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Branching in vascular networks and in overall organismic form is one of the
most common and ancient features of multicellular plants, fungi and ani-
mals. By combining machine-learning techniques with new theory that
relates vascular form to metabolic function, we enable novel classification
of diverse branching networks—mouse lung, human head and torso,
angiosperm and gymnosperm plants. We find that ratios of limb radii—
which dictate essential biologic functions related to resource transport and
supply—are best at distinguishing branching networks. We also show
how variation in vascular and branching geometry persists despite observ-
ing a convergent relationship across organisms for how metabolic rate
depends on body mass.
1. Introduction
It is a great challenge to decipher which features of biological branching networks
are shared, which are different, and when these differences matter [1,2]. For
instance, branching in plant and animal networks exhibits strikingly similar fea-
tures despite profound physiological and environmental differences (e.g. carbon
dioxide and sap versus oxygen and blood, mobile versus stationary organisms,
heart and pulsatile flow versus non-pulsatile flow) [3–11]. Similarly, differences
in loopiness and ‘noisiness’ are well documented between vascular branching in
tumours or stroke-damaged tissue versus healthy tissue [2,12,13]. The shared
branching features are argued to lead to functional convergence in plant and
animal networks via biological rates despite the notable physiological differences
just listed [14–16]. Yet, the extent of shared versus distinct branching features has
not been systematically and quantitatively analysed across plants and animals in
the same study. Consequently, there is a need to understand the forces that
shape the full spectrum of form and function in branching networks (figure 1a).
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Figure 1. (a) Examples of mouse lung and angiosperm branching networks. (b) Diagrams of positive (top) and negative (bottom) asymmetric branching. (c) Scatter
plot of lengths and diameters of all data studied, logarithmically scaled, shows trivial size-based clustering. (d ) Scatter plot of standardized (zero mean and unit
variance) lengths and diameters of all data studied shows non-informative overlap. (e) Definitions of biophysically motivated transformations: average and difference
radial scale factors (�b, Db) related to hydraulic resistance, length-scale factors (�g, Dg) related to space-filling and sibling slenderness scaling exponents (σ1, σ2)
related to gravitational bending and buckling. ( f,g) First through fourth principal components of variables defined in (e), ellipses are contours of 75% quantiles for
bivariate principal components, and vector lengths indicate PC loadings. ( f ) PC1 and PC2 show large extent of variance associated with radial and length-scale
factors, with group clustering determined separately by Δβ for plants and �b for mammals (figure 3). (g) PC3 and PC4 show variances due to asymmetric radial
scaling (Δβ) and linear combinations of sibling slenderness scaling exponents.
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The classification of branching architectures is histori-
cally based on coarse qualitative differences in
morphological features. Examples include: classifying
lobes of the liver based on independent blood supply [17];
or the paired/un-paired ordering of plant leaves along a
stem [18]. Recent efforts have identified gene expression
profiles related to branching phenotypes, with examples of
branching in the developing lung as being planar versus tet-
rahedral in orientation [19], or branching in the developing
kidney based on the number of terminal vessels down-
stream from (or distal to) two sibling branches [20].
However, these empirically motivated classifications still



Table 1. Basic measures of the different vascular branching networks studied.

vascular branching

network

trunk radius

(cm)

trunk

length

(cm)

mean tip

radius (mm)

mean tip

length (mm)

number of

tips

number of

generations

number of

junctions

total

number of

vessels

ML (N = 1) 0.0686 0.103 0.098 (0.055) 0.709 (0.434) 688 9 660 1348

HHT (N = 18) 0.383 (0.09) 2.77 (1.74) 0.855 (0.474) 6.950 (7.18) 50 (30) 6 (1) 48 (30) 1891

Balsa (N = 1) 18.8 1170 5.97 (4.99) 125 (151) 357 8 292 649

Piñon (N = 1) 5.73 5.4 2.30 (1.61) 24.5 (18.2) 1286 10 813 2099

Ponderosa (N = 5) 2.06 (0.769) 30.6 (30.1) 2.25 (0.714) 77.8 (62.0) 31 (21) 5 (1) 23 (21) 312

roots (N = 314) 0.307 (0.293) 25.9 (23.8) 1.19 (0.838) 89.2 (74.1) 2 (2) 1 (1) 1 (1) 1231

AS/GS tips (N = 31) 0.320 (0.103) 10.8 (6.3) 0.516 (0.318) 57.8 (53.7) 15 (11) 4 (1) 12 (9) 914

Physical dimensions and counts of various network properties, including: initial (trunk) and terminal (tip) vessels and branches. For single network datasets (N = 1) reported

values are exact. For multi-network datasets (N > 1), values are averages with standard deviations reported in parentheses. For a given network, the number of generations, NGEN,

is determined from the number of tips, NTIPS , as NGEN ¼ ln (NTIPS )= ln (2), and rounded to the nearest integer. Due to approximate log-normality of distributions, means and

standard deviations were determined in log-space and back transformed.
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fall short of relating patterns in vascular form to biophysical
and biomechanical function.

With recent advances in automated methods of image
analysis developed by us and others [4,5,21], increasing
amounts of data are becoming available to tackle these pro-
blems. The tools that are missing are efficient and accurate
algorithms for categorizing branching across whole networks
and different organisms. In this paper, we apply machine
learning methods to theoretically informed feature spaces to
leverage all available information and technology to achieve
these goals.

We analyse the largest-ever compilation of branching net-
work data, with over 58 distinct networks and approximately
8000 vessels or tree limbs (table 1).

We collected these data over the last decade for both
mammalian cardiovascular systems and plant architecture
in both angiosperms and gymnosperms. Two mammalian
networks are studied, the first being the major arterial
branching junctions of the human head and torso (HHT)
for 18 adult individuals (H. sapiens) collected using con-
trast-enhanced magnetic resonance angiography on a 3
T Siemens Trio scanner with voxel dimensions between
700 × 700 × 800 μm3 and 800 × 800 × 900 μm3 [5]. The second
mammalian network is the full pulmonary vascular branch-
ing of one wild-type adult mouse lung (ML) (M. musculus)
collected using a combination of vascular casting with
MICROFIL and micro computed tomography on a μCT 40,
ScanCo Medical scanner with 10 μm isotropic voxel spacing
[9]. All mammalian network data were acquired using the
open source software Angicart [22].

The plant networks consist of: (i) whole, above-ground,
adult trees for one Balsa (O. pyramidale), one Piñon
(P. edulis) and five Ponderosa pines (P. ponderosa) [3], (ii) an
array of angiosperm root clusters belonging to Andean
tropical montane cloud forests [23] and (iii) a collection
of 50 cm long clippings of the terminal ends of canopy
branches from three species each of angiosperms (AS Tips)
and gymnosperms (GS Tips) comprised of Maple
(A. grandidentatum), Scrub Oak (Q. gambelii), Robinia (R. neo-
mexicana), White Fir (A. concolor), Douglas Fir (P. menziesii)
and White Pine (P. strobiformis). Tree measurements—all
done destructively by hand—are of the external branching
structures (limbs), not the xylem that are directly responsible
for water transport. Scaling relationships for the external
limbs directly determine similar relationships for the internal
xylem based on previous empirical studies [24,25] and estab-
lished branching theory [11,26], thus enabling comparisons
of plant and animal networks for the structure, flow and
function in the present study [3,21,27].

To search for patterns, machine learning is often applied
to the full set of untransformed, standardized raw data.
This is done because (i) in the absence of a prior theory, it
is the most straightforward approach; and (ii) some prac-
titioners of machine learning prefer to have a model- or
theory-agnostic method arguably free of bias. One aim of this
work is to examine and contrast results from theory-informed
approaches with those that are theory-free.

While the raw data represent one feature space, there are
always infinitely more choices of feature spaces based on
specific combinations, subsets, mathematical operations (e.g.
logarithms or ratios), or other transformations of the raw
data (figure 1c,d,e). Informed choices of feature space hold
the promise of greatly improving the convergence time, accu-
racy and inference of machine learning algorithms. Here, we
show how crucial this choice can be and the roles that our
understanding of the underlying biology can play in its selec-
tion. We further demonstrate that this approach identifies key
strengths and weaknesses in the theory used to guide the
transformations, and thus informs our understanding, or
lack thereof, of the underlying biology and physics.

The default choice for feature spaces for our networks
would be the centred and standardized raw data—all
vessel radii and lengths for branching networks. However,
theory grounded in evolution, biology and physics predicts
that the parent-to-child ratios of radii and length—along
with associated scaling exponents throughout the networks
[10,11]—encapsulate the most biologically informative prop-
erties because they are directly tied to organismic function.
Specifically, numerous models tie these ratios to the ability
of branching networks to efficiently fill space and to deliver
resources [7,10,11,26,28]. The fine-scale relationships between
fluid flow, global vascular or branching architecture and
vessel or branch morphology are indeed complex [29].
Despite this, much information can be gleaned from the
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connections between the radial scale factors and hydrodyn-
amics and the length-scale factors and space-filling as first-
order effects [1,3,5,9]. As candidates for second-order effects,
we also examine branch slenderness exponents. These couple
the radial and length-scale factors and inform the likelihood
that a branch will experience gravitational buckling under
its own weight [6,27,30].

We use recent theory developed by some of us (Brummer
et al. [28]) for the asymmetric branching patterns that are per-
vasive throughout our data. In this theory, the two sibling
vessels (labelled c1 and c2, figure 1b) and the parent vessel
(labelled p) are combined to give two radial scale factors
β1 = rc1/rp and β2 = rc2/rp and two length-scale factors γ1 =
lc1/lp and γ2 = lc2/lp. Thus the average radial and length-scale
factors are

�b ¼ b1 þ b2

2
and �g ¼ g1 þ g2

2
: (1:1)

To capture sibling branch asymmetry the difference radial and
length-scale factors are

Db ¼ b1 � b2

2
and Dg ¼ g1 � g2

2
: (1:2)

Corresponding constraint equations for area-preserving
and space-filling branching—used in canonical optimization
models—are

(�bþ Db)2 þ (�b� Db)2 ¼ 1 (1:3)

and

(�gþ Dg)3 þ (�g� Dg)3 ¼ 1: (1:4)

Separately, susceptibility to gravitational buckling is
quantified in the slenderness exponents [30], which relate
the scaling of radii to the scaling of lengths as

s1 ¼
ln (rc1=r p)
ln (lc1=l p)

and s2 ¼
ln (rc2=r p)
ln (lc2=l p)

: (1:5)

It is not a priori obvious which combinations of the scale
factors will work best as a feature space for discriminating
vascular networks. If dynamics of blood flow dominate the
formation and evolution of vascular architecture, then vari-
ation in scale factors involving vessel radius would be
expected to be most informative because vascular theory
and empirical evidence show blood flow is most strongly
determined by vessel radius. For example, it is well documen-
ted that as blood flow transitions from pulsatile to non-
pulsatile, so too does the scaling of vessel radii from the
squared scaling (scaling exponent =2) of equation (1.3) to
cubic scaling (scaling exponent =3) similar to equation (1.4)
[10]. This quantitative shift would then show up as a differ-
ence between classified groups in our data that should be
detectable by, and informative to, our machine learning
algorithms. If the space-filling constraints and body plan of
the organism primarily determine vascular architecture,
then variation in scale factors for vessel lengths should best
discriminate. Moreover, average properties might be shared
across species while differences or variation around these
average properties could reflect distinct selective pressures
that can be used to discriminate types of networks and
branching principles. Alternatively, some selective pressures
could change the average properties yet share the same
values of variation and asymmetry. Finally, if resilience to
gravitational buckling determines branching form then the
slenderness exponents should differentiate between those
organisms susceptible to buckling (plants) and those that
are not (mammals).

To test and quantify all of these possibilities, we generate
distributions of our data for combinations of the raw and
standardized radius and length measurements (r, l ) and
(r, l)y (where y represents the centred and standardized
radii and lengths), the slenderness exponents (σ1, σ2), and
of the symmetric and asymmetric scale factors (β1, β2, γ1, γ2,
�b, �g, Δβ, Δγ) for the combined mammal and plant networks.
We first examine the performance of several standard
machine learning techniques to categorize our network data
[31,32]. We use principal components analysis (PCA) to
examine feature space variance (figure 1f,g), and compare
the results of the nonlinear machine learning methods of sup-
port vector machine (SVM), logistic regression (LR) and
kernel density estimation (KDE) (table 2 and figure 2a–c).
Uncertainty is controlled for by graphing the rates of true
positive detection versus false positive detection in a one-
versus-all comparison between the different classifiers
being used while varying the significance of classification
(figure 2). See electronic supplementary material for
additional detail on training and testing protocol. Upon
identifying which method has the greatest overall classifi-
cation success, we then examine which regions in the plant
and mammal feature space drive classification and corre-
spond to different species or tissues (figures 3 and 4). Here,
we account for uncertainty by bootstrapping-with-replace-
ment on the training and testing groups when examining
better method at a fixed level of classification significance.
Finally, by drawing on metabolic scaling theory—the predic-
tion that the scaling of organism metabolism with mass is
determined by vascular geometry—we examine how these
different feature spaces constrain variation in estimates of
the scaling exponent for organismal metabolic rate (figure 5).
2. Results
We demonstrate the importance of choosing theoretically
informed feature spaces over raw data to classify vascular
organisms relating form to function. Classification using
only raw data (branch radii and lengths) results only in
size-based categorization, an approach that can distinguish
between a mouse lung and a Balsa tree, but is not easily
applicable to similarly sized organisms or tissues (figure
1c). Once networks are normalized for size, distributions of
the raw data are greatly overlapped [3,5] (figure 1d ) and
machine learning methods applied to the raw data cannot
distinguish the networks (table 2). We thus conclude that
our theoretically informed feature spaces are objectively
superior at categorizing branching networks over raw data.
In addition, these theoretically informed feature spaces facili-
tate much easier translation into known biological principles
and constraints on biologic function related to blood flow,
space-filling and metabolic rate.

Importantly, not all theory-motivated features improve
classification. Table 2 shows that the slenderness scaling
exponents (σ1, σ2) do no better than random chance. Two
likely explanations are that the definitions in equation (1.5)
simultaneously de-couple branching asymmetry and couple
radial and length scaling. This is supported by figure 1f,g,



Table 2. Global scores and effect sizes for different machine learning methods and feature spaces in classifying mammal and plant datasets.

(r, l ) (r, l)y (σ1, σ2) (β, γ) (�b, �g) (Δβ, Δγ) (�b, Db) (�g, Dg) (�b, �g, Db, Dg)

LogReg 0.82 0.54 0.52 0.52 0.59 0.55 0.59 0.53 0.58

SVM 0.88 0.56 0.52 0.57 0.62 0.59 0.64 0.58 0.67

KDE 2 × 105**** 0.049** 0 0.065 0.11 0.31 0.72*** 0.13* 0.68****

The logistic regression and support vector machine scores represent the ratio of correctly classified vessels/nodes for a given feature space, and are compared to
a baseline of 0.52 (as determined by the starting ratio of mammal to plant data). The kernel density estimation scores are test statistic values representing
effect size in differentiating mammal from plant networks. y indicates the standardized radius and length distribution. Asterisks indicate p-value of KDE (no
asterisk p > 0.01; *p≤ 0.01; **p ≤ 0.001; ***p≤ 0.0001; ****p = 0). All three methods demonstrate high scores (LogReg, SVM) or significant effect sizes
(KDE) for the raw radial and length data due to trivial size separation (figure 1c) which is removed upon standardizing for zero mean and unit variance.
Asymmetric scale factor feature space (�b, Db) is the relatively best-performing metric for KDE and LogReg methods, and second best for SVM. See figure 2
for absolute comparison between three methods.
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where PCA loadings between Δβ, σ1 and σ2 are either directly
correlated (PCA 2), or are linear combinations of each other
(PCA 3 and 4). Table 2 shows that radial scaling with asym-
metry (�b, Db) outperforms length scaling with asymmetry
(�g, Dg). Thus, it appears that transformations that suppress
asymmetry and enhance length—such as the slenderness
scaling exponents—act to obscure the defining features
between the mammal and plant data considered.

Differences in machine learning performance across
methods (KDE, SVM, LR) are due to the nonlinear, multi-
variate structure of the feature spaces being studied and
the chosen machine learning method. In particular, the
KDE method excels at resolving the multimodality [34] that
characterizes the radial scale factors for the plant dataset
(figures 2a and 3a,b). Since the distribution means are
approximately equivalent, the SVM and LR methods are
strongly influenced by outliers and the higher moments
comprising the mammal dataset (figure 2b) [32].

Comparing across all methods and features spaces, we find
that the combination of the KDE method and the average and
difference scale factors for radius (�b, Db) are the most effective
for classifying branching network data (figure 2 and table 1;
electronic supplementary material, tables S1–S3). The fact
that variation in the feature space for radial scale factors is
the best has strong implications aboutwhat functional features
form themajor distinctions between biologic networks. Specifi-
cally, our empirical finding of the primacy of information based on
scaling ratios of radii strongly suggests that hydrodynamic prin-
ciples are the primary drivers of vascular branching patterns and
overall network form.

Multiple theories of vascular networks, as well as basic
physics and fluid mechanics, dictate that rates of fluid flow
are largely governed by the total cross-sectional area of vessels
or limbs, which can be exactly related to the ratios of scaling
radii used in our feature space [7]. Importantly, theory recently
developed by us demonstrates that there can exist a range
of morphologies that still adhere to these area-preserving—
pulsatile flow inmammals or external branching in plants—or
area-increasing predictions—non-pulsatile flow in mammals
[28]. By contrast, variation in the ratios of vessel lengths is
more strongly tied to the ability of the vascular network to
fill the body. Thus, length ratios either appear to encapsulate
little important information about the differences among bio-
logic networks, or they may not adequately capture the key
properties of space filling for the architecture of vascular net-
works [3,5,28,35]. Having identified the best-performing
feature space and machine learning method, we now delve
deeper into the variation in the architecture and functional
properties of vascular networks.

Focusing on the KDE method, we see that mammalian
branching exhibits more area-increasing branching than
plants (figure 3b(i)). Area-increasing branching is necessary
to simultaneously increase total surface area for oxygen and
metabolite transport and to slow blood flow as it travels
from the heart to the capillaries and transitions from pulsatile
to non-pulsatile flow, the latter phenomenon not being
present in plants. However, values of �b � 1:0 and Δβ≈ 0
represent a deviation from the theoretical predictions of
Δβ = 0 and �b ¼ 1=21=3 � 0:794 for the non-pulsatile flow
expected in this region. This marked increase in cross-
sectional area is shared by both the HHT and ML networks
as indicated by the nearly null relative abundances of these
two networks (figure 3c(i)) as well as by the insignificant
p-value score of 0.2 from the global-level implementation of
the KDE method (see electronic supplementary material,
table S1). This suggests that transitions in blood flow type
from pulsatile to non-pulsatile may occur across a greater
range of branching generations, and begin nearer to the
heart, than in current theory [7,16].

The majority of plant networks adhere to area-preservation
while exhibiting a greater tendency than mammals to branch
asymmetrically (specifically the Balsa, Piñon, Ponderosas and
GS Tips, figure 3a,b). Within the plants we find that differen-
tiation is driven at the species level (figure 3c(ii)–(iv); and
electronic supplementary material, table S1), unrelated to
plant categorization as angiosperm or gymnosperm. For
example the Balsa, an angiosperm, is the only species present
in both the positive and negative asymmetry types (figures
1b) as demonstratedbybeing the onlynetworkwith its standard
deviation outside the null expectation in figure 3c(ii),(iv). Thus,
the Balsa consists of two unique branching motifs that dis-
tinguish it from GS Tips, and the Piñon and roots that have
large relative abundances in one region each—the negative
asymmetric branching of motif c(iv) and the symmetric
branching of motif c(iii), respectively.

Mechanisms for the asymmetry and motifs observed in
the plant radial scale factors are likely due to functional
trait plasticity associated with light-seeking behaviour,
self- and wind-induced pruning, gap-filling and other
environmental stressors. However, making quantitative con-
nections remains an open challenge [6,27,30]. For example,
the slenderness scaling exponents can be calculated for all
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six scenarios in figure 3c(ii)–(iv), beginning with the first gen-
eration of child branches. Expressing equation (1.5) in terms
of the average and difference scale factors:

s1 ¼ ln (�bþ Db)
ln (�gþ Dg)

and s2 ¼ ln (�b� Db)
ln (�g� Dg)

: (2:1)

Thus, the slenderness scaling exponents for each plant
motif are: σ1 =−12.3, σ2 = 1.4 for motif (ii); σ1 =−19.0,
σ2 = 5.1 for motif (iii); and σ1 =−4.8, σ2 = 0.54 for motif (iv).
Biomechanical theory that applies columnar (Euler beam)
buckling to branching systems demonstrates that slenderness
exponents of σ≥ 1 are structurally advantageous for plant
architectures as they push the locations of breakage points
into the canopy as opposed to the trunk. Yet, the slenderness
exponents we calculate for the observed motifs do not entirely
agree with this framework, despite adherence of the radial
scale factors in motifs (ii) and (iv) to the area-preserving
branching constraint of equation (1.3). This disparity may lie
in two sources: (i) the slenderness exponent formula of
equation (1.5) was originally derived using symmetrically
branched networks and (ii) the length scaling exponents
involved in equation (1.5). The latter issue we now investigate.

Connecting length-based categorization to mechanism—
the space-filling constraint of equation (1.4)—remains a chal-
lenge. The combination of the KDE method and lengthscale
factor feature space (�g, Dg) identified only one region of sig-
nificance. In this region, differentiation is driven by the
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plants, specifically the Piñon and roots (figure 4; electronic
supplementary material, table S3). This is despite the large
amount of variance explained by the length-scale factors in
the PCA (figure 1). The single region driving differentiation
corresponds to average length-scale factors �g , 1. This
effect would normally result in an increase in the slender-
ness exponent, equation (1.5), driving gravitationally
induced buckling (self-pruning) to occur in the canopy
instead of at the trunk (σ ≥ 1) [30]. However, median
values of σ for both the plants and mammals were
approximately 0.2, far below the needed theoretical
threshold of σ = 1. We interpret this deviation from expected
biomechanics as an indicator that the length-scale factors, as
defined, are poor features for characterizing vascular or
branching architecture.

The inability of the lengthscale factors to inform classifi-
cation between networks suggests several scenarios. Two
contrasting and extreme scenarios are that either a universal
architecture or a completely random architecture is being fol-
lowed by both the mammals and plants [9]. This result is
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unlike the radial scaling that is strongly coupled to hydrau-
lics. Current theory suggests that the architecture associated
with length scaling is guided by the principles of space-filling
fractals [7,10,11,28]. However, large deviations are observed
between the joint distributions of the length-scale factors
and the theoretical curves determined by the space-filling
conservation equation (figure 4a). A third scenario is that
there exists a disconnect between how length-scale factors
are conventionally defined in simplified models versus
how they are measured in complicated natural systems.
All three scenarios support the need for including missing
constraints, variables, and assumptions (e.g. branching
angles, multi-fractal scaling etc.), or alternative mathematical
frameworks [35–39].
To better understand the physiological and biological impli-
cations of these categorizations, we examine the influence
of asymmetric branching on estimates of biological rates—
specifically, the metabolic scaling exponent θ that canonically
relates metabolic rate B to body mass M as B/Mu. Previous
studies spanning orders of magnitude in body mass have
shown that θ converges on a value near 3/4, yet exhibits
variation specific to mammals or plants [14–16].

To probe this variation, we use branching data to estimate
metabolic scaling (figure 5) by directly accounting for
network geometry and size [7,10,28],

u ¼ ln (2N)
ln (2N)þ ln (1� nNþ1)� ln (nN(1� n))

, (2:2)
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where N is the total number of branching generations in the
network and n represents volumetric scaling—the ratio of
the sum of the volumes of both child branches to the
volume of the parent branch. Specification of n allows estima-
tion of θ under different model assumptions for symmetric
(n = 2β2γ) or asymmetric (n ¼ 2�b2

�gþ 4�bDbDgþ 2�gDb2)
branching. We also use a regression method between the
number of terminal branches NTIPS and total volume VTOT

distal to a given branch (NTIPS / Vu
TOT) that does not

depend directly on geometry (see electronic supplementary
material). We find that asymmetric branching increases the
predicted values of metabolic scaling exponents when com-
pared to the symmetric- and regression-based methods
(figure 5a). This is due to all networks exhibiting some
length asymmetry, and more importantly suggests that pre-
vious studies have underestimated metabolic scaling
exponents by not accounting for such variation [3,40,41].

To understand which different scale factors are primarily
responsible for observed variation in the predicted metabolic
scaling exponents we focus on the asymmetric version of
equation (2.2). Estimated metabolic scaling exponents are
graphed for each individual organism in terms of the average
scale factors (�b, �g) in figure 5b and difference scale factors (Δβ,
Δγ) in figure 5c. We compare these graphs against the corre-
sponding theoretical predictions reproduced from Brummer
et al. [28] where we have graphed the approximate form of
equation (2.2),

u � ln (2)

ln (2)� ln (2�b2
�g)� ln

�
1þ 2DbDg

�b�g
þ Db2

�b
2

� (2:3)

assuming small volume scaling (ν < 1), generationally large
networks (N > >1), and enforcing area-preserving and
space-filling (equations (1.3) and (1.4)).

We observe a striking amount of grouping among the
mammals and plants when graphing the metabolic scaling
exponent θ versus the average radial and length-scale factors
�b and �g (figure 5b). This indicates that, of all the features and
data considered, the average scale factors (�b and �g) are the
primary determinants of variation in the metabolic scaling
exponent and thus organism function.

In contrast to previous theory and importantly for under-
standing how diverse branching architectures could lead to
universal scaling exponents, we find near constancy of the
metabolic scaling exponent despite large fluctuations in
length scaling (figure 5c). These shared exponents are likely
driven by the little to no radial asymmetry observed in mam-
malian networks and suggests that variation in length
asymmetry (Δγ) in vascular networks has little influence
on whole organism metabolic function in the presence of
symmetric radial branching (Δβ = 0).

Figure 5b,c demonstrates marked deviation in the
observed grouping (or lack thereof) between the empirically
based predictions of metabolic scaling from equation (2.2)
and the constraint-based theoretical predictions of metabolic
scaling from equation (2.3). To explore this deviation, we cal-
culate curvature between metabolic rate and mass in log–log
space (electronic supplementary material). When branching
networks are strictly assumed to be very large (N > >1) and
decreasing in volume in all segments across any generation
(n < 1, equation (2.3)), we predict zero curvature, regardless
of the extent of branching asymmetry. When accounting for
variation in network size and volume scaling (equation
(2.2)), we predict positive (concave up) curvature (figure
5d ). These predictions are both in agreement with respir-
ation-based studies of mammals [16], and demonstrate the
need for theories of metabolic scaling that incorporate the
finite size of the network. Furthermore, we predict that curva-
ture decreases to zero with increasing network size, or
generation N, in agreement with respiration-based studies
of plants [15]. These results can be informative for future
studies that simultaneously connect branching patterns and
vascular data to ontogenetic- and size-based shifts in organis-
mal metabolism. Such shifts are observed in growth and
reproduction curves for tumours [42], plants [15], mammals
[43] and fish [44].
3. Discussion
Machine learning is a powerful tool, but often considered a
black box. We show that by combining machine learning
with mechanistic theory it can be made more effective and
provide insight into physiological mechanism. Here, we
take a first step towards building that bridge by using
mechanistic theory of vascular networks to choose better fea-
ture spaces. In so doing, we achieve a twofold, mutually
reinforcing benefit: (i) we achieve better results for categoriz-
ing networks than if we used either the raw feature space or a
mechanistically inspired feature space that predicts only one
morphology (the symmetric scale factors β and γ) and (ii)
results are much more interpretable. For example, the best-
performing feature spaces—the asymmetric ratios of vessel
and limb radii, �b and Δβ—are explicitly and naturally tied
to specific mechanisms—hydrodynamic constraints and
resource flow—and allow for variation in form while still fol-
lowing these constraints. Additionally, the under-performing
feature spaces—ratios of vessel and limb lengths, �g and Δγ—
identify what may be potential weaknesses in the theory and
avenues for new development to provide greater specificity.
Alternatively, the inability of the ratios of vessel and limb
lengths to classify between mammals and plants may be
pointing to broadly shared architectural principles that are
not specific to mammals or plants. This is despite different
mechanistic demands, such as structural support for plants.

The results of this study also serve to inform our under-
standing of the physiological pressures that determine
convergence in organismal form and function. We find that
variation in vascular based estimates of metabolic scaling
exponents—in particular curvature—is primarily determined
by variation in the average scale factors (�b and �g), symmetric
radial branching and relative network size. This result helps
to resolve some of the contradictory size-based observations
in variation in metabolic scaling between mammals and
plants [15,16]. It emphasizes the needs to develop models
of vascular networks that can better account for finite-size
measurements (clustered sampling versus whole network
measurement), to acquire comprehensive datasets that span
the entirety of the vascular branching structures being
studied, and to simultaneously acquire respiration-based
measurements of organismal metabolism.

In this direction, a shortcoming of our model of metabolic
curvature is its complete inability to capture negative curva-
ture. This scenario arises when examining individual growth
curves in mammals, plants and tumours when the metabolic
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scaling exponent decreases from linear to sub-linear (typi-
cally from 1 to 3/4) [15,42,43]. Failure to capture this
essential biologic feature should spur continued development
of theories of metabolic scaling and vascular branching.

Finally, this work has implications for several fields, span-
ning bio-mechanical and physiological imaging and theory to
machine learning and biomedical applications. Incorporating
topological features—connectivity and loops—and branching
angles could enhance categorization methods because these
features provide structural integrity and redundancy to
damage in plant leaves and in capillaries [45–47]. Additional
measures that capture organ and organismal physiology
could provide further insight and tests. Examples for mam-
malian tissues include flow reserve—the change in blood
flow between normal and dilated vessel states—or blood per-
fused for a given vascular tree [48,49]. New applications of
tomographic imaging and computer vision techniques to
plants—light detection and ranging and positron emission
tomograpahy—are greatly expanding digitized plant archi-
tecture datasets and allowing for the direct inclusion of
branch angles and xylem and phloem transport measure-
ments as part of the biological feature space [21,41,50,51].
Simultaneously, advances in medical imaging and vascular
segmentation algorithms are leading to datasets of fully
connected branching and blood vessel networks [52]. Such
expansive datasets previously unavailable will allow for com-
prehensive testing of vascular branching theories where, in
principle, machine learning-based motif identification could
be used to digitally regenerate branching networks using
iterated function systems [36,39].
Using more robust applications of machine learning
methods (e.g. nonlinear dimensional reduction) and
increased model complexity might help improve classifi-
cation based on raw data and should improve classification
using feature spaces based on theory as well. In closing,
this work provides a proof-of-principle that a mechanistically
based automatic classification and detection scheme for
vascular networks could have application in medical diag-
nostics for long-term progressive disease (e.g. tumour
growth). Here, classification is driven by outlier detection
between vascular networks surrounding and comprising
tumours compared against verified healthy vascular net-
works [53]. Such an application would serve as a new
dimension in radiomic studies where the detection and classi-
fication of tumours based on vascular branching is wholly
absent [2,54] and could provide an alternative measure of
tumour growth and development [55].
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