. A hand SI electrode is plotted as a white circle with a cross. Only electrodes at and around the hand SI and
stimulus electrodes are shown in the figure. Since most of the induced high frequency activities were within 200 ms from the stimulus onset, we displayed the
STFT results across the whole time points and frequencies in 3 dimensions (time, frequency, and power value) in a time window of 220 ms (from 20 ms
before to 200 ms after the stimulus onset). SEP, somatosensory evoked potential; HFA, high frequency activity; CS, central sulcus.

doi:10.1371/journal.pone.0130461.g001
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Statistical Analysis
The statistical analyses were performed by using the logarithmic power values of each SEP and
CCEP responses (7 responses for HFASEP(N20) and HFASEP(N80), and 16 responses for HFAC-

CEP(N1) and HFACCEP(N2)). In this study we aimed to investigate whether there are differences
of the distributions of logarithmic power spectra between the 4 groups. Repeated measures
analysis of variance (RM-ANOVA) was adopted for the statistical investigation of the interac-
tions with the power values in each frequency band as a within-group factor and with the afore-
mentioned 4 groups [HFASEP(N20), HFASEP(N80), HFACCEP(N1), and HFACCEP(N2)] as a
between-group factor. As a post hoc analysis, we focused on the 4 comparisons between the
groups: HFASEP(N20) and HFACCEP(N1), HFASEP(N80) and HFACCEP(N2), HFASEP(N20) and HFA-

SEP(N80), and HFACCEP(N1) and HFACCEP(N2).

Results

Distribution of evoked responses and HFAs
Stimulation of the median nerve contralateral to the recording hemisphere elicited SEPs on the
electrodes around the central sulcus (CS). As shown in the 3D-MRI of the representative case
(patient 1L, Fig 1A), all the hand SI electrodes with the largest N20 were located on the post-
central gyrus. As for the power spectra, HFAsSEP were recognized at and around the hand SI
electrode (Fig 1B). The distribution of SEPs (N20 and N80) well corresponded to that of HFAs-

SEP (Fig 1C) in all patients. Regarding distribution of CCEPs and HFAsCCEP, robust CCEP

Fig 2. CCEPs and HFAsCCEP recorded from the peri-rolandic area and 3D-MRI (patient 1, left hemisphere). A: Single pulse stimulation was applied to
the electrodes on the precentral gyrus and CCEPs were recorded time-locked to the stimuli (in a representative case). Two subaverages (black and grey
waveforms) are shown. The vertical line corresponds to the time of single pulse stimulation (white arrowhead). B: Time-frequency representation of CCEP
(HFACCEP) by using the short-time Fourier Transform. C: Electrodes on 3D-MRI. CCEP = cortico-cortical evoked potential. Other conventions are the same
as for Fig 1.

doi:10.1371/journal.pone.0130461.g002
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Fig 3. SEP, CCEP, HFASEP, and HFACCEP at SI (patient 1, left hemisphere). A-D: SEP (A), CCEP (B), HFASEP (C), and HFACCEP (D) recorded from the
same hand SI electrode are shown in a representative case. The STFT was performed by using the short analysis-window of 25 points (12.5 ms) in order to
differentiate the stimulus artifact from the CCEP N1 potential. Since the sliding window is set at 5 ms, each time bin (5ms-width) displays the STFT results of
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responses (N1 and N2) and induced HFAsCCEP were recorded at the hand SI electrode by stim-
ulating 16 stimulus sites (1–3 stimulus sites per patient: 1 site in patient 3, 2 sites in patient 1
(L), 1(R), and 6, and 3 sites in patient 2, 4, and 5) (see patient 1L, Fig 2A and 2B for example).

Comparison between HFASEP and HFACCEP

Fig 3 shows an example of comparison between SEP/HFASEP and CCEP/HFACCEP at the hand
SI electrode. HFASEP and HFACCEP were shown with the three dimensional scales along the
time window of 220 ms (Fig 3C and 3D). The row traces of HFASEP and HFACCEP for the fre-
quency bands centered at 80 and 320 Hz, at which the HFASEP and HFACCEP presented the dif-
ferent power trend, are shown (Fig 3E and 3F). The power changes at the N20/N1 and N80/N2
peaks were then plotted in the two dimensional scale to show the distribution of the power
change across the frequency bands (Fig 3G, 3H, 3I and 3J). The frequency band showing the
maximal power change differed between HFASEP(N20) and HFACCEP(N1), HFASEP(N20) and
HFASEP(N80), HFACCEP(N1) and HFACCEP(N2), and HFASEP(N80) and HFACCEP(N2) in this repre-
sentative case (patient 1L). In order to compare the distribution of the power change between
HFASEP and HFACCEP across patients, the mean and standard error of the logarithmic power
values of all the responses are plotted across the frequency band for HFASEP(N20), HFASEP(N80),
HFACCEP(N1), and HFACCEP(N2) (Fig 4). It showed a tendency that over 200 Hz, the HFASEP

(N20) power increased while HFACCEP(N1) power decreased. RM-ANOVA showed statistically
significant interactions between the 4 groups (F(3,6) = 14.468, p< 0.05). A post-hoc analysis
showed significant interactions between HFASEP(N20) and HFACCEP(N1) (F(1,6) = 19.409,
p< 0.05), HFASEP(N20) and HFASEP(N80) (F(1,6) = 9.280, p< 0.05), HFACCEP(N1) and HFAC-

CEP(N2) (F(1,6) = 22.494, p< 0.05), and HFASEP(N80) and HFACCEP(N2) (F(1,6) = 4.097,
p< 0.05). In other words, the distributions of power values differed between the 2 early com-
ponents (CCEP N1 vs. SEP N20), as well as the 2 late components (CCEP N2 vs. SEP N80),
and also between the early and late components of SEPs or CCEPs (SEP N1 vs. N2, CCEP N1
vs. N2).

Discussion
By applying SPES both to the peripheral nerve and directly to the cortex, we compared the
HFAs overriding SEPs and CCEPs in the SI cortex. Stimulus-triggered HFAs behaved differ-
ently in terms of power distribution. As for the early components, HFASEP(N20) power
increased more in the frequency band above 200 Hz while HFACCEP(N1) in the band below 200
Hz. As for the late components, statistically significant difference was also observed for the dis-
tributions of power spectra between HFASEP(N80) and HFACCEP(N2). Both HFASEP and HFAC-

CEP showed different power distributions between early and late components. The present
findings indicated that the human sensory cortex could produce different HFA profiles upon
the different modes of input.

the 12.5 ms analysis-window. For example, the 5 ms-time bin centered at 15 ms (highlighted by a black rectangle in C and D) corresponds to the results of
12.5 ms analysis-window (from 9 ms to 21.5 ms, centered at 15 ms; see shaded gray rectangle in A and B). The stimulus artifacts in CCEP last up to 3–4 ms
from the stimulus onset. Therefore, the bins centered at -5, 0, 5, and 10 ms potentially include the stimulus artifacts and they are not analyzed. Because we
put the transistor-transistor logic (TTL) pulse from the electric stimulator into the DC input of the EEGmachine, and offline triggered the stimulus onset using
a certain threshold with a Matlab-script, the trigger timing could have jitter within the sampling point, namely, 0.5 ms. This jitter is reflected in the
representative CCEP waveform (B). As for the induced activities, the 5 ms time bins centered at -5 and 0 ms, which correspond to the results of 12.5 ms
window centered at -5 and 0 ms, could include the stimulus artifact (D). E, F: The row traces (30 trials) of HFASEP (E) and HFACCEP (F) for the frequency
bands centered at 80 and 320 Hz are shown. G-J: The power changes of HFASEP(N20), HFACCEP(N1), HFASEP(N80), and HFACCEP(N2) in reference to the
baseline activity for each frequency band (every 80 Hz, centered at 80, 160, 240, 320, 400, 480, and 560 Hz) are plotted (G, H, I, and J).

doi:10.1371/journal.pone.0130461.g003
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Stimulus induced early HFAs
As for the gamma activities recorded with macroelectrodes, Ray et al., by using a macaque
monkey model, showed that the high gamma activity sensitively increased both in association
with neuronal synchrony and firing rate [16]. In this regard, we think the HFA or ‘broadband’
gamma profiles were determined by neuronal synchrony and firing rate induced by the 2
modes of input in the present study. The HFAs were overriding or associated with either SEPs
or CCEPs. SEPs are evoked through vertical, ascending projection fibers from the thalamus to
the SI cortex, and CCEPs are evoked through horizontal association or commissural fibers
based on the previous reports [51,60]. It is, therefore, plausible to ascribe the different gamma
profiles between the early HFA components, HFASEP(N20) and HFACCEP(N1), to the different
modes of impulse transmission through vertical projection vs. horizontal association/commis-
sural fibers. The difference, then, could be explained by the different layer input from these 2
afferent fibers. Association and commissural fibers originate from the layer II and III and ter-
minate mainly in the same layers elsewhere in the neocortex [61], while projection fibers from
the thalamic relay (specific) nuclei, e.g. ventral posterolateral (VPL) in case of median nerve
stimulation, terminate mainly in a rich arborization within the layer IV [62]. In this sense, it is
indicated that different input modes played an important role in subsequent neuronal process-
ing in terms of frequency tuning: neuronal synchrony in the high gamma range in case of hori-
zontal transmission (HFACCEP(N1) <200 Hz) vs. above the high gamma range in case of
vertical transmission (HFASEP(N20) >200 Hz). Several animal studies have indeed revealed that

Fig 4. The distributions of logarithmic power values in reference to the baseline in each frequency band. As for the 4 groups, HFASEP(N20) (a black
solid line), HFACCEP(N1) (a grey solid line), HFASEP(N80) (a black dashed line) and HFACCEP(N2) (a grey dashed line), all the power values of 7 hemispheres are
averaged (mean ± SE). RM-ANOVA showed statistically significant interactions between the 4 groups. An asterisk indicates significant interaction between
the 2 groups in the post-hoc analysis. Other conventions are the same as for Fig 3.

doi:10.1371/journal.pone.0130461.g004
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frequency tuning (alpha, beta and gamma) for neural information processing differs according
to the cortical layers, while that of faster activities above the conventional gamma range has not
been well elucidated [45,63–68]. Since SI has the most developed layer IV in the neocortex, the
inputs to the layer IV from the specific nuclei of the thalamus might give rise to neuronal syn-
chrony in the higher frequency range than those to the layer II/III. A possible key player of the
synchronization above 200 Hz is at least the fast-spiking interneuron which could produce the
high frequency activities ranging 300–500 Hz [69–70]. In summary, different frequency pro-
files between HFASEP(N20) and HFACCEP(N1) is most likely due to the different propagation
modes (vertical vs. horizontal), namely, the different terminal layers (layer IV vs. II/III) where
afferent inputs arrive within SI. The layer IV contains the fast-spiking interneurons more than
the layer II/III in SI. We speculate that the difference of the distribution of the fast-spiking
interneurons may partly determine the most prominent frequency band of somatosensory and
cortico-cortical HFAs in SI.

Another possible explanation is the influence of temporal jitters. ‘Direct cortical response
(DCR)’ in the vicinity of the site of direct cortical stimulation has been extensively studied in
various species [71–73]. Simultaneous surface and intracellular recording in animals revealed
that the first negative components of DCR reflect oligosynaptic events in the local cortical cir-
cuits [46,74–75]. This local jitter of synaptic activity at the site of stimulation and at the target
cortex in CCEPs might create the lesser synchronization as compared with the relatively syn-
chronized disynaptic activities observed in SEPs.

The HFACCEP(N1) has a frequency profile similar to HFA induced during various cognitive
tasks (‘cognitive HFA’). Cognitive HFAs have been reported to show a broadband shape in the
power spectrum, which is probably organized by multiunit activities and/or local field poten-
tials [16–17] or summation of membrane potential oscillations with different center frequen-
cies [76]. Taking account of the similar frequency profile, cortico-cortical connections is highly
likely to represent common mode of neuronal transmissions for various brain functions
although the interaction to the ‘centrencephalic’ area would also influence the brain functions.

Stimulus induced late HFAs
The frequency profile was also different between the late components, HFASEP(N80) and HFAC-

CEP(N2). Both SEP N80 and CCEP N2 have been considered to be late cortical components,
although it is still not clear what they exactly reflect. One possible explanation for different fre-
quency profiles in late HFAs is that the different stimulus types, a physiological stimulus
through the peripheral nerve stimulation and a non-physiological stimulus directly applied to
the cortex, could produce different intracortical neural processing in SI. In contrast to HFASEP

(N80) that had increased power in reference to the baseline activity, HFACCEP(N2) showed a
decline of the power value. This tendency is similar to the postspike depression seen in the
spikes abnormally or non-physiologically produced by the epileptic focus [77–79]. It has been
considered that this postspike depression reflects the decreased cortical excitability after parox-
ysmal depolarization shifts for epileptic spikes. In addition, by using an SPES technique similar
to our CCEP method and recording multiunit activities, Alarcon et al. (2012) revealed that
neural responses induced by SPES consist of brief synchronized burst firing and subsequent
long suppression [80]. Therefore CCEP N2 could reflect an inhibitory process after the excita-
tion reflected in N1 and HFACCEP(N1). This might be an essential compensatory function of the
human cerebral cortex. On the other hand, Matsuzaki et al. (2013), in their SPES/CCEP study
in children, recently reported the increased gamma activities at the time of the end of N2
response in the visual cortex [81]. The difference between our study (decreased power) and
theirs (increased power) could be explained by the difference of the cytoarchitecture, the
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patients’ age and the maturity of brain, or the phase of CCEP N2 response (peak vs. descending
slope) when HFAs were observed. In our study, the bins centered at 80 Hz showed a tendency
of the relative power decrease compared with the bins centered at 160 Hz, especially HFAs for
CCEP. This is explained by the possibility that the frequency range centered at 80 Hz is mostly
controlled by the inhibitory interneurons.

Clinical implications and limitations
Since this study was performed in patients with epilepsy or brain tumor, we should discuss
whether we recorded pathological or physiological HFAs. In all patients, no epileptic HFAs or
epileptic spikes were observed at the hand SI electrode. Together with the normal SEP configu-
ration at and around the SI electrode, we considered the HFASEP and HFACCEP observed in the
hand SI as physiological.

Pathological HFAs in the frequency range of ripple (100–200 Hz) and fast ripple (250- Hz)
have recently attached considerable attention as a possible surrogate marker of epileptogeni-
city. By measuring the amplitude, CCEPs have been used for evaluating epileptogenicity or cor-
tical excitability at and around the focus [55–56,82]. In this study we demonstrated the power
increase (HFACCEP(N1)) and decrease (HFACCEP(N2)) were associated with CCEPs in the nor-
mally functioning SI. Besides the amplitude, the HFA correlates of CCEPs, namely HFACCEP

(N1) and HFACCEP(N2), could also be clinically useful to evaluate the degree of abnormally
enhanced cortical excitability and also surround inhibition at and around the epileptic focus,
respectively.

There are several limitations in this study. First, the STFT analysis period was set after 15
ms in order to avoid the possible involvement of stimulus artifacts in the analysis. Therefore,
some HFAsCCEP at the time range of 0 to 10 ms, such as HFACCEP overriding CCEP first volley
or P1, which is the very first response reported in CCEP studies [60,83], could not be evaluated
in this study. The relatively short analysis window (12.5 ms) and resultant broad frequency bin
(80 Hz) did not allow us to analyze lower frequencies such as the beta or low gamma (below 40
Hz) band in the present study. Viswanathan et al. (2007) and Ray et al. (2008) reported that
high-gamma (60–90 or 60–200 Hz) power could be a neural correlate of synchronized output
of the cortex, while low-gamma (25–60 or 40–80 Hz) power could be a correlate of synchro-
nized input to the cortex [16,84]. In this study, we mainly dealt with the activities of high-
gamma range that reflects spike synchronization due to the 80 Hz frequency resolution. There-
fore, our study suggests that the different propagation modes caused the frequency difference
(HFAsSEP vs. HFAsCCEP) within high-gamma range. Although the difference of low-gamma
activities might have some influence on our results, synchronized input to the cortex would
affect the neural correlate of synchronized output of the cortex. Second, it has been reported
that human somatosensory evoked HFAs consist of 2 phases: early HFAs seen before the N20
peak and late HFAs after the peak. Possible generators of early HFAs are action potentials of
the thalamocortical fibers at the time when they arrive at the area 3b (and area 1), and those of
late HFAs are cortical fast inhibitory postosynaptic potentials or fast spiking interneurons in
SI. In this study, we could not differentiate early and late HFAs due to the analysis window.
Therefore, the difference of HFAs overriding SEP and CCEP might also reflect that of the pre-
synaptic HFAs. Even in this case, the difference of the propagation modes and terminal layers
between SEPs and CCEPs would be a key factor. Third, antiepileptic drugs might influence the
occurrence of HFAs. The occurrence of pathological HFAs was reported to increase after
reduction of antiepileptic drugs and decrease after induction of propofol [38,85]. Somatosen-
sory evoked HFAs were reported to decrease both in frequency and amplitude during propofol
administration [86–87]. In our study, although the SEP and CCEP recordings were not
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performed on the same day in each patient, the amount of antiepileptic medication was almost
the same between the 2 recordings. We, therefore, think that antiepileptic drugs hardly influ-
enced the comparison between HFASEP and HFACCEP. Fourth, we investigated the SI cortex
since we could record and compare stimulus induced HFAs in response to both physiological
(median nerve stimulation) vertical and non-physiological (direct electrical cortical stimula-
tion) horizontal inputs. It is technically difficult to perform a similar study in the association
cortex, but we assume the findings in SI could be applicable to the neocortex in general. Lastly,
the sampling rate (2,000 Hz) and filter setting (0.016–600 Hz) prevented us to evaluate the
HFA over 600 Hz. Our objective was to compare behaviors of the HFA involved in physiologi-
cal and epileptic broadband gamma range, and we successfully demonstrated different behav-
iors in this frequency range for HFAsCCEP and HFAsSEP. Future studies sacrificing the number
of electrodes to increase the sampling rate would warrant investigation of higher HFA which
was out of scope in the present study.

Supporting Information
S1 Text. Additional Data for Time Frequency Analysis.
(DOC)

S1 Fig. CCEPs and HFAsCCEP in an additional study to validate the influence of the stimu-
lus artifacts. A: A configuration of grid electrodes placed on each hemisphere of a dead brain
of a pig. Shaded circles indicate 2 stimulated pairs of electrodes. B: CCEPs recorded time-
locked to the single pulse stimulation applied to the electrodes labeled as “1” in S1A Fig. Two
subaverages (black and grey waveforms) are shown. We displayed in a time window of 220 ms
(from 20 ms before to 200 ms after the stimulus onset) in the same way as the original Figs 1–3.
The vertical line corresponds to the time of single pulse stimulation (white arrowhead). C: A
CCEP response recorded from the electrode adjacent to the stimulus sites (dotted square). D:
Time-frequency representation of CCEP (HFACCEP) by using the short-time Fourier Trans-
form. The frequency range is from 40 to 600 Hz. The vertical line corresponds to the time of
single pulse stimulation (a white arrowhead). The averaged logarithmic power spectrum in ref-
erence to the baseline is calculated. Increase of power is indicated in red and decrease in blue.
E: An HFACCEP recorded from the same electrode as S1C Fig. In this particular example, the
stimulus artifact, indicated in dark red suggestive of extraordinary power increase, affected the
time bin centered at 5 ms and did not affect the bins centered at 10 ms and 15 ms. In case of
stimulation of another pair of electrodes (labeled as “2” in S1A Fig), the stimulus artifact never
influenced to the bin centered at 15 ms.
(TIF)
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