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Abstract: Many patients now survive their initial critical events but subsequently develop chronic critical illness (CCI). CCI is 
characterized by prolonged hospital stays, poor outcomes, and significant long-term mortality. The incidence of chronic critical illness 
(CCI) is estimated to be 34.4 cases per 100,000 population. The incidence varies significantly with age, peaking at 82.1 cases per 
100,000 in individuals aged 75–79. The one-year mortality rate among CCI patients approaches 50%. A subset of these patients enters 
a state of persistent inflammation, immune suppression, and ongoing catabolism, a condition termed persistent inflammation, 
immunosuppression, and catabolism syndrome (PICS) in 2012. In recent years, some progress has been made in treating PICS. For 
instance, recent advancements such as the persistent expansion of MDSCs (myeloid-derived suppressor cells) and the mechanisms 
underlying intestinal barrier dysfunction have provided new directions for therapeutic strategies, as discussed below. Persistent 
inflammation, a key feature of PICS, has received comparatively little research attention. In this review, we examine the potential 
pathophysiological changes and molecular mechanisms underlying persistent inflammation and its role in PICS. We also discuss 
current therapies about inflammation and offer recommendations for managing patients with PICS. 
Keywords: persistent inflammatory-immunosuppressive-catabolic syndrome, chronic critical illness, inflammation, 
immunosuppression, anti-inflammatory therapy

Introduction
With the advancements in critical care medicine, an increasing number of critically ill patients are receiving adequate 
treatment in the ICU and surviving. Approximately 7.6% of these patients develop chronic critical illness (CCI),1 which 
is defined as an ICU stay of at least 14 days with persistent organ dysfunction.2 Despite receiving appropriate supportive 
treatment, about 30–50% of these patients continue to exhibit chronic low-grade inflammation, immunosuppression, and 
hypercatabolism.3,4 In 2012, Gentile et al introduced the concept of Persistent Inflammation, Immunosuppression, and 
Catabolism Syndrome (PICS) to describe patients with chronic critical illness (CCI).5 Since its introduction, this 
syndrome has garnered widespread attention due to its complex pathophysiological mechanisms and profound impact 
on patient outcomes.

Persistent inflammation in PICS is characterized by elevated levels of systemic inflammatory markers, such as 
C-reactive protein (CRP), indicating ongoing inflammation. Sustained acute-phase responses, including increased levels 
of IL-6 and neutrophilia with a higher proportion of immature granulocytes, further highlight this persistent pro- 
inflammatory state.
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Immunosuppression in PICS is marked by adaptive immune dysfunction, as evidenced by a decreased absolute 
lymphocyte count (ALC). Lymphocytes, the key effector cells mediating adaptive immune responses, are significantly 
reduced in both number and function, reflecting profound adaptive immune suppression.6 Furthermore, impaired antigen 
presentation, commonly referred to as “immune paralysis”, is frequently observed and is manifested by reduced HLA-DR 
expression on monocytes.7 This immunosuppressive state is further exacerbated by elevated levels of anti-inflammatory 
cytokines, such as IL-10 and soluble TNF receptors. Catabolic State is reflected by severe protein depletion, as indicated 
by a serum albumin level below 3.0 g/dl. Profound metabolic derangements, including significant weight loss exceeding 
10% of baseline body weight or a body mass index (BMI) below 18, underscore the marked loss of lean body mass. 
These catabolic processes lead to poor functional outcomes and prolonged recovery.

The pathophysiological mechanisms underlying PICS provide a comprehensive explanation for the occurrence of 
CCI, which frequently develops following major trauma, burns, acute pancreatitis, or sepsis. Poor baseline health and 
advanced age (over 65) are significant risk factors for the development of PICS.8–10 However, despite the growing 
recognition of this syndrome, its diagnostic criteria remain unstandardized. The following Table 1 summarizes the 
proposed diagnostic criteria by various authors.

The clinical parameters presented in the table are not direct measures of inflammation, immunosuppression, or protein 
catabolism. However, they can serve as surrogate markers and are easily obtainable in most intensive care unit (ICU) 
settings.

It has been over a decade since the diagnostic criteria for PICS were proposed, yet among the indicators reflecting the 
state of immunosuppression in patients, only the absolute lymphocyte count (ALC) has been consistently utilized.

While measuring absolute lymphocyte count (ALC) is logistically straightforward, cost-effective, and provides 
a direct indicator of adaptive immune function, it does not directly represent innate immune function.15 Lymphopenia 
alone is insufficient to fully reflect the immune status of the body. In addition to ALC, incorporating additional indicators 
can provide a more comprehensive assessment of a patient’s immune status. TNF-α secretion and monocyte HLA-DR 
(mHLA-DR) are also commonly used biomarkers and are suitable for evaluating the immune status of critically ill 
patients.16–18 LPS-induced TNF-a production from peripheral blood cells reflects innate immune system function via 
myeloid cell capacity to respond to an inflammatory stimulus16. Previous studies have found that the dynamic changes in 
mHLA-DR expression within the first week after sepsis are a reliable predictor of mortality in sepsis patients.19 

Measuring the temporal dynamics of mHLA-DR expression holds significant clinical value. In healthy individuals, the 
expression levels of HLA-DR on monocytes and macrophages typically range between 15,000 and 60,000 antibody- 
binding sites (Ab/c) per cell.20,21 The widely accepted lower limit of HLA-DR expression in healthy individuals is 
15,000 Ab/c per cell.22

By assessing the expression levels of HLA-DR on the surface of monocytes and measuring ex vivo TNF-α secretion 
by blood cells, it is possible to further evaluate the immunosuppressive state of PICS patients. This quantification of 
immune dysfunction provides critical guidance for diagnosis and clinical management.

Table 1 Diagnostic Criteria for PICS

Authors ICU Stay 
(Days)

C-reactive 
Protein (mg/L)

Total Lymphocyte 
Count (× 10^9/L)

Serum 
Albumin (g/dL)

Prealbumin 
(mg/dL)

Weight 
Loss (%)

BMI  
(kg/m²)

Gentile et al5 >10 >1.5 <0.8 <3.0 <10 >10 <18
Mira et al11 >14 >0.5 <0.8 <3.0 <10 >10 <18

Hu et al12 >10 >1.5 <0.8 <3.0 <10 >10 <18

Nakamura et al13 >14 >30 <0.8 <3.0 <10 >10 <18
Hesselink et al3 >14 >50 <0.8 <3.0 <10 >10 <18

Varela et al14 ≥10 >1.5 <0.8 <3.0 <10 >10 <18

Notes: After unifying the units, there are some differences in ICU stay, C-reactive protein (CRP) levels, and retinal binding protein levels among these criteria. 
Abbreviations: PICS, persistent inflammation, immunosuppression, and catabolism syndrome; ICU, intensive care unit; CRP, C-reactive protein; BMI, body mass index.
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Methods
Data were acquired from PubMed, MEDLINE, Scopus, and OVID using the following search terms: persistent 
inflammation, immunosuppression, and catabolism syndrome, (persistent inflammation, immunosuppression, and cata-
bolism syndrome) AND (inflammation OR persistent inflammation), (chronic critical illness OR sepsis) AND (inflam-
mation OR persistent inflammation), (persistent inflammation, immunosuppression, and catabolism syndrome OR 
chronic critical illness OR sepsis) AND (persistent inflammation, immunosuppression, and catabolism syndrome OR 
chronic critical illness) AND (therapy). There was no restriction on the type of article and the study design. Articles from 
all years were considered.

Research Progress on Mechanisms Related to Persistent Inflammation in PICS
Both infectious and non-infectious injuries can induce a persistent inflammatory response in PICS patients. Elevated 
inflammatory markers can persist for at least 28 days after sepsis.23 The production and activation of inflammatory 
mediators, the generation of autoimmunity, and alterations in the gut microbiota are significant contributors to this 
persistent inflammation (Figure 1).

Figure 1 Athophysiological mechanisms of persistent inflammation in PICS. This figure illustrates the pathophysiological mechanisms underlying Persistent 
Inflammation, Immunosuppression, and Catabolism Syndrome (PICS) following severe trauma. Key risk factors for PICS include severe trauma, advanced age (≥65 
years), and severe acute pancreatitis (SAP). In patients with PICS, ongoing catabolic processes result in malnutrition, muscle wasting, and immune suppression. 
Concurrently, muscle breakdown products and exogenous pathogens stimulate the release of damage-associated molecular patterns (DAMPs) and pathogen-associated 
molecular patterns (PAMPs), perpetuating a chronic inflammatory state. SAP or trauma can also drive the migration of granulocytes from the bone marrow to sites of 
injury or infection, promoting the expansion of myeloid cells. This immune suppression contributes to recurrent infections and inflammatory responses, leading to 
further depletion of energy and nutrient stores. (Created with BioRender.com). 
Abbreviations: PICS, persistent inflammation, immunosuppression, and catabolism syndrome; MDSCs, myeloid derived suppressor cells; DAMPs, damage-associated 
molecular patterns; PAMPs, pathogen-associated molecular patterns; TNF-α, Tumor Necrosis Factor-alpha; ROS, reactive oxygen species; SAP, Severe Acute Pancreatitis.
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Persistent Proliferation of Myeloid-Derived Suppressor Cells (MDSCs)
In patients with PICS, an emergency myelopoiesis occurs in response to severe injuries such as sepsis or trauma, leading 
to the migration of granulocytes from the bone marrow to the site of injury or infection, which drives the expansion of 
bone marrow cells. Among these, the persistent expansion of MDSCs is considered to play a critical role.4,24 During this 
emergency myelopoiesis, the differentiation of immature bone marrow cells into mature immune cells is blocked, 
resulting in the expansion of these heterogeneous populations of immature bone marrow cells, which possess immuno-
suppressive and inflammatory properties, known as Myeloid-Derived Suppressor Cells (MDSCs).25–28 In animal models 
with chronic inflammation, we frequently observe MDSC infiltration in secondary lymphoid organs and the reticuloen-
dothelial system.29,30 MDSCs can produce inflammatory mediators, nitric oxide (NO), and reactive oxygen species 
(ROS), contributing to persistent inflammation, and are significantly expanded in conditions such as cancer, autoimmune 
diseases, inflammation, and sepsis.24,29 In murine sepsis models, studies have shown that activated MDSCs can produce 
various pro-inflammatory factors, such as TNF-α, RANTES, and MIP-1β, in response to LPS stimulation. Similarly, in 
clinical studies, we have observed that in patients with severe sepsis, the proportion of MDSCs in peripheral blood 
correlates with the degree of inflammatory response, and can predict hospital stay duration and long-term clinical 
outcomes.11,24 Compared to patients whose MDSC levels returned to baseline within two weeks, those with persistent 
MDSC expansion had longer ICU stays, higher in-hospital mortality, and a greater likelihood of being discharged to 
rehabilitation facilities.11 Thus, this persistent expansion of MDSCs appears to be associated with the development of 
inflammation in PICS and may contribute to a deeper understanding of the pathophysiology of chronic critical illness 
(CCI) and PICS.

Recognition and Activation of DAMPs and PAMPs
In patients with PICS, hypercatabolic characteristics are often manifested by increased skeletal muscle atrophy, 
during which pro-inflammatory degradation products are released into the circulation, triggering a series of 
inflammatory responses.31 Muscle biopsies from PICS patients show infiltration by neutrophils and macrophages, 
as well as muscle necrosis, which may contribute to the ongoing inflammation seen in PICS.32 Additionally, 
insufficient energy supply and muscle damage can stimulate the release of damage-associated molecular patterns 
(DAMPs),33 such as mitochondrial DNA and mitochondrial transcription factor A.34 Both hospital-acquired infec-
tions and the reactivation of latent viral infections generate exogenous pathogen-associated molecular patterns 
(PAMPs)35 and cause the continued release of endogenous DAMPs from damaged organs and inflammatory 
cells.36 These molecules are recognized by the same pattern recognition receptors (PRRs) on immune cells, 
perpetuating inflammation. DAMPs bind to PRRs, including toll-like receptors (TLRs) and nucleotide-binding 
oligomerization domain-like receptors (NLRs),36,37 acting as alarmins.38 When the host recognizes these DAMPs, 
PRRs initiate a complex cascade of downstream signaling events that induce inflammatory responses.36 Moreover, 
the persistent hypercatabolic state leads to malnutrition and even cachexia, making PICS patients more susceptible 
to infections. Recurrent infections, in turn, facilitate pathogen invasion and induce the release of PAMPs, further 
triggering inflammatory responses via PRR signaling pathways in the host.33,35

Impaired Intestinal Barrier Function
The gut is a motor of organ system dysfunction.39 The gastrointestinal tract has long been recognized as playing 
a critical role in the pathophysiology of sepsis, acting as a driving factor for multiple organ dysfunction syndrome 
(MODS).40 Impaired gut integrity, dysbiosis of the microbiota, and the release of toxic substances can exacerbate 
systemic inflammation and organ dysfunction.41 Intestinal injury and impaired intestinal barrier function contribute 
to the translocation of bacteria and pathogen-associated molecular patterns (PAMPs), which subsequently induce 
pro-inflammatory pathways and distal organ dysfunction.40,42 These findings indicate that intestinal dysfunction may 
play a key role in the development of persistent inflammation, immunosuppression, and catabolism syndrome 
(PICS). In clinical models of sepsis in mice, alterations in intestinal epithelial tight junctions occur as early as 
1 hour after the onset of sepsis, and the increased intestinal permeability persists for at least 48 hours. Sepsis in 
mice can induce significant functional impairment of the intestinal barrier, leading to hyperpermeability.43–46 This 
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allows luminal contents, including intact microbes and microbial products, to more easily escape their natural 
environment, where they can cause local or distant tissue damage. Recent research has revealed an interorgan 
pathway in mouse models of sepsis, where the gut releases a secreted phospholipase (PLA2G5) into the blood-
stream, resulting in hemolysis and multi-organ failure. This pathway is detrimental to the host. PLA2G5 is 
associated with various cell types, including macrophages, adipocytes, endothelial cells, bronchial epithelial cells, 
and cardiomyocytes, and exhibits multiple local pathogenic effects. Persistent inflammation, immunosuppression, 
and catabolism syndrome (PICS) may disrupt the intestinal epithelial barrier, impair gut integrity, and facilitate the 
release of PLA2G5 into the circulation, converting it into an “intestinal toxin” harmful to the host.47 Simultaneously, 
we have found that intestinal lymph is also associated with the development of PICS-related inflammation, with 
substantial evidence supporting the gut-lymph hypothesis. Studies have shown that lymph collected from animals 
subjected to traumatic hemorrhagic shock, when injected into untreated mice, induces acute lung injury similar in 
toxicity to the injured animals themselves.48 Gut-derived lymph drains directly into the pulmonary circulation via 
the mesenteric lymphatic vessels. Ligation of the mesenteric lymph vessels has been shown to prevent neutrophil- 
driven lung injury and acute respiratory distress syndrome (ARDS) in various critical illness models, including 
burns, trauma, and shock in both small and large animal models.49 It has been confirmed that mesenteric lymph 
typically does not contain bacteria, endotoxins, or cytokines, but rather proteins and lipid factors that signal through 
a Toll-like receptor 4 (TLR4)-dependent pathway in the lungs. This suggests that inflammatory damage in distant 
organs can occur via pattern recognition receptor pathways stimulated by endogenous inflammatory proteins released 
from the gut. Intestinal dysfunction is receiving increasing attention, and further research is needed to clarify its 
exact role in PICS.

Research Advances in the Treatment of Persistent Inflammation in PICS
Reconstruction of Immune Homeostasis
In the early management of sepsis and systemic inflammatory response syndrome (SIRS), therapeutic strategies 
predominantly focused on improving patient outcomes by suppressing the early pro-inflammatory response. 
However, these approaches often failed to deliver the expected results. The introduction of persistent inflammation, 
immunosuppression, and catabolism syndrome (PICS), a condition characterized by profound immunosuppression, 
has provided new insights and directions for research. This has shifted the therapeutic focus toward restoring 
immune system homeostasis, aiming to reduce excessive inflammation in PICS patients and improve the efficacy of 
single-agent anti-inflammatory therapies. Several investigational drugs are currently under study, including leukocyte 
growth factors, such as granulocyte-macrophage colony-stimulating factor (GM-CSF) and granulocyte colony- 
stimulating factor (G-CSF); immune-modulating cytokines, such as interleukin-7 (IL-7), interleukin-15 (IL-15), 
and interferon-gamma (IFN-γ); and inhibitors targeting negative co-stimulatory pathways, such as anti-PD-1/PD- 
L1 antibodies. While some of these therapies showed limited success when used as standalone interventions, many 
have demonstrated partial efficacy and hold potential for improving outcomes when incorporated into more 
comprehensive treatment strategies. Furthermore, recent findings have revealed that the immunosuppressive state 
characteristic of severe trauma or PICS is closely associated with an increased population of regulatory T cells 
(Tregs). These findings offer new perspectives for understanding the mechanisms underlying PICS and provide 
a foundation for the development of novel therapeutic approaches. A detailed summary of these findings is presented 
as follows:

Cytokine-Based Therapies
Granulocyte-macrophage colony-stimulating factor (GM-CSF) and granulocyte colony-stimulating factor (G-CSF) 
have demonstrated the ability to restore monocyte antigen-presenting function, regenerate functional myeloid cell 
populations, enhance immune responses, and reduce the length of ICU stays. In a clinical trial involving immuno-
suppressed pediatric patients with sepsis, GM-CSF was shown to restore tumor necrosis factor (TNF) production in 
lymphocytes, resulting in fewer hospital-acquired infections, reduced duration of mechanical ventilation, and shorter 
hospital stays.50 However, a meta-analysis of 12 randomized controlled trials (RCTs) revealed that while GM-CSF 
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and G-CSF improved infection clearance rates, they did not significantly reduce 28-day mortality compared to 
placebo.51 This lack of significant mortality benefit may be due to the failure of these growth factors to address the 
pathological activation and expansion of myeloid-derived suppressor cells (MDSCs) caused by their stimulation. 
Interferon-gamma (IFN-γ) is a critical cytokine for activating monocytes and macrophages, but its production is 
often diminished during sepsis. Both animal and clinical studies have shown that recombinant IFN-γ therapy can 
enhance the expression and function of monocyte human leukocyte antigen-DR (mHLA-DR).52 Moreover, IFN-γ 
therapy has been reported to reduce infection-related mortality in patients with sepsis-induced immunosuppression.53 

However, its maximal therapeutic benefit appears to be limited to specific subgroups of patients, particularly those 
with significantly reduced monocyte HLA-DR expression. PICS patients, who often exhibit such immune profiles, 
may be an ideal candidate group for this therapy. Interleukin-7 (IL-7) and interleukin-15 (IL-15) are anti-apoptotic 
cytokines that prevent lymphocyte apoptosis and help restore immune function. These cytokines promote T-cell 
survival, proliferation, and receptor diversity, all of which are compromised during sepsis.54–56 In sepsis models of 
sepsis, IL-7 has been shown to significantly increase the number of CD4+ and CD8+ T cells and improve survival 
rates.57,58 A recent randomized clinical trial in critically ill septic patients demonstrated that IL-7 as an immunoad-
juvant therapy reversed sepsis-associated lymphopenia, enhanced T-cell proliferation and activation, and exhibited 
sustained effects lasting up to 28 days after administration59,60 Inoue et al observed that IL-15 treatment reduced 
splenic cell apoptosis in a murine model of polymicrobial sepsis.61 Additionally, IL-15 therapy increased survival 
rates threefold in septic mice when administered postoperatively. Similar improvements in survival rates were 
observed in a murine model of Pseudomonas aeruginosa-induced pneumonia.61 While IL-15 has not yet been 
evaluated in human clinical trials for sepsis, these findings highlight its strong potential as a therapeutic agent for 
managing sepsis-related immunosuppression.

These cytokine-based approaches represent promising strategies for addressing the immune dysregulation character-
istic of PICS and sepsis. However, further clinical studies are required to confirm their efficacy and determine their 
optimal use in broader clinical practice.

Based on Regulatory T Cells (Tregs)
The regulatory T cell (Treg) population, including both CD4+ and CD8+ Tregs, was first described and promoted by 
Sakaguchi et al.62 Current evidence indicates that naturally occurring Tregs play a critical role in suppressing immune 
responses in various diseases.63 This immunoregulatory function is essential for maintaining immune system home-
ostasis. However, in conditions such as sepsis or severe trauma, an abnormal increase in Tregs may exacerbate 
immunosuppression, leading to secondary infections and further weakening of host defense mechanisms. Monneret 
et al were the first to report that sepsis increases the relative proportion of Tregs in the blood of septic patients.64 Recent 
studies have shown that Treg cells can function within established severe inflammation to reverse all known types of 
inflammatory responses and restore long-term immune homeostasis. The enhanced function of Tregs in resolving 
inflammation provides a theoretical foundation for their application in complex immunopathologies. Additionally, 
a single population of Tregs has been shown to persist in the periphery after systemic inflammation is reversed, providing 
lasting protection against autoimmune diseases. These cells remain functionally stable for months without showing signs 
of functional decline, offering a strong theoretical basis for the development of Treg-based adoptive therapies. Enhancing 
Treg stability and function through gene editing or cell therapy approaches represents a promising potential strategy to 
address sepsis-associated immunosuppression.65

Immune Checkpoint Inhibitors
In sepsis and PICS, the expression of programmed death-1 (PD-1) is typically upregulated on CD4+ and CD8+ T cells to 
prevent excessive T-cell activation. However, high levels of PD-1 expression are associated with increased infection rates 
and higher mortality in patients. Immune checkpoint inhibitors targeting the PD-1/PD-L1 axis have demonstrated success 
in cancer immunotherapy and have also shown potential in extending survival in animal models of sepsis. These findings 
highlight their promise as a therapeutic strategy in the management of sepsis and PICS, though further clinical 
investigation is required to validate their efficacy.66,67
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Regulation of Inflammation by Myeloid-Derived Suppressor Cells (MDSCs)
In chronic inflammation models in animal studies, chronic inflammation has been shown to promote the activation 
of myeloid-derived suppressor cells (MDSCs). These activated MDSCs further suppress adaptive immune responses, 
leading to elevated levels of pro-inflammatory cytokines and increased mortality rates.68 We believe that the 
persistent expansion and infiltration of MDSCs is a key factor contributing to the sustained inflammation in 
PICS. The prolonged presence of MDSCs can induce significant pathophysiological changes, leading to chronic 
critical illness (CCI) and subsequent PICS.69,70 Modulating the activation and expansion of MDSCs at specific time 
points, such as during the immunosuppressive phase after day 14 of sepsis, may represent a potential therapeutic 
approach for PICS.71

Direct Regulation
Other strategies to regulate MDSCs may involve genetic modification or inhibition of MDSC byproducts. 
Genetically, microRNAs (miRs), which are small non-coding RNAs, are significant in cell transcription and 
epigenetic modification. These miRs regulate the expression of genes involved in cell development and differentia-
tion, and altered miR expression can affect the expansion of immature myeloid cell populations. At the molecular 
level, miRs function by targeting proteins involved in myeloid differentiation and maturation, making them an easily 
modifiable potential therapeutic target for MDSC regulation.72 In a burn-induced mouse model, administration of 
gemcitabine (a ribonucleotide reductase inhibitor) on day 6 was observed to reduce MDSCs in mice injected with 
a lethal dose of lipopolysaccharide (LPS), which was associated with a reduction in mortality rates.73

Indirect Regulation
MDSC byproducts, such as arginase-1, nitric oxide (NO), or inducible nitric oxide synthase (iNOS) 71 74,51 play a role 
in this process. In mouse cancer models, phosphodiesterase-5 inhibitors, such as sildenafil and tadalafil, were able to 
inhibit NOS, arginase-1, and MDSC function, thereby reducing mortality in mice.73,74

Anti-Inflammatory Agents
Anti-inflammatory and Antioxidant Therapies Targeting IL-1 Receptors as Potential Approaches for Suppressing 
PICS-Associated Hyperinflammation While Preserving Tissue Integrity and Function. IL-1 receptor-targeted anti- 
inflammatory and antioxidant therapies are considered promising approaches to suppress excessive inflammation 
associated with PICS while maintaining tissue integrity and function. Anakinra, an IL-1 receptor antagonist, inhibits 
pro-inflammatory signaling pathways and was initially tested in clinical trials based on the hypothesis that blocking 
the IL-1 receptor could counteract the cytokine storm linked to sepsis, thereby reducing the incidence of multiple 
organ failure and improving survival rates.75 This research demonstrated potential mortality benefits in a subset of 
patients with macrophage activation syndrome (MAS). Subsequently, in a Phase III clinical trial focusing on septic 
patients with MAS characteristics, IL-1 blockade was associated with reduced mortality.76 Patients with PICS 
exhibit persistent inflammation and immunosuppression similar to septic patients with MAS, prompting further 
trials of anakinra in MAS, such as the PROVIDE trial. While anakinra showed promising effects during treatment, 
the trial did not show a statistically significant mortality benefit. This lack of long-term benefit may be attributed to 
premature discontinuation of treatment, as patients remained in a highly inflammatory state. Shorter treatment 
durations may obscure the potential benefits of this therapeutic approach.77 Larger sample size and extended- 
duration trials are currently underway. Blocking IL-6-mediated pathways can also reduce inflammatory responses, 
and using IL-6 receptor antagonists, such as tocilizumab, has improved survival rates in critically ill COVID-19 
patients. Anakinra and tocilizumab, which block IL-1 and IL-6 receptors respectively, are examples of promising 
therapies potentially capable of improving survival in adult sepsis. While IL-6 receptor antagonists can improve 
survival and organ function in critically ill COVID-19 patients78, IL-6 receptor blockade may carry risks, such as 
increased susceptibility to opportunistic infections and potential neurotoxicity, which pose potential hazards in sepsis 
treatment and may even result in adverse outcomes.79,80 IL-6 is a core cytokine with diverse biological effects. 
Beyond its role in driving inflammation, fever, cytokine storms, and tumorigenesis, IL-6 is critical for regulating 
metabolism and hematopoiesis, as well as both innate and adaptive immunity. In the liver, IL-6 contributes to tissue 
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regeneration, lipid homeostasis, and the induction of the acute phase response. Additionally, it is essential for the 
proliferation of intestinal epithelium.81 Tocilizumab, by blocking IL-6 receptor (IL-6R) signaling, inhibits the 
protective and reparative functions mediated by IL-6 through classical signaling pathways. In patients receiving 
tocilizumab therapy, an increased incidence of bacterial infections has been reported, along with elevated serum 
transaminase levels, lipid abnormalities, pancreatitis, and intestinal perforation, particularly in those concurrently 
treated with corticosteroids.82,83

Antioxidant and Catabolic Therapies
Muscle biopsies from PICS patients reveal neutrophil and macrophage infiltration as well as muscle necrosis.32 

Preventing this necroptosis may represent a therapeutic approach for addressing the persistent inflammation in PICS. 
Muscle atrophy caused by critical illness primarily results from increased muscle protein degradation and decreased 
protein synthesis. Early exercise therapy (ET) and rehabilitation may play a preventive and therapeutic role in such 
patients. ET encompasses passive activities (eg, range-of-motion exercises, neuromuscular electrical stimulation), 
assisted activities (eg, upper and lower limb-assisted movements), and active activities (eg, respiratory muscle 
training, standing and walking, or functional activities). ET not only counteracts the physiological consequences of 
critical illness on physical function and recovery but also exerts positive effects on cognitive and psychological 
functioning.84 Mechanistically, early exercise therapy promotes muscle regeneration by activating muscle protein 
synthesis pathways, such as the mTOR signaling pathway, and inhibiting protein degradation pathways, such as the 
ubiquitin-proteasome system.85 Additionally, exercise stimulates satellite cell activity, which is essential for muscle 
regeneration. Furthermore, exercise has been shown to reduce inflammation,86 thereby effectively modulating 
immune function, which is particularly significant for patients experiencing chronic inflammatory states.87 Receptor- 
interacting protein kinase 1 (RIPK1), RIPK3, and mixed-lineage kinase domain-like protein (MLKL) are key 
components of the necroptosis signaling pathway. Potential small-molecule inhibitors targeting these pathways 
have been comprehensively reviewed in recent studies.88 Inhibiting these targets could help to further suppress 
the progression of inflammation.

Additionally, certain anti-catabolic agents can alleviate the hypercatabolic state in PICS patients and suppress 
further inflammation. Studies have shown that insulin-like growth factor-1 (IGF-1) can mitigate the hypercatabolic 
state associated with severe burns.89 Exogenous testosterone supplementation promotes protein synthesis, reduces 
protein degradation, and inhibits autophagy through androgen signaling pathways, thereby improving muscle 
catabolism in patients with severe burns.90 Mitochondria-targeted antioxidants containing ubiquinone or vitamin 
E have been employed to counteract excessive reactive oxygen species (ROS) production caused by mitochondrial 
dysfunction.91 Among these, mitochondria-targeted ubiquinone (MitQ) has been shown to reduce mitochondrial 
damage, organ dysfunction, and severe inflammatory responses during the treatment of sepsis in animal models.92 

Melatonin, known for its anti-inflammatory properties, acts as a scavenger of reactive oxygen and nitrogen species. 
In animal models of sepsis, melatonin has been shown to inhibit mitochondrial damage and stimulate ATP 
production.93–95 Another therapeutic strategy involves increasing mitochondrial biogenesis through the activation 
of peroxisome proliferator-activated receptor gamma (PPARγ) agonists, such as pioglitazone and rosiglitazone, or 
through sirtuin-activating compounds like resveratrol.93 A systematic review indicated that pioglitazone administra-
tion can reduce intramuscular inflammation and increase markers of ATP biosynthesis within muscle tissue.96 In 
summary, anabolic and anti-catabolic agents are promising in attenuating the hypercatabolic status in patients with 
PICS, and further studies on this subject are necessary.

Gastrointestinal Regulation of Inflammation
PICS patients often suffer from varying degrees of gastrointestinal dysfunction, leading to reduced nutrient absorption.36 

Additionally, alterations in both the structure and function of the gut microbiota have been observed in PICS patients, 
impacting the host’s metabolic processes.37 Malnutrition impairs immune cell metabolism and suppresses the host 
immune response.38 In this context, dysfunction in the gut microenvironment may serve as a critical initial event 
contributing to the vicious cycle of PICS. Over the past few decades, there has been growing interest in modifying 
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the gut microbiome through fecal microbiota transplantation (FMT), probiotics, or prebiotics to improve outcomes for 
critically ill patients. Probiotics, thus far the most extensively researched microbiome-based therapy, have shown promise 
in preventing sepsis. Studies have found that probiotics can help reduce ventilator-associated pneumonia, diarrhea, and 
infections in critically ill patients requiring mechanical ventilation.97 Previous research on probiotic interventions has 
primarily focused on Lactobacillus and Bifidobacterium genera,98,99 with other probiotics showing potential in animal 
studies and preclinical research. Recently, Akkermansia muciniphila (Akk), known as a key regulator of chronic systemic 
inflammation, has gained attention. Both live and pasteurized Akk have been shown to modulate the gut microbiota, 
reduce serum FD-4 levels, normalize gut mucus thickness, increase goblet cell numbers, and upregulate tight junction 
protein (claudin-1) expression, thereby enhancing gut mucosal barrier function, restoring gut microecology, and alleviat-
ing PICS-related inflammation and multi-organ dysfunction.100,101 In addition, the nutrition support mentioned above and 
fecal microbiota transplantation102 are also important means of promoting the recovery of gut function in patients with 
PICS.new probiotics such as Akkermansia muciniphila have shown potential as therapeutic agents for the treatment of 
Persistent inflammation-immunosuppression-catabolism syndrome.100

Nutritional Support
Nutritional support has become a routine and essential intervention in the treatment of critical illnesses. Appropriate nutritional 
support has been shown to improve persistent inflammation and gastrointestinal function in patients with post-intensive care 
syndrome (PICS). The 2016 guidelines from the Society of Critical Care Medicine (SCCM) recommend that early enteral 
nutrition (EEN), initiated within 48 hours of ICU admission, can benefit critically ill patients by effectively improving nutritional 
status, alleviating inflammatory responses, preventing bacterial translocation, and mitigating gastrointestinal dysfunction.103,104 

However, recommendations regarding protein intake in ICU patients remain inconsistent. The Protein Summit (2017) suggests 
that 1.2–2.5 g/kg/day of protein supplementation can preserve muscle mass and reduce mortality in patients with chronic critical 
illness (CCI).105 In contrast, the European Society for Clinical Nutrition and Metabolism (ESPEN, 2019) recommends at least 1.3 
g/kg/day of protein for critically ill patients.106 Despite these differences, both guidelines agree that providing more than 1.3 g/kg 
of protein is a key factor in CCI care, as it improves long-term outcomes and offers benefits for PICS patients. In addition, the 
selection of an appropriate nutritional strategy is crucial. In recent years, immunonutrition (IED) has become a recommended 
intervention for many surgical patients to enhance their prognosis.107 IED, which consists of arginine, glutamine, omega-3 fatty 
acids, nucleotides, fish oil, and vitamins, has been shown to prevent infections, enhance adaptive immunity, and reduce ICU 
length of stay.103 In PICS, arginine depletion may occur due to the expression of arginase-1 induced by the expansion of myeloid- 
derived suppressor cells (MDSCs). Since lymphocytes cannot proliferate in the absence of arginine, this can lead to immuno-
suppression and increased infection risk during PICS.108 Furthermore, omega-3 fatty acids and specialized pro-resolving 
mediators (SPMs) offer promising therapeutic potential for PICS patients. Omega-3 fatty acids have been reported to regulate 
inflammatory responses, minimize systemic inflammation, and inhibit oxidative damage.109 Omega-3 fatty acids are metabolized 
within the body to produce resolvins, protectins, and maresins, which belong to the family of specialized pro-resolving mediators 
(SPMs). These mediators facilitate the resolution of inflammation and promote tissue and organ recovery, potentially mitigating 
the progression of PICS.110–112

Conclusion
Persistent inflammation, immunosuppression, and catabolism syndrome (PICS) is a significant subtype of chronic critical 
illness (CCI) and has posed a substantial challenge in the ICU since it was first identified. This review highlights the 
sources of persistent inflammation in PICS and suggests that proliferation of bone marrow-derived cells, 
a hypermetabolic state, and gut dysfunction may serve as key underlying mechanisms of inflammation. Targeted 
interventions aimed at these pathways hold promise for improving patient outcomes. However, research indicates that 
inappropriate timing of interventions to block inflammatory mediators may inadvertently stimulate or inhibit other related 
signaling pathways, potentially leading to adverse effects. Thus, the inflammatory factors in PICS require further 
investigation. In addition, multimodal therapies—including immunomodulators, anti-inflammatory drugs, anabolic and 
anti-catabolic agents, antioxidants, microbiome modulators, and nutritional support—are essential and may provide 
benefit to PICS patients (Figure 2).
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Discussion and Outlook
PICS typically occurs in ICU patients following severe trauma or infection, characterized by an initial strong inflam-
matory and immunosuppressive response, which subsequently transitions into persistent organ damage, sustained 

Figure 2 Summary diagram of potential anti-inflammatory treatments for Persistent Inflammation, Immunosuppression, and Catabolism Syndrome (PICS). This diagram 
illustrates a multifaceted approach to anti-inflammatory therapy for PICS, incorporating immunomodulation, nutritional support (amino acids, Omega-3), gastrointestinal 
regulation (probiotics), antioxidants, and MDSC inhibitors (microRNA, sildenafil, IL-1R/IL-6R antagonists). It also features cell death pathway inhibitors (RIPK1, RIPK3, 
MLKL) aimed at reducing inflammation. Additionally, the therapy includes immunomodulatory cytokines (GM-CSF, IFN-γ, IL-7, IL-15), cell therapy and gene editing related to 
the regulatory T Cells, and early exercise therapy as preventative measures. Collectively, these strategies represent comprehensive interventions at the nutritional, immune, 
and molecular levels to enhance anti-inflammatory effects. 
Abbreviations: NOS, nitric oxide synthase; RIPK1, Receptor-interacting protein kinase 1; RIPK3, Receptor-interacting protein kinase 3; MLKL, mixed lineage kinase 
domain-like protein; IL-1R, interleukin-1 receptor; IL-6R, interleukin-6 receptor; MDSC, myeloid-derived sup-pressor cell; omega-3FA, omega-3 fatty acids; GM-CSF, 
Granulocyte-macrophage colony-stimulating factor; IFN-γ, Interferon-gamma; IL-7, Interleukin-7; IL-15, Interleukin-15; MicroRNA, MicroRNAs; Sildenafil, 
A phosphodiesterase-5 inhibitor; IGF-1, Insulin-like growth factor-1; PPARγ, Peroxisome proliferator-activated receptor gamma; MitQ, Mitochondria-targeted ubiquinone; 
Anti-PD-1, Anti-programmed cell death protein 1; Anti-PD-L1, Anti-programmed cell death ligand 1.
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inflammation, and immune suppression, along with continuous muscle loss and poor wound healing. This leads to 
a reduced quality of life, often requiring long-term care post-discharge, and may ultimately result in chronic wasting and 
death. The importance and value of defining PICS lie in its provision of an overarching mechanism to explain prolonged 
low-grade inflammation and adaptive immune suppression, thereby offering a viable direction for clinical treatment. The 
inflammatory sources in PICS comprise a complex process, including the expansion of myeloid-derived suppressor cells 
(MDSCs), persistent pro-inflammatory factor release due to DAMP and PAMP recognition and activation, immunosup-
pression and gastrointestinal dysfunction, with the interactions between these mechanisms still lacking systematic 
investigation. The timing of immunotherapeutic interventions for patients with PICS (persistent inflammation, immuno-
suppression, and catabolism syndrome) remains a critical but under-researched area. In the early stages of severe trauma 
or sepsis, therapeutic interventions are often initiated hours after the rapid activation of innate immune responses, the 
release of early inflammatory mediators, and the initiation of the inflammatory cascade. This delay often renders single- 
agent anti-inflammatory therapies ineffective.113 A meta-analysis conducted by Eichacker demonstrated a positive 
correlation between the efficacy of anti-TNF-α therapy and mortality in patients with severe sepsis.114 While anti-TNF 
-α therapy showed some benefits in the most critically ill patients, it appeared to be harmful in patients with milder 
conditions.115 These findings suggest that treatment strategies for PICS patients must take into account the severity of the 
disease and the phase-specific characteristics of the inflammatory response. Single-targeted anti-inflammatory therapies 
may fail to meet the complex pathophysiological demands of PICS, as such treatments could further alter the patient’s 
immune state, leading to unpredictable therapeutic outcomes. This phenomenon is primarily due to the unclear under-
standing of the intrinsic link between persistent inflammation and immunosuppression in PICS. The inflammatory 
response represents the immune system’s reaction to infections or injuries. Without the regulation of immune cells and 
immune molecules, an inflammatory response cannot occur. The hallmark of PICS is the coexistence of immunosuppres-
sion and persistent inflammation. In clinical practice, peripheral blood markers are most commonly used to assess 
immunosuppression due to their convenience, reliability, and ease of repeated sampling. However, relying solely on 
peripheral blood data may not fully reflect the systemic immune status. Blood merely serves as a “conduit” for immune 
cells, whereas many immune responses take place in tissues or organs such as lymph nodes, the spleen, bone marrow, and 
gut-associated lymphoid tissue. Therefore, relying exclusively on blood markers risks overlooking the dynamic changes 
within the local immune microenvironment.116 Complementing peripheral blood assessments with evaluations of 
immune status in other tissues and sites is critical for a more comprehensive understanding of immune function. This 
may include histological analysis, immunohistochemistry, and other approaches. Elucidating the relationship between 
immunosuppression and inflammation in PICS is essential for the implementation of targeted immunomodulatory 
therapies. Immunosuppression is likely a major cause of recurrent infections and persistent inflammation. Restoring 
immune homeostasis may represent a key therapeutic strategy for PICS. Meanwhile, anti-inflammatory treatments should 
focus on restoring organ function to reduce or prevent the release of damage-associated molecular patterns (DAMPs), 
thereby alleviating inflammation. When immunotherapy is applied in this context, its impact on the inflammatory 
response must be carefully considered. Ultimately, precise and personalized therapeutic strategies will be critical. The 
absence of clearly defined diagnostic criteria for PICS underscores the complexities of its pathophysiology and the 
challenges it presents in treatment. Detection of biological markers related to inflammation, immune suppression, and 
metabolism such as glucagon-like peptide (GLP-1)117 may assist clinicians in identifying PICS patients and potentially 
preventing its onset, although further research is required to identify specific, valuable biomarkers. There are some 
potential therapeutic approaches for PICS, including probiotics, anakinra, and melatonin, though their clinical efficacy 
and long-term impact require further investigation. Additionally, the IL-6 inhibitor tocilizumab is still in the early stages 
of exploration. Future research should focus on further understanding the inflammatory characteristics of PICS, building 
on current knowledge to establish effective and standardized interventions aimed at improving long-term outcomes.
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