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Abstract

Methionine (Met) is an essential precursor of S-adenosylmethionine (SAM), which is the pri-

mary methyl donor required for biological processes such as DNA and histone methylation,

which alter gene expression. In dairy cows, dietary Met has been observed to exert tran-

scriptional alterations with beneficial effects on milk biosynthesis; however, the extent of

these effects via SAM remains unknown. Therefore, we evaluated the effect of Met supply

on histone methylation in lysine residues K9 and K27 in the histone tail H3 via a fluores-

cence resonance energy transfer (FRET) system in immortalized bovine mammary alveolar

epithelial cells (MACT) incubated varying concentration of Met. The histone methylation

data was complemented with global DNA methylation, cellular protein synthesis, and RT-

qPCR analysis of genes related to Met cycle, DNA and histone methylation, AA transport-

ers, and protein synthesis. The histone methylation data was performed on MACT cells

seeded at 30,000 cells/well in 96-well plates 24 h prior to transfection. The transfections of

FRET gene reporter plasmids H3K9 and H3K27 was performed with 0.3 μL/well of Lipofec-

tamine® 3000 and 50 ng of plasmid DNA per well. At 24 h post-transfection, cells were

treated with 0, 125, 250, and 500 μM of Met, and quantification of histone methylation was

performed at 0, 12, and 24 h post-treatment as well as cell viability at 24 h using CellProfiler

software. An inverted microscope for live imagining (EVOS® FL Auto) equipped with a

motorized scanning stage, and an environment-controlled chamber at 37˚C and 5.0% of

CO2 was used to take 4 pictures/well at 4x magnification. A more defined response on his-

tone methylation was observed in H3K9 than H3K27 to Met supply, where maximal histone

methylation in H3K9 was observed with 125 μM of Met. This greater histone methylation in

H3K9 at 125 μM was accompanied by greater cellular protein concentration. The linear

increase in Met supply causes a linear decrease in global DNA methylation, while linearly

upregulating genes related to the Met cycle (i.e., MAT1A, PEMT, SAHH, and MTR). The his-

tone methylation data suggest that, to some extent, methyl-donors such as Met may affect

the methylation sites, H3K9 and H3K27, and consequently causing a different epigenetic
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alteration. In the context of the dairy cow, further refinement to this FRET assay to study his-

tone methylation could lead to establishing novel potential mechanisms of how dietary

methyl donors may control the structural conformation of the bovine genome and, by exten-

sion, gene expression.

Introduction

Methionine (Met) and lysine [1] are the most limiting amino acids (AA) in a wide range of

diets for dairy cows [2]. Among the various biological functions associated with Met, besides

milk protein synthesis, gene expression regulation in dairy cows has become more evident in

recent years [3, 4]. Some of the specific mechanisms in ruminants for this effect have been pre-

viously discussed as DNA methylation [5], transcription factors [6], and histone methylation

[7]. However, the extent of Met effects through these mechanisms in transition dairy cows

remains to be elucidated. Histone modifications such as methylation can considerably alter the

available regions or information contained in the DNA that can be transcribed into mRNA

and subsequent translation into proteins. Thus, this can potentially change the metabolism,

health, and performance of dairy cows. Until now, the limited amount of data on bovine his-

tone methylation has focused on mastitis [8, 9], but based on the substantial effects of Met sup-

plementation on DNA methylation in transition dairy cows [10], it is conceivable that this

nutrient can also have a significant impact on histone modifications through methylation.

Histones are proteins (i.e., H1, H2A, H2B, H3, and H4) found in the cell nuclei, and are

responsible for packing and arranging the DNA by acting as spools around which the DNA

winds and they play a significant role in gene regulation. The functional structure of histones

can be modified through several biological processes such as acetylation, phosphorylation, and

methylation, among others [11]. Reviewed by Greer and Shi [12], methylation of histones can

occur in residues of lysine, arginine, and histidine. However, lysine is the residue that can be

mono (me1), di(me2), or tri(me3) methylated on their amine group. Methylation is most com-

monly observed on lysine residues of histone tails H3 and H4 [13]. The lysine sites for methyl-

ation have been extensively studied, including H3 lysine 9 (H3K9), and H3 lysine 27 (H3K27)

[8, 14].

The S-adenosylmethionine (SAM) is the universal methyl-donor for the multiple types of

methyltransferase reactions in the cell [15], and among these reactions are the DNA methyla-

tion and histone methylation. Since Met is the primary source for SAM synthesis in the Met

cycle [16], methylation activity can likely be altered by Met availability. Rijnkels, Freeman-

Zadrowski [17] demonstrated that histone methylation regulates the chromatin organization

in mouse lactating mammary gland, leading to the regulation of essential milk protein genes as

caseins. The latter was related to di-methylation of the histone H3 at lysine 4 (H3K4me2), lead-

ing to an open chromatin during lactation with marks for the casein gene promoter region.

The potential of using relatively new molecular technologies such as gene reporter technol-

ogy based on fluorescent proteins in dairy cattle molecular biology has been discussed previ-

ously [18]. Lin and collaborators developed a dual-fluorescent protein system [i.e., fluorescent

resonance energy transfer (FRET)] to determine histone methylation at the methylation sites

of interest K9 and K27 [19]. This fluorescent protein system allows the visualization of histone

methylation in mammalian cells in real-time through fluorescent microscopy; however, this

method has never been used in evaluating the Met effects on histone methylation in bovine

mammary cells.
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Based on the known regulation of histone methylation by Met metabolism in humans [20],

and the findings in dairy cows associating dietary Met with changes in gene expression [4, 21],

and global DNA methylation [10], we hypothesized that incubating bovine mammary cells

(MACT) cells with incremental Met concentrations in the media will likely modify histone

and DNA methylation as well as genes related to Met cycle, DNA and histone methylation, AA

transporters, and protein synthesis. Therefore, we aimed to evaluate the effects Met supply on

histone methylation in lysine residues K9 and K27 in the histone tail H3 via a FRET system in

immortalized bovine mammary alveolar epithelial cells MACT [22, 23] incubated at 0, 125,

250, and 500 μM of Met.

Materials and methods

Cell culture and plasmid purification

The cell culture and plasmid purification were performed as previously described in Osorio

and Bionaz [24]. In this study, the MACT cells were generously provided by Massimo Bionaz,

Department of Animal and Rangeland Sciences, Oregon State University. Cells were cultivated

in a high-glucose Dulbecco modified Eagle’s medium (DMEM) with sodium pyruvate

(Cat#10013CV, Corning Cellgro, Manassas, VA) while treatments were applied using a

reduced serum medium Opti-MEM1 (Cat#11058021; Life Technologies, Grand Island, NY).

The DMEM medium was supplemented with 10% fetal bovine serum (Cat# 1500–500; Sera-

digm, Radnor, PA), penicillin/streptomycin (10 mL/L, Cat# 97063–708; Amresco, Solon, OH),

and Fungizone1 Antimycotic (3μL/mL, Cat# 15290–018; Life Technologies, Grand Island,

NY). The histone methylation reporters, pcDNA3-K27, and pcDNA3-K9 plasmids utilized in

this study (Addgene plasmid#22865, and plasmid #22866, respectively) were cloned using the

DH5alpha competent cells (Cat# 18265017; Life Technologies, Grand Island, NY) after incuba-

tion with Luria broth (50 mL) overnight, and subsequently isolated and purified using the

GeneJet Plasmid Miniprep Kit (Cat# K0481; Life Technologies, Grand Island, NY). Briefly,

bacterial culture (~50 mL) post-selected via Ampicillin was centrifuged for 10 min at 5000 × g.

After centrifugation, pelleted cells were resuspended in 2 mL Resuspension Solution, followed

by addition of 2 mL of Lysis Solution, and incubated for 3 min at room temperature. After

incubation, 2 mL of Neutralization Solution added, followed by 0.5 mL of endotoxin binding

reagent and incubated for 5 min at room temperature. After incubation, 3 mL of 96% ethanol

was added, and the solution was centrifuged for 40 min at 4,500 × g to pellet cell debris and

chromosomal DNA. After centrifugation, the supernatant (~6–7 mL) was transferred to a new

15 mL tube and mixed with 3 mL of 96% ethanol. This solution was passed through a silica-

based membrane column via centrifugation for 3 min at 2000 × g, then the plasmids bound to

the membrane were purified with two different wash solutions (I and II). Finally, the purified

plasmids were eluted with 350μL of Elution Buffer. Concentration and purity of plasmids were

assessed with a Nanodrop ND-1000 spectrophotometer (Nanodrop Technologies, Wilming-

ton, DE), for which the 260/280 ratio was above 1.9.

Transfection and treatments

In order to evaluate the effects of Met on histone methylation, MACT cells were transfected

with a plasmid DNA that encodes for a modified peptide substrate corresponding to the meth-

ylation site of interest within histone tail in H3, and capable of emitting a FRET type signal

using cyan and yellow fluorescent proteins. MACT cells were seeded at 30,000/well in 96-well

plates 24 h prior to transfection. The transfection reagent used was Lipofectamine1 3000

(Lipo3; Cat# L3000001; Life Technologies) at a concentration of 0.3μL/well. The final volume

per well used was 100μL for all transfection conditions and 50 ng of plasmid DNA per well.
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The treatments were applied 24 h post-transfection, and each treatment was performed in trip-

licates in each plate as follow: L-Met (Cat# 63683, Acros Organic) was dissolved in Opti-

MEM1 to a final stock solution of 50mM, and subsequent dilutions with Opti-MEM1 were

performed to get the final working solutions: 125μM, 250μM, and 500μM of Met. These treat-

ments were applied to a total of 4 plates performed on different days. In each plate, one of the

treatments was seeded cells only incubated with 100 μL of Opti-MEM1 to be used as a posi-

tive control for viability, and additional treatment of cells incubated with 100 μL of 70% molec-

ular ethanol (diluted with Opti-MEM1) for 20 min at 24 h post-treatment to be used as a

negative control for viability.

Imaging fluorescence analysis

After the treatments were applied, an automated epifluorescent microscope for live imaging

(EVOS FL Auto Imaging System, Cat# AMF4300, Thermo Fisher Scientific Inc, Bothell, WA)

equipped with a motorized X-Y scanning stage, LED light engine, and environmental chamber

to maintain cells at 37˚C and 5.0% of CO2 (Invitrogen™ EVOS™ Onstage Incubator, Cat#

AMC1000) was used to take 4 pictures/well at 0, 12, and 24 h post-treatment. For the histone

methylation analysis, each picture was an overlay of cyan fluorescent protein [CFP, excitation

(nm) 445/45, and emission (nm) 510/42, EVOS™ LED cube #AMEP4653, Thermo Fisher Sci-

entific Inc, Bothell, WA] and a fluorescence resonance energy transfer-FRET [CFP-YFP, exci-

tation (nm) 445/45, and emission (nm) 542/27, EVOS™ LED cube #AMEP4669, Thermo

Fisher Scientific Inc, Bothell, WA] detected with the corresponding fluorescent light.

The open-source software CellProfiler (Kamentsky et al., 2011) was used to analyze each

picture to quantify cell number and intensity of all cells in each picture. The total intensity of

cells per image was calculated with the CellProfiler based on cells that expressed both CFP and

CFP-YFP fluorescent intensities (i.e., colocalization). Then, a ratio of total intensity of

CFP-YFP over CFP was calculated to obtain a YFP signal, which is the signal associated with

histone methylation. Live and Dead cells were measured at 24 h post-treatment. Dead cells

were measured using a nuclear stain (Propidium Iodide1, Cat# R37108; Life Technologies)

over a red filter (Texas Red, excitation at 585/29nm, and emission at 624/40nm, EVOS™ LED

cube, Cat# AMEP4655). While live cells were measured using a Hoechst stain (NucBlue1

Live ReadyProbes1 Reagent, Life Technologies) over a blue filter (DAPI, excitation at 357/

44nm, and emission at 447/60nm, EVOS™ LED cube, Cat# AMEP465). Cell viability was calcu-

lated by colocalizing the number of dead cells over the number of blue cells in a given picture

and multiplying the result by 100 [24].

DNA isolation, global DNA methylation, and total protein assay

MACT-cells seeded at 1.06x106 density in 6-well plates were incubated with the methionine

doses (125μM, 250μM, and 500μM) for 24h. At 24 h post-treatment, cells were detached with

trypsin-EDTA (Cat#25300054; Life Technologies) for further DNA and total protein analysis.

The DNA isolation and the global DNA methylation assays were performed as previously pub-

lished [5] with some modifications. Briefly, the cell pellet was lysed using proteinase K, loaded

to the DNeasy Mini spin column (Blood and Tissue DNeasy Kit, Qiagen, Germany), DNA was

selectively bound to the membrane, and contaminants were washed and finally eluted in

water. The total protein concentration was determined using the BCA Assay Kit (Cat# 23227;

Thermo Scientific).

Global DNA 5-methylcytosine (5-mC) was quantified using the 5-mC ELISA DNA kit

(Zymo Research). The kit works with a unique anti-5-mC monoclonal antibody that is sensi-

tive and specific for 5-mC across a wide range of starting DNA amount. The 5-mC percentage
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was quantified based on a standard curve generated by combining the positive (100%) and

negative controls (0%). A total of 100 ng of DNA were mixed with a 5-mC coating buffer,

denatured at 98˚C for 5 min, placed on ice immediately, and then incubated in duplicate in a

96-well plate at 37˚C for 1 h. The coating buffer and samples were discarded, washed 3× with

200 μL of 5-mC buffer, and incubated at 37˚C for 30 min with 5-mC buffer. After discarding

the contents, 100 μL of the antibody mix containing anti-5-mC, secondary antibody, and

5-mC buffer was added and incubated at 37˚C for 1 h. After discarding the contents, the wash-

ing step was performed as before, with 100 μL of horseradish peroxidase-developer added and

incubated at room temperature for 1 h. Absorbance at 405 and 450 nm was measured using a

plate reader (Cary 50, Varian Inc., Walnut Creek, CA).

RNA isolation, cDNA synthesis, primer design, and evaluation and

quantitative PCR

The RNA isolation from cell pellets was carried out using the RNeasy Plus Mini Kit

(Cat#74134; Qiagen), following the manufacturer’s instructions with some modifications.

Briefly, prior to the RNA isolation, the cell pellets (~1.06 x 106cells) were homogenized using a

beadbeater (Cat# 607; Biospec Products, Inc.) while immersed in 1 mL of TRIzol Reagent

(Cat# 15596018, Ambion, Carlsbad, CA, USA). After homogenization, 200μl of chloroform

(EMD Millipore, Germany, Cat. No. CX1055-6) was added in order to isolate the RNA from

the organic phase. The RNA quantity (368 ± 143.09 ng/μL; mean ± SD), and purity as 260/280

ratio and 260/230 ratio (2.03 ± 0.02; and 1.81 ± 0.27, respectively) were determined using

Nanodrop ND-1000 (NanoDrop Technologies, Rockland, DE). Details of cDNA synthesis,

primer design, and evaluation, as well as quantitative PCR, are presented in the S1 File. The

selected target genes play important roles in the Met cycle [Methionine adenosyltransferase 1A

(MAT1A), phosphatidylethanolamine N-methyltransferease (PEMT), S-adenosylhomocys-

teine hydrolase (SAHH), and 5-methyltetrahydrofolate-homocysteine methyltransferase

(MTR)], histone methylation [SET domain bifurcated histone lysine methyltransferase

(SETDB1), euchromatic histone lysine methyltransferase (EHMT2), and suppressor of variega-

tion 3–9 homolog 1 (SUV39H1)], DNA methylation [DNA methyltransferase 3 alpha

(DNMT3A) and DNA methyltransferase 1 (DNMT1)], AA transporters [solute carrier family 3

member 2 (SLC3A2), solute carrier family 1 member 5 (SLC1A5), solute carrier family 38

member 2 (SLC38A2), solute carrier family 38 member 9 (SLC38A9)], and protein synthesis

[mammalian target of rapamycin (MTOR), ribosomal protein S6 kinase B1 (RPS6KB1)].

Statistical analysis

The coefficient of variation (CV %) was calculated based on data from 4 pictures per well, and

data from each picture with the farthest deviation from the mean per well was removed if the

CV % was > 5%. Then, the mean per well was used for statistical analysis. The relative histone

methylation in H3K9 and H3K27 was analyzed as repeated measures using the PROC MIXED

of SAS (SAS Institute Inc., Cary, NC) with plate, Met concentration, time (i.e., 0, 12, and 24 h

post-treatment), and their interaction as the fixed effects in the model. The well nested within

plate and treatment was used as the random effect. The relative histone methylation measured

at 0 h post-treatment was used as a covariate for the repeated measures analysis. Data mea-

sured at 24h post-treatment, including global DNA methylation, gene expression, total protein

concentration, and cell viability, the plate and Met concentration were the only variables con-

sidered as a fixed effect in the model. In the histone methylation data, two observations in two

different plates were considered outliers and removed from the analysis. The P-value
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significance was adjusted with the Tukey test for mean separation. Statistical significance and

tendencies were declared at P� 0.05 and 0.05� P� 0.10, respectively, for all comparisons.

Results

Relative histone methylation and viability

Main effects and interactions of Met supplementation on histone methylation at 0, 12, and 24 h

post-treatment and viability at 24 h post-treatment are shown in Fig 1. There was an interaction

(P� 0.04) of Met supplementation and time (Met × Time) in K9 and K27 (Fig 1A and 1C). The

Met × Time in K9 was mainly associated with different histone methylation at 24 h post-treat-

ment, where the 125 Met treatment produced the greatest (P< 0.01) histone methylation, while

the 0 Met treatment had the lowest (P< 0.01) histone methylation (Fig 1A). In the case of K27,

at 12 h post-treatment, histone methylation levels were greater (P< 0.01) in 0 and 250 Met in

comparison to 500 Met (Fig 1C). Then, at 24 h post-treatment, 250 Met treatment remained

greater (P = 0.01) than 500 Met, while 0 and 125 Met treatments had intermediate levels of

Fig 1. Effect of supplemental Met at 0, 125, 250, and 500 μM on relative histone methylation and viability in bovine mammary alveolar epithelial cells

(MACT). A: relative histone methylation in lysine residue 9 (K9) in the tail of histone 3 (H3) at 0, 12, and 24 h post-treatment; B: viability of MACT cells at 24

h post-treatment with 0, 125, 250, 500 μM of Met as well as cells only (positive control) and ethanol (negative control); C: relative histone methylation in lysine

residue 27 (K27) in the tail of H3 at 0, 12, 24 h post-treatment; D: viability of MACT cells at 24 h post-treatment with 0, 125, 250, 500 μM of Met as well as cells

only (positive control) and ethanol (negative control). Values are means, with standard errors represented by vertical bars.

https://doi.org/10.1371/journal.pone.0244135.g001
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histone methylation. A treatment effect (P< 0.01) on viability at 24 h post-treatment in K9 and

K27 (Fig 1B and 1D). A greater viability was observed in K9 in cells only (i.e., cells were neither

transfected nor treated with Met) and the 250 Met treatment (96.5 and 87.1%, respectively),

while the cells only treatment had the highest (91.1%) viability in K27. In both K9 and K27, cells

treated with ethanol had the lowest viability (53.1% and 33.4%, respectively). In terms of the

Met treatments, the 250 Met treatment had the highest viability in both K9 and K27.

Histone methylation analysis at 24 h post-treatment is shown in Fig 2. There was a treat-

ment effect (P� 0.04) in K9 and k27, and this effect was reflected on a consistent quadratic

effect (P� 0.01) in both K9 and K27 over the Met treatments. However, the greatest histone

methylation in K9 and K27 was at 125 μM and 250 μM, respectively.

Methionine effect on DNA methylation and total protein

Main effects and interactions for Met supplementation on global DNA methylation and total

protein concentration at 24 h post-treatment are shown in Fig 3. Global DNA methylation was

affected by methionine supplementation (P = 0.01), which was reflected in a linear (P< 0.01)

decreased in global DNA methylation as Met supplementation increased from 0 to 500 μM

(Fig 3A). A trend (P = 0.07) for a Met effect on total protein concentration was observed on

Met supplementation, and it was reflected in a quadratic effect (P = 0.07) with the highest total

protein concentration at 125 μM (Fig 3B).

Fig 2. Effect of supplemental Met at 0, 125, 250, and 500 μM on relative histone methylation at 24 h post-

treatment in bovine mammary alveolar epithelial cells (MACT). Relative histone methylation in lysine residue 9

(K9) or lysine residue 27 (K27) was measured through a fluorescent resonance energy transfer. A priori orthogonal

contrasts were analyzed in order to determine linear (L) and quadratic (Q) effects over Met supplementation. Values

are means, with standard errors represented by vertical bars.

https://doi.org/10.1371/journal.pone.0244135.g002
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Fig 3. Effect of supplemental Met at 0, 125, 250, and 500 μM on (A) DNA methylation and (B) total protein at 24 h post-

treatment in bovine mammary alveolar epithelial cells (MACT). A priori orthogonal contrasts were analyzed in order to

determine linear (L) and quadratic (Q) effects over Met supplementation. Values are means, with standard errors represented by

vertical bars.

https://doi.org/10.1371/journal.pone.0244135.g003
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Methionine effect on gene expression

The Met cycle. Main effect for Met supplementation on genes associated with the Met

cycle is shown in Fig 4. An overall effect (P� 0.14) of Met supplementation was not observed

on the genes related to the Met cycle. However, a linear upregulation (P� 0.05) of the genes

MAT1A and SAHH was observed as Met supplementation was increased from 0 to 500 μM.

Similarly to MAT1A and SAHH, a trend for an upregulation on the mRNA expression of the

genes PEMT (P = 0.06) and MTR (P = 0.08) was observed as Met supplementation was

increased from 0 to 500 μM.

Histone and DNA methylation. Main effect for Met supplementation on genes associ-

ated with histone and DNA methylation is shown in Table 1. The SUV39H1 was the only

gene with an overall effect (P = 0.04) for Met supplementation, and to a lesser extent

DNMT1 (P = 0.06) and SETDB1 (P = 0.07) had a trend for a Met effect. Then, while the Met

effect on SUV39H1 and DNMT1 was described by a positive quadratic effect (P � 0.03), the

Met effect on SETDB1 as main associated with a linear increase as Met supplementation

increased from 0 to 500 μM (Table 1). In contrast to SETDB1, DNMT3A mRNA expression

tended (P = 0.07) to be downregulated when Met supplementation was increased from 0 to

500 μM (P (Table 1)).

Fig 4. Effect of supplemental Met at 0, 125, 250, and 500 μM on mRNA expression of genes related to the Met cycle. Targeted genes

for the Met cycle included Met adenosyltransferase 1A (MAT1A), phosphatidylethanolamine methyltransferase (PEMT), s-

adenosylhomocysteine hydrolase (SAHH), and 5-methyltetrahydrofolate-homocysteine methyltransferase (MTR) at 24 h post-treatment

in bovine mammary alveolar epithelial cells (MACT). A priori orthogonal contrasts were analyzed in order to determine linear (L) and

quadratic (Q) effects over Met supplementation. Values are means, with standard errors represented by vertical bars.

https://doi.org/10.1371/journal.pone.0244135.g004

PLOS ONE Histone methylation in bovine mammary alveolar epithelial cells

PLOS ONE | https://doi.org/10.1371/journal.pone.0244135 December 21, 2020 9 / 19

https://doi.org/10.1371/journal.pone.0244135.g004
https://doi.org/10.1371/journal.pone.0244135


AA transporters and protein synthesis. Main effect for Met supplementation on genes

associated with AA transporters and protein synthesis is shown in Table 1. The SLC38A2 gene

was the only gene with a Met effect (P = 0.01), and this was attributed to a linear downregula-

tion in its expression as Met supplementation increased from 0 to 500 μM. In contrast to

SLC38A2, SLC38A9 had a linear upregulation (P = 0.03) as Met supplementation increased

from 0 to 500 μM, and a trend (P = 0.08) for a similar effect was observed in SLC3A2. A trend

(P = 0.09) for a positive quadratic effect was observed in RPS6KB1. The Met supplementation

did not affect (P� 0.11) the expression of SLC1A5 and MTOR.

Discussion

The application of fluorescent proteins for tracking single molecules in live cells or the whole

organism has been vastly exploited and has impacted the fields of biochemistry, biotechnology,

and cell biology [18]. In animal sciences, fluorescent proteins have been mainly used as molec-

ular markers that can cast a signal based on cell type identification, or presence of specific pro-

teins in cell culture and tissue explants (e.g., immunochemistry). Another application for

fluorescent proteins is gene reporter technology, which has been used to monitor the activa-

tion of transcription factors by fusing the appropriate DNA coding for a promoter region,

including the response element of the target gene with the DNA sequence coding for a fluores-

cent protein (or reporter gene). Luciferase is by far the most-used gene reporter technology in

nutrigenomic studies in dairy cows but has been used to study other cellular events (e.g., cell

Table 1. Effect of supplemental Met at 0, 125, 250, and 500 μM on mRNA expression of genes related to DNA and histone methylation, AA transporters, and pro-

tein synthesis at 24 h post-treatment in bovine mammary alveolar epithelial cells (MACT).

Gene1 Met supplementation (μM) SEM3 P-value2

0 125 250 500 Met L Q

Histone methyltransferase

SETDB1 -0.61 -0.66 -0.30 -0.29 0.17 0.07 0.03 0.76

EHMT2 -1.58 -1.42 -1.45 -0.83 0.31 0.33 0.11 0.38

SUV39H1 -1.05 -1.46 -1.11 -0.93 0.17 0.04 0.18 0.03

DNA methyltransferase

DNMT3A -0.14 -0.58 -0.46 -0.62 0.41 0.14 0.07 0.31

DNMT1 0.23 -0.36 -0.23 0.71 0.40 0.06 0.19 0.01

AA transporters

SLC3A2 -0.80 -0.61 -0.43 -0.45 0.15 0.28 0.08 0.48

SLC1A5 -0.80 -0.77 -0.49 -0.46 0.26 0.49 0.18 0.99

SLC38A2 1.07 0.83 0.75 0.69 0.26 0.01 <0.01 0.21

SLC38A9 -0.08 0.004 0.35 0.42 0.32 0.11 0.03 0.95

Protein synthesis

MTOR -0.19 -0.46 -0.19 -0.45 0.29 0.11 0.24 0.92

RPS6KB1 1.14 0.79 1.09 1.14 0.28 0.11 0.54 0.09

1Targeted genes for DNA methylation [DNA methyltransferase 3 alpha (DNMT3A) and DNA methyltransferase 1 (DNMT1)], histone methylation [SET domain

bifurcated histone lysine methyltransferase (SETDB1), euchromatic histone lysine methyltransferase (EHMT2), and suppressor of variegation 3–9 homolog 1

(SUV39H1)], AA transporters [solute carrier family 3 member 2 (SLC3A2), solute carrier family 1 member 5 (SLC1A5), solute carrier family 38 member 2 (SLC38A2),

solute carrier family 38 member 9 (SLC38A9)], and protein synthesis [mammalian target of rapamycin (MTOR), ribosomal protein S6 kinase B1 (RPS6KB1)] at 24 h

post-treatment in MACT cells.
2SP-values represent the probability of statistical significance for the overall Met effect and a priori orthogonal contrasts to determine linear (L) and quadratic (Q) effects

over Met supplementation.
3Largest SEM.

https://doi.org/10.1371/journal.pone.0244135.t001
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signaling and milk protein expression) in bovine cells [25]. In contrast to luciferase reported

assay, the FRET technology is a less known technique, but with a growing interest in biomedi-

cal science and biotechnology fields [26]. To the authors’ knowledge, the use of a FRET system

to track histone methylation has never been tested before in bovine cells. The FRET system is

based on the ability to transfer energy between two fluorescent proteins from a donor to an

acceptor depending on their spatial proximity. The closer the two fluorescent proteins are, the

more fluorescent emission will be detected from the acceptor, which in the current study

describes greater histone methylation [27]. The FRET system utilized in this study was

designed by Lin and collaborators [19], and it comprises of a histone-derived peptide sand-

wiched between a pair of fluorescence resonance energy transfer-capable green fluorescent

protein (GFP) mutants, cyan fluorescent protein (donor) and a yellow fluorescent protein

(acceptor). This is the first study in a bovine cell model utilizing FRET and fluorescent micros-

copy to derive a signal on histone methylation via Met supplementation. There is a potential

on developing this technology to advance our understanding of how methyl donors such as

Met can affect the available genome via epigenetics in dairy cows.

Methionine cycle and protein synthesis

Methionine is an essential amino acid, and its beneficial effects on the performance of livestock

animals have been extensively studied. In dairy cattle, such beneficial effects have been com-

monly attributed to a low abundance of this amino acid in forages and feedstuff normally used

in dairy cattle nutrition [2]. Therefore, supplementation of rumen-protected Met to transition

dairy cows has consistently improved milk yield [28–30] and milk composition [28–31].

Although such a response in performance has been accompanied by an evident transcriptomic

alteration [21], the extent of the impact of these molecular alterations on the final performance

of dairy cows being supplemented with Met remains unknown. In the current study, we

observed a consistent linear upregulation in genes related to the Met cycle (Fig 4). This is in

agreement with previous in vivo studies where hepatic gene expression of MAT1A, PEMT, and

SAHH was upregulated in transition dairy cows supplemented with methionine [4, 32]. Taken

together, these data suggest that genes related to the Met cycle are highly responsive to changes

in the availability of this AA in either in vivo or in vitro models.

The transport of AA into epithelial cells in the mammary gland is one of the major limi-

tations for milk protein synthesis. This is predicated on the known intermediary metabo-

lism and utilization of AA between the duodenum and the mammary gland, which accounts

for the decreased efficiency of the transfer of absorbed AA into milk protein [33]. Therefore,

AA transporters play a key role in the procurement of AA for milk biosynthesis in the mam-

mary gland. Among the AA transporters measured in this study, SLC38A2 and SLC38A9
were the most responsive to varying concentrations of Met in the media (Table 1), where

mRNA transcription of SLC38A2 and SLC38A9 linearly decreased and increased, respec-

tively. Similar to our results, Dong, Zhou [34] observed a decreased mRNA expression of

SLC38A2 in MATC cells as Met was increased from 60 to 87 μg/mL of Met (or 402.1 to

583.1 μM of Met) in the media. This consistent effect on SLC38A2 by Met in MACT cells

indicates an underlying mechanism as explained by Dong, Zhou [34], whereby an increased

supply of Met could produce a negative feedback on the uptake of AA when EAA such Met

are balanced. In contrast to our results, Ma and collaborators [35] observed an upregulation

in the neutral AA transporter, SLC38A2, in postpartal mammary tissue of transition dairy

cows fed a rumen-protected Met supplement. Discrepancies in SLC38A2 response to Met

between in vitro and mammary tissue could be related to the Met concentration, as higher

Met concentrations were tested in vitro (i.e., maximal Met at 583.1 and 500 μM in [34] and
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the current study, respectively) in comparison to in vivo [35], where the blood plasma con-

centration of Met in peripartal dairy cows was ~11 μM. The upregulation in SLC38A9 prod-

uct of Met supplementation in the current study was similar to the increase in mRNA

expression observed in mammary tissue [35], while contrary to the downregulation in

SLC38A9 observed by Dong, Zhou [34] in MACT cells. A major difference between the cur-

rent study and Dong, Zhou [34] was that the latter maintained ideal AA ratios (i.e., Thr:Phe

1.05:1; Lys:Thr 1.8:1; Lys:His 2.38:1; Lys:Val 1.23:1) while increasing the concentration of

Met in the media. Then, this could serve as a plausible explanation for differences in mRNA

expression of SLC38A9. A similar trend for upregulation of SLC3A2 in the current study

and Dong, Zhou [34] suggest a stimulation of this AA transporter when Met is supplied in

the media; however, SLC3A2 seemed to be less responsive to Met in vivo [35].

The mammalian target of rapamycin (mTOR) is essential for the initiation of protein syn-

thesis. Although some AA, such as leucine, are well known for stimulating the activity of

mTOR, Met has been observed to have inconsistent effects on mTOR activity, in terms of the

ratio of p-mTOR:mTOR [34–37]. Similar to our results, Nan, Bu [36] observed no effects on

MTOR mRNA expression by Met supplementation. This suggests that Met may influence

alternative metabolic routes to improve milk protein synthesis, such as upregulation of AA

and glucose transporters, insulin signaling, and AA tRNA-synthases, as observed by Ma, Batis-

tel [35]. However, it is noteworthy to highlight the concomitant increased in total cellular pro-

tein (Fig 3B) and H3K9 methylation at 125 uM Met supplementation (Fig 2), suggesting a

potential mechanism by which an adequate level of H3K9 methylation will promote an opti-

mal DNA structure to enhance transcription. Unfortunately, this current study does not

include sufficient additional data to provide further explanations on this mechanism. How-

ever, it is plausible that H3K9 methylation could be linked to alterations in the protein synthe-

sis machinery [38].

Histone methylation

Methionine is a well-known precursor of s-adenosylmethionine (SAM) [10], and, in turn,

SAM is constantly required for multiple biological processes, including transsulfuration, poly-

amine biosynthesis, DNA methylation [15], and histone methylation [39]. The latter is one of

the main mechanisms by which the genetic information contained in the DNA is made avail-

able (i.e., chromatin status) for transcription and translation into proteins. Within the context

of dairy cattle, Bionaz and collaborators [40] observed marked alterations associated with the

chromatin status (i.e., euchromatin or available DNA) in bovine mammary tissue from late

pregnancy to lactation. Thus, this underscores the importance of understanding the impact of

Met availability on histone methylation and its consequences on gene expression and mam-

mary gland biology not just in dairy cattle but in mammals in general.

The results obtained via FRET technology in this study confirmed that Met could alter the

histone methylation in H3K9 and H3K27 in immortalized bovine mammary cells (Fig 1A and

1C). However, there was a contrasting methylation effect between H3K9 and H3K27, while

H3K9 methylation described a more evident pattern from 0 to 24 h with greater methylation

at 125 μM Met, the methylation in H3K27 was more scattered over time (Fig 1C). This con-

trasting effect was confirmed by FRET analysis at 24 h only (Fig 2), where maximal methyla-

tion of H3K9 and H3K27 was observed with 125 μM, and 250 μM Met, respectively. The lack

of a dose-dependent response on H3K9 and HK27 methylation suggests that additional mech-

anisms are likely to play a role in the control of histone methylation. Because this is the first

study evaluating the effects of Met (or methyl donors) on histone methylation in bovine, this

reduces the ability to assess and extrapolate the magnitude of our results in the context of the
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dairy cow physiology. The lack of explicit evidence on the effects of Met on histone methyla-

tion can be extended to other mammalian models, where this effect has been very seldom

interrogated. For instance, Esfandiari and collaborators [41] observed a decline in histone

methylation (i.e., H3K9me3) when mice were fed a diet containing ethanol, which predictably

lowers SAM levels by inhibiting the transmethylation of homocysteine [42]. The latter suggests

that Met deficient diets may cause a similar effect observed by Esfandiari, Medici [41] since

Met is a precursor of SAM. Findings in Dobosy, Fu [43] partially confirm this effect, where a

lower H3K9me2 was observed in mice fed a choline and Met deficient diet. In terms of

H3K27, there is less direct evidence that methyl donors such as Met can cause a change in

methylation status in H3K27. Momparler, Cote [44] observed a decrease in H3K27 methyla-

tion when cancer cells were incubated with Met metabolism inhibitors. In bovine, H3K27me3

has been mostly evaluated in embryonic development [45, 46], and, in bovine lymphocytes,

H3K27m3 was associated with gene silencing [8]. The same pattern was observed in dairy

cows during subclinical mastitis, where gene silencing was attributed to H3K27me3 [9].

The biological significance of histone methylation through Met supply in bovine mammary

cells and how this molecular process can affect the overall milk biosynthesis in dairy cows

remains unclear. The more evident effect of Met on H3K9 methylation put forth the idea of

this lysine residue to be a potential candidate for nutriepigenomic effects via dietary Met or

methyl donors in the future.

The role of SUV39H1 and SETDB1 as histone methyltransferases is well known, especially

for the H3K9 [47, 48]. Although there is a lack of data on the direct connection between dietary

Met and these histone methyltransferases, this connection is logical since Met serves as

methyl-donor for SAM. Silencing the transcription of MATIIα (encoded by MAT2A), one of

the two isoenzymes that catalyze the synthesis of SAM from Met, suppressed H3K9me3 forma-

tion. This effect was associated with the activity of SETDB1 but not SUV39H1 for certain spe-

cific genes, such as Ptgs2 [49]. Kinetics studies have demonstrated the affinity of SUV39H1 to

utilize SAM and methylate H3K9 [50]. In the current study, it could be speculated that the lin-

ear increase in SETDB1 was influenced in part by the linear increase in Met supply. Interest-

ingly, the negative quadratic effect SUV39H1 was contrasting with the positive quadratic effect

in H3K9 methylation and total protein synthesis, which might suggest a regulatory feedback

mechanism by H3K9 methylation. Taken together, these data suggest that there is a connec-

tion between Met availability and transcription of histone methyltransferases, which has been

confirmed in other biological models; however, it remains to elucidate the contrasting effect of

Met between H3K9 methylation and SUV39H1 in the bovine.

Global DNA methylation

The importance of DNA methylation in the context of epigenetics has been underscored in

ruminants [51] and non-ruminants [52]. The influence of dietary methyl donors on DNA

methylation is only beginning to be understood. DNA methylation patterns can occur at global

or region-specific DNA methylation levels [53]. In various physiological models, including

cancer and atherosclerosis, it has been observed that global and region-specific DNA methyla-

tion do not necessarily agreement; for instance, in tumor cells, global hypomethylation can be

accompanied by region-specific hypermethylation [53]. The specific mechanisms that deter-

mine global and region-specific DNA methylation are yet to be clearly understood. In the con-

text of dairy cows, region-specific DNA methylation has been attributed to gene silencing of

milk protein genes such as CSN1S1 (αS1-casein) in mammary tissue of pubertal heifers or

culled non-lactating cows when compared to lactating cows [54]. Dietary methyl donors such

as Met have been observed to cause a global DNA hypomethylation in hepatic DNA from
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peripartal dairy cows [10], and this effect was corroborated by findings in mice fed betaine, a

methyl donor, which experienced a similar hepatic global DNA hypomethylation [55, 56]. In

the current study, a parallel effect was observed, where global DNA methylation was gradually

reduced as greater concentrations of Met were supplied in the media of bovine mammary cells

(Fig 3A). Although the latter confirms the results observed in peripartal dairy cows [10] and

rodents [55], it does not explain the underlying mechanism by which a greater substrate of

methyl donors may lead to lower global DNA methylation. Previously, James, Melnyk [57]

indicated that SAHH might play a role in DNA methylation by inhibiting methyltransferases,

specifically DNA methyltransferases. Then, it is conceivable that a similar effect occurs in the

bovine model, where SAHH suppressed DNA methylation as a feedback mechanism to restrict

an otherwise uncontrollably hypermethylation under a surplus of methyl groups. Interestingly,

Fig 5. Schematic representation of the Met supply effect on the Met cycle and subsequent histone methylation analyzed via a genetically encoded

fluorescent reporter of histone methylation. The influx of Met into the cell will cause an upregulation of genes encoding for enzymes related to the Met cycle,

including MAT1A, PEMT, SAHH, and MTR. MAT1A is directly responsible for the conversion of Met into SAM, which is the main methyl donor in the body.

This is utilized to methylate DNA and histones, and in this study, the fluorescent reporter was used to assess histone methylation levels. This reporter is

composed of a peptide domain replica of the histone 3 tail (H3 tail) encoding either the lysine 9 (H3K9) or lysine 27 (H3K27) positions, which is joined to a

methyl-lysine binding domain. This fusion is constructed between a fluorescent resonance energy transfer (FRET) system composed of a dual-fluorescent

protein system: cyan fluorescent protein (CFP) and yellow fluorescent protein (YFP). An unmethylated state of the FRET results in high fluorescence emission

(476 nm) from the donor (CFP) and low or zero excitation from the receptor (YFP). Upon methylation, the methyl-lysine binding domain in the reporter

undergoes conformational rearrangement, increasing the proximity between CFP and YFP, thus, increasing the energy transfer (or FRET) from CFP to YFP.

This, consequently, increase the fluorescence emission (527 nm) of the receptor YFP. The ratio of total intensity of CFP-YFP over the CFP was calculated to

obtain a YFP signal, which is the signal associated with histone methylation.

https://doi.org/10.1371/journal.pone.0244135.g005
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the latter effect could help explain the global DNA hypomethylation in the current study. The

linear upregulation in SAHH (Fig 4) was accompanied by a linear downregulation in

DNMT3A, and a negative quadratic effect in DNMT1 (Table 1). This makes a plausible case for

an inhibitory mechanism of SAHH on DNA methylation in the bovine genome.

The interactions between histone methylation and DNA methylation have been reported

[58]. For instance, ubiquitin-like proteins associated with the cell cycle can have a higher affinity

to bind H3K9me3 (trimethylated) when its nucleosome DNA contains a higher degree of meth-

ylated CpG [59]. Additionally, others observed inhibition of DNA methylation in the presence

of H3K27me3, while increased levels were found with H3K9me3 [58]. Our data do not indicate

a strong correlation between histone and DNA methylation since a linear decrease was observed

in DNA methylation, while a quadratic increase was observed in H3K9 and H3K27.

Conclusions

The utilization of fluorescent protein systems for real-time imaging of cellular processes cou-

pled with derived quantitative data from such images using pattern recognition software is an

untapped technology in gene regulation research from a nutritional standpoint. Our results

provide evidence for the potential of this technique for future applications not only on nutrie-

pigenomics but also for other types of nutrient-gene interactions or cellular processes such as

nutrient uptake, intracellular bioavailability, energy status (i.e., ATP), among others. The his-

tone methylation data suggest that, to some extent, methyl-donors such as Met may affect the

methylation sites, H3K9 and H3K27, and consequently causing a different epigenetic alter-

ation (Fig 5). Gene expression data confirmed that genes related to the Met cycle are highly

responsive to Met supply, and the upregulation of SAHH may be associated with a decline in

DNA methylation, as previously observed in other biological models. In the context of the

dairy cow, further refinement to this FRET assay to study histone methylation could lead to

establishing novel potential mechanisms of how dietary methyl donors may control the struc-

tural conformation of the bovine genome and, by extension, gene expression.
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