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Abstract Metagenomic project design has relied variously upon speculation, semi-
empirical and ad hoc heuristic models, and elementary extensions of single-sample
Lander–Waterman expectation theory, all of which are demonstrably inadequate. Here,
we propose an approach based upon a generalization of Stevens’ Theorem for ran-
domly covering a domain. We extend this result to account for the presence of multiple
species, from which are derived useful probabilities for fully recovering a particular
target microbe of interest and for average contig length. These show improved speci-
ficities compared to older measures and recommend deeper data generation than the
levels chosen by some early studies, supporting the view that poor assemblies were due
at least somewhat to insufficient data. We assess predictions empirically by generating
roughly 4.5 Gb of sequence from a twelve member bacterial community, comparing
coverage for two particular members, Selenomonas artemidis and Enterococcus fae-
cium, which are the least (∼3 %) and most (∼12 %) abundant species, respectively.
Agreement is reasonable, with differences likely attributable to coverage biases. We
show that, in some cases, bias is simple in the sense that a small reduction in read
length to simulate less efficient covering brings data and theory into essentially com-
plete accord. Finally, we describe two applications of the theory. One plots coverage
probability over the relevant parameter space, constructing essentially a “metagenomic
design map” to enable straightforward analysis and design of future projects. The other
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gives an overview of the data requirements for various types of sequencing milestones,
including a desired number of contact reads and contig length, for detection of a rare
viral species.
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1 Introduction

Microbes are both ubiquitous and singularly important to almost every aspect of life
as we know it. There is no shortage of remarkable statistics that might be quoted, for
example symbiont microbial cells outnumber human somatic cells by about 10 fold
in most individuals, microbes represent about half the world’s biomass, and most of
the probably more than 10 million bacterial species remain to be discovered. Such
numbers contrast starkly with our relatively limited understanding of these organisms,
which stems largely from difficulties in isolating and culturing most species in a labo-
ratory setting. However, technology has lately reached the point where comprehensive
metagenomic approaches are now being used. Here, whole-genome shotgun (WGS)
sequencing is applied directly to the collective DNA of a community of organisms.
A number of metagenomes have already been examined in this way (Breitbart et al.
2002; Tyson et al. 2004; Venter et al. 2004; Tringe et al. 2005; Gill et al. 2006; Culley
et al. 2006; Angly et al. 2006; Martín et al. 2006; Rusch et al. 2007; Schlüter et al.
2008; Qin et al. 2010; Hess et al. 2011).

Project design remains a significant issue facing metagenomic research. In particu-
lar, it is difficult to know how much sequence data should be generated for any partic-
ular community. Early projects in the Sanger-era of sequencing often made pragmatic
choices based simply on speculation (Handelsman et al. 1998) or budgetary constraints
(Kunin et al. 2008). Sequencing was relatively expensive, limiting the amount of data.
This meant that while simple metagenomic communities could still be mostly recon-
structed (Tyson et al. 2004; Culley et al. 2006), large tracts within highly complex
communities would necessarily be left uncharted (Venter et al. 2004; Tringe et al.
2005).

The commonality across all sequencing scenarios is that project success depends
strongly on the notion of covering (Wendl and Wilson 2008, 2009a,b), i.e. the process
that randomly places one-dimensional DNA segments onto larger genomic DNA tar-
gets. Venter et al. (2004) summarize the coverage idiosyncrasies of metagenomic
sequencing in terms of the differences in both genome size among the member species
and among their relative abundances. In essence, if abundance levels are roughly uni-
form, any single sequencing read is more likely to have come from a large genome
rather than a small one. If instead genome sizes are all similar, this read probably
represents an abundant species of individuals rather than a rare one. The sampling
dynamics of an actual metagenomic project are a community-specific mixture of these
two phenomena and the obvious danger is one of missing the proverbial “needle in the
haystack” (Kowalchuk et al. 2007). That is, data may not adequately capture a member
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Fig. 1 Rank abundance curves are shown for the 12-member test microbial community used here for
comparison and for the viral community analyzed by Breitbart et al. (2003). The latter was estimated to
have around 1,200 species and to be distributed according to the power law y = 0.063x−0.831, assuming
a 50 kb average genome size

that plays some particularly vital internal role within the community and/or has some
otherwise important biomedical relevance outside the community. The serendipitous
discovery of the proteorhodopsins is a good example (Béjà et al. 2000).

Abundance biases are especially important in metagenomic projects because they
can be quite extreme. Consider the viral community studied by Breitbart et al. (2003),
which was estimated to contain around 1200 species. Its top 10 members, numbering
about 0.8 % of those species, account for about 22 % of the community biomass (Fig. 1).
Sequence representation will accrue rapidly for them, while their rare counterparts
having abundances only on the order of 10−4 will be much more difficult to recover.

The economics of DNA sequencing have improved dramatically with the com-
mercialization of so-called next-generation technologies (Harismendy et al. 2009),
suggesting that comprehensive studies of some of the more complex metagenomes
are now becoming feasible. It is likely that the amounts of data that will have to be
generated in such projects will be larger than what is now typical. For example, the
remarkable figure of 10 Tb (more than 3,000 human genomes) has been floated for a
single instance of a soil metagenome (Riesenfeld et al. 2004).

With a few exceptions, the current de facto standard methods for making such
calculations rely on an elementary extension of traditional single-genome coverage
theory (Venter et al. 2004; Tringe et al. 2005; Allen and Banfield 2005; Kunin et al.
2008). Specifically, a species is taken to have a sequence redundancy of ρ = α R L/γ ,
i.e. the respective product of its abundance, total number of project reads and read
length, all divided by the species’ sequence-accessible genome size. (Mathematical
notation is listed in Table 1). This formula is simply the expected redundancy of
data that will represent the species. Substitution into the classical coverage equation
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Table 1 Mathematical notation

Variable Meaning

α Abundance of a species within metagenomic community

γ Size in nucleotides of sequenceable genome

L Average length in nucleotides of a sequence read

R Total number of sequenced reads for a community

μ Expected number of reads for target species: μ = αR

ϕ Probability of a position being covered: often L/γ

ρ Avg. number of reads spanning a position (redundancy): ρ = μϕ

η Steven’s series limiter: the smaller of R and int(1/ϕ)

B Number of sequence gaps in target species (random variable)

T Number of reads hitting target species (random variable)

λ Contig size in target species (random variable)

C Coverage: amount of genome covered by reads (random variable)

V Vacancy: complement of coverage (random variable)

(Clarke and Carbon 1976) then yields the expected number of covered bases (Venter
et al. 2004; Wooley et al. 2010) as E〈C〉 = γ (1 − e−ρ). Lander–Waterman theory
(Lander and Waterman 1988) can be further combined to obtain the expected contig
length (Rusch et al. 2007) for this species as E〈λ〉 = L (eρ − 1)/ρ. Other results are
similarly derived, for example for multiple-read coverage (Chen and Pachter 2005;
Tringe et al. 2005).

While such formulae are attractive because of their simplicity, the salient question
is whether they are sufficient for project design. Consider the calculation by Rusch
et al. (2007). They predicted that 6-fold Sanger redundancy for a 10 Mb genome
at 1 % abundance should give an average contig length of about E〈λ〉 = 50 kb.
Now consider another hypothetical species in the same project whose abundance
and genome size are only 0.1 % and 1 Mb, respectively, whereby ρ remains at
6-fold. The chance that a randomly-selected read represents this second species has
now been reduced by a factor of 100, but the model still predicts E〈λ〉 = 50 kb.
Rusch et al. actually reported that most of their data falling outside the dominant
species remained “strikingly fragmented”, with the majority not assembling at all.
This scenario illustrates a subtle property of expectation-based formulae: measures
such as coverage necessarily collapse onto “universal” curves that only depend upon
redundancy. In a sense, expectation theory lacks the resolution to say something about
specific species, as one might be able to do with a probability model. For instance, the
probabilities of the two above species being fully covered are certainly different.

We briefly mention a few other results which, however more sophisticated, are still
unsuited to this particular design problem. There is an appreciable body of work in
the statistics literature regarding abundance estimation and these methods are readily
applied to coverage-type calculations, for example as recently described by Hooper
et al. (2009). They propose an expected coverage whose modeling parameters rely on
fitting data to a user-chosen kernel function. Reported shortcomings include iterative
tuning of parameters, limitations of kernel fidelity, and the need to discard certain
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portions of the data to preserve the model’s integrity. Perhaps even more important
is that calculations can only be made once the project is already underway, having
generated enough data for parameter-fitting. The model described by Breitbart et al.
(2002) has similar technical issues and does not account for variation in genome size.
Alternatively, Wendl (2008) developed the density function for the project-wide num-
ber of sequence gaps, but that equation also does not adequately consider the sampling
biases mentioned above. Stanhope proposed an approximation model (Stanhope 2010)
based on the idealized “occupancy” concept of covering (Wendl 2006b). That approach
either takes all species at uniform genome size and abundance, or requires specu-
lative distributions for these unknowns. Finally, there are scattered rules-of-thumb
(Dutilh et al. 2009; Riesenfeld et al. 2004) whose origins are not entirely clear and
upon which we also comment further below (Sect. 3.1).

These observations collectively point to the need for improved theoretical tools to
quantify the metagenomic sequencing process. We propose several such results here.
Most are corollaries of a generalization of Stevens’ theorem (Stevens 1939; Fisher
1940; Solomon 1978; Wendl and Waterston 2002), suitably extended to account for the
distribution aspect of multiple species and its ensuing “abundance bias”. Like all of the
methods above, this work does not strictly consider effects related to particular DNA
sequence or instrumentation biases, within-species variation, or choices regarding
computational processing. Consequently, we view it merely as another installment
within a broader research program of metagenomic sequencing theory.

2 Results

The basic premise is to develop useful and rigorous quantitative tools for designing
metagenomic projects based on the community members and the level at which one
desires to characterize them. The goal might range anywhere from light sampling
simply to estimate community membership, to reconstructing the dominant species,
to fully recovering an extremely rare member within a very complex constituency.
Consequently, we will speak of the target species as the basis of design. Species that
are more readily accessible to sequencing than the target will almost certainly be even
better characterized, while the converse is true for less accessible members. This is an
inherent property of all random metagenomic sequencing.

The concept of a “target species” is implicit in expectation models and enables quan-
titative analysis without having to first speculate closures for the invariably unknown
properties of the larger metagenomic community. This aspect is enormously practical.
The closure problem is necessarily present for semi-empirical models (Hooper et al.
2009; Breitbart et al. 2002), but our theory does not depend on closure estimates.

2.1 Generalization of Stevens’ theorem

The problem of covering a one-dimensional domain with finite segments had been
examined for some time before being solved successfully by W. L. Stevens in 1939
using a form of the well-known probability concept of inclusion–exclusion and a clever
geometric observation (Stevens 1939; Fisher 1940; Solomon 1978). We generalize this
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result to the scenario of covering one particular domain from among a population of
distinct domains. The abstraction is clearly applicable to metagenomic sequencing.

Consider a case in which R reads of length L have been processed and define
the Bernoulli probability, α, as the chance that a randomly selected read represents
the target species. This parameter, often understood as the “abundance”, is project-
dependent. Also, let ϕ represent the probability that this read covers a particular base
position within the target species’ genome. It may simply be L/γ , or it might be
assigned other values to account for overlap detection (Lander and Waterman 1988)
and/or the effects of bias (see below). We can now state the following salient result.

Theorem 1 (Gap Census) If B is a random variable denoting the number of sequence
gaps within the target species’ composite genome, then the probability of k gaps is

P(B = k) =
(

R

k

) η∑
β=k

(
R − k

β − k

)
(−1)β−k αβ (1 − βϕ)β−1 (1 − βϕα)R−β

for 0 < ϕ < 1 and 0 < α ≤ 1, and where η is the smaller of R and int(1/ϕ). The
latter quantity represents the maximum number of reads that can be placed without
overlap on the target and arises from Stevens’ geometric observation (Stevens 1939;
Solomon 1978). Stevens’ original theorem is readily shown to be a special case for
α = 1.

This theorem can be applied either directly, or in various derivative ways to obtain
rigorous probabilistic quantifiers for metagenomic sequencing. We discuss two of the
more useful implementations in Sect. 2.2: the probability of complete target species
coverage and the probability that the average size of contiguous regions of coverage
in the target exceeds some threshold. (There are other possibilities, though of lesser
practical interest; Roach 1995). Finally, we give another handy formula for community
sampling, not related to Theorem 1, but derivable rather from elementary considera-
tions.

2.2 Implementations of Theorem 1 for metagenomic sequencing

As alluded to in the above discussion of expectation models, let C and λ be the
respective random variables representing the number of base positions covered in the
target species’ composite genome and the length of a contiguously covered segment,
i.e. a “contig”.

Corollary 1 (Complete Coverage) Complete coverage of the target species, C = γ ,
also occurs by virtue of all gaps being filled, i.e. B = 0. The probability of this event
is

P(B = 0) =
η∑

β=0

(
R

β

)
(−α)β (1 − βϕ)β−1 (1 − βϕα)R−β .
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This is a high standard of coverage. More relaxed conditions based on contig size
are also relevant (Roach 1995; Stanhope 2010). Here, we exploit the fact that C → γ

much more rapidly than E〈λ〉 → γ . That is, coverage increases appreciably faster
than contig size, with a large fraction of the process existing in a state of high or even
nearly complete coverage, yet still having numerous small gaps (Roach et al. 1995).
This phenomenon is nicely illustrated by considering the last few events of the process,
where the remaining tiny gaps are closed just before attaining complete coverage. It is
only here that E〈λ〉 grows rapidly as . . . , γ /3, γ /2, γ . The effect has been confirmed
empirically from the earliest sequencing projects (Fleischmann et al. 1995) and holds
for metagenomic projects, as well (Martín et al. 2006).

Corollary 2 (Average Contig Size) If coverage is almost complete, the average contig
length is, to a very good approximation, a function only of the target size, γ , and the
(random) number of gaps, B = k, and is likewise itself then a random variable. The
tail probability of a value at least γ /k is

P
(

E〈λ〉 ≥ γ

k

)
≈

k∑
j=0

P(B = j),

where k 	= 0 and where the coverage provision can be checked in any suitable way.
For example, if E〈V 〉 is the largest allowable fractional vacancy for the target, say
1%, then a simple corollary of expectation theory, ρ ≥ ln(1/E〈V 〉), might be used.
This result can also be generalized by replacing γ with E〈C〉 (see above), though at
an obvious additional degree of approximation.

2.3 Formula for community sampling

Sequencing can also be used in a diagnostic capacity to assess what species are present
in a community (Eisen 2007; Kunin et al. 2008). In the simplest case, coverage structure
and contiguity are subordinated by raw counts of reads, especially if their lengths are
sufficient to identify species merely by alignment against reference sequences.

Theorem 2 (Read Count) Let T be the random variable representing the number
of reads hitting the target species. Its distribution is Poissonian, P(T = k) =
μk exp(−μ)/k!, with a rate μ = αR.

2.4 Numerical evaluation

Theorem 1 and its corollaries have a number of interesting mathematical properties,
the most relevant here of which is the convergence rate. Evaluation requires sum-
ming terms that are themselves products of progressively larger and smaller numbers.
Consequently, round-off error overwhelms slowly converging series unless extended
precision arithmetic is employed. While such is required for much of the parameter
space, standard precision can be used for Corollary 1 if the heuristic

ϕ ≥ ln(α R/ζo)

α R
(1)
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is satisfied, where ζo is a constant having an empirically determined value on the order
of 10. The accessible range is then roughly P(B = 0) > 10−3, which includes most
scenarios of practical interest.

2.5 Parameter estimation

The formulae above can be used either parametrically or applied for specific species.
In the former role, calculations will reveal the attributes of the most extreme mem-
ber, i.e. its size and abundance, that could be captured for a given P-value and
amount of data. In the latter, specific estimates of ϕ and α can be used to deter-
mine the required data for a given probability or vice versa. Estimates for ϕ are
straightforward, for example one can take advantage of the fact that bacteria largely
fall within 1 ≤ γ ≤ 5 Mb if setting ϕ = L/γ , as discussed above. Con-
versely, α can be approximated in various ways, including 16S rRNA screening
(Liles et al. 2003; Tyson et al. 2004), or methods that utilize light shotgun data, such
as protein-coding markers (von Mering et al. 2007), single-copy single-marker com-
plements to 16S, e.g. rpoB (Vos et al. 2011), fitting (Hooper et al. 2009), or probabilistic
modeling (Xia et al. 2011).

3 Discussion

3.1 Coverage probability as a design variable

We already mentioned above some of the shortcomings of using an expectation-based
quantity such as E〈C〉 as a measure for the metagenomic design problem. While
Stanhope (2010) is similarly critical, several additional factors support replacement
with a probability-based metric, such as P(B = 0) in Corollary 1.

The more obvious issues are based on the ensemble nature of expectations them-
selves. That is, they only characterize trials collectively and not necessarily any single
one taken alone. In most instances, variances will not be terribly large compared to
respective expectations. For example, the expected number of reads hitting the target
species is αR (Theorem 2) with a standard deviation of

√
αR (Feller 1968) and the

deviation in coverage E〈C〉 is approximately
√

γ exp(−ρ) (Wendl 2006a). Conse-
quently, this aspect is the source of some uncertainty, but not its main contributor.

The much more substantive concern is actually based on the sensitivity of predic-
tions to small changes in the measure itself. Let us first be clear about the differences in
what these measures mean. E〈C〉 represents the desired percentage of bases recovered
from the target species and its value is typically chosen as something approaching,
but not actually equal to 100 %. (That case is mathematically undefined). Conversely,
P(B = 0) is the actual probability of 100 % coverage and would be picked in roughly
the same context as statistical power, e.g. 90 %.

Figure 2 shows the characteristics of both measures for a 1 Mb target species
using 100 bp reads. Here, the expectation results were plotted according to αR =
− ln(1 − E〈C〉)/ϕ, which follows directly from the traditional coverage equation.
E〈C〉 gives an extremely wide range of predictions for the required data. The physical
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Fig. 2 Abundance versus required number of project reads for a 1 Mb target species using 100 bp reads as
specified by various theories. Here, E〈C〉 is plotted in its fractional context, i.e. as the quotient of covered
bases to the genome size. The rule-of-thumb given by Dutilh et al. (2009) is plotted for an enrichment factor
of 15. The rule described by Riesenfeld et al. (2004) is plotted for the metagenomic redundancy of 1,000,
which leads to their sometime-quoted figure of 10 Tb for a soil metagenome

spread of curves is much greater, c.f. the distances between constant-value lines of
0.9 and 0.99 for P(B = 0) and E〈C〉, which is basically a consequence of the latter’s
long asymptotic tail (Wendl and Barbazuk 2005). This is further exacerbated by the
somewhat subjective nature of choosing values of the measure itself. Consider that
picking E〈C〉 “close to 100 %” usually means anything between roughly 99 % (Bouck
et al. 1998) and 99.996 % (Green 2001) and these bounds translate to over a two-fold
difference in the required data! In short, E〈C〉 is inherently ambiguous because of
subjective thresholds chosen from within an extremely sensitive sub-domain of this
function. Conversely, there is very little ambiguity in using P(B = 0); it is chosen
within a fairly narrow range for which the lines are very closely spaced.

A final argument, compelling more from an empirical standpoint, is that E〈C〉
uniformly specifies fewer required data than P(B = 0). Most projects that relied on
the former measure reported significant assembly and contiguity problems (Venter
et al. 2004; Tringe et al. 2005; Rusch et al. 2007), which seem to be at least partial
by-products of having insufficient data. It is also consistent with a more general opin-
ion that current levels of redundancy are inadequate for resolving lower-abundance
organisms (Venter et al. 2004; Allen and Banfield 2005; Gill et al. 2006; Rusch et al.
2007; Nicholls 2007; Kunin et al. 2008; Schlüter et al. 2008; Wooley et al. 2010).

Figure 2 also shows two rules-of-thumb gleaned from the literature: the product of
target species enrichment and redundancy should be at least 20 (Dutilh et al. 2009)
and the metagenome redundancy should be around 1000 (Riesenfeld et al. 2004). The
former is plotted for an enrichment factor of 15, again showing clearly insufficient
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data. This factor is largely arbitrary, being adjustable down to values that move the
curve well past those of E〈C〉 and P(B = 0). Consequently, this rule appears to be
entirely too vague and unsupported to be of any practical use. The latter rule is the
source of the 10 Tb soil metagenome prediction quoted above and apparently results
from the mistaken presumption that the target species redundancy is the product of
the species abundance and the redundancy of the metagenome as a whole. As such, it
is also unsuitable for further use.

Lastly, we comment on another class of models based on contig length. The stan-
dard expectation result, quoted above (Sect. 1), is readily derivable as the ratio of
coverage expectation to gap expectation, the latter obtained from Lander–Waterman
theory. The formula is often avoided because it is divergent (Lander and Waterman
1988; Roach 1995), a consequence of the fact that gaps approach zero much faster than
coverage approaches completion. (This can be demonstrated through simple differen-
tiation.) More recently, Stanhope proposed a metagenomic coverage theory based on
the occupancy concept (Stanhope 2010). It furnishes the probability that the largest
contig exceeds some length, f . Using a property of logarithms (Beyer 1984), the main
result in that paper, Eq. 1, can be written in the appreciably simpler form

P(max contig ≥ f ) = 1 − exp
(
−δ f

[
(1 − δ)(2γ /L − 3) + 2

])
, (2)

where δ ≈ 1 − [1 − L/(2γ )]R . This expression is not monotonically increasing, as
strict addition of data requires, and violates the boundary condition of 100 % coverage
in the limit of infinite R. In particular, because δ → 1, it is easy to see from Eq. 2 that
P(max contig ≥ f ) → 1 − exp(−2) ≈ 0.865.

3.2 Empirical comparison for a 12-member microbial community

On the more pragmatic side, a model’s ability to make worthwhile predictions can
be assessed empirically. Here, we compare Corollary 1 to the data obtained from a
12-member bacterial community for which we generated roughly 4.47 Gb of sequence
(about 46 million reads) from 1 lane on an Illumina GA-IIx instrument. Table 2 shows
the project parameters, where “data” and “size” indicate the total amount of data gen-
erated for each genome and actual genome size, respectively. The “depth” column is
their quotient, representing the average number of reads spanning each position in the
genome, while the “vacant” column indicates the amount of genome remaining uncov-
ered in the assembly. Though having only mild complexity, abundance bias is certainly
evident in this population, given that the ratio of highest to lowest abundances exceeds
a factor of 4. Larger values are admittedly more common, for example Breitbart et al.
(2003) estimate a ratio of more than 300 (Fig. 1). However, the assemblies for such
communities generally remain fragmented (Rusch et al. 2007; Hess et al. 2011) and
are therefore unworkable as comparisons for the metric P(B = 0). The community
in Table 2 is highly redundant, averaging roughly 125× data per species, with the
rarest member, S. artemidis, still surpassing 50×. Consequently, this community is a
rigorous, if preliminary test of the theory’s ability to account for abundance bias.
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Table 2 Sequence data for 12-member microbial community

Species (NCBI accession number) Depth Size Vacant Data α

(fold) (Mb) (kb) (Mb)

E. faecalis (AEBQ00000000) 142.5 3.00 2.26 427.4 0.096

E. coli (AJGD01000000) 62.8 4.57 2.16 287.1 0.064

F. prausnitzii (AECU00000000) 80.7 2.96 3.24 239.0 0.054

S. artemidis (AECV01000000) 56.8 2.22 2.19 126.0 0.028

E. faecalis (AEBB00000000) 139.2 2.85 1.00 396.6 0.089

E. faecalis (AEBP00000000) 115.1 3.01 3.45 346.4 0.078

E. faecalis (AEBF00000000) 148.5 2.83 1.64 420.1 0.094

E. faecalis (AEBD00000000) 147.7 2.88 1.26 425.5 0.095

E. faecalis (AEBN00000000) 132.2 3.12 1.55 412.5 0.092

E. faecalis (AEBO00000000) 131.4 3.12 3.36 409.5 0.092

E. faecalis (AEBE00000000) 131.3 3.26 2.56 426.5 0.095

E. faecium (AEBC00000000) 188.0 2.94 1.25 552.8 0.124

An important, but more subtle aspect in all empirical-theoretical comparisons is
controlling for the unavoidable differences that arise as a consequence of project-
specific factors, including DNA sequence and instrumentation biases (Harismendy
et al. 2009) and the vagaries related to specific combinations of software packages
used for processing, alignment, and assembly. In metagenomic projects, we must add
inter-strain variation within species as another confounder. These factors, which we
will henceforth refer to collectively as “coverage bias”, tend to reduce actual per-
formance below predictions because portions of each species’ genome are inclined
against locally spanning reads. While simplistic bias models have been used for poste-
rior fitting (Port et al. 1995; Schbath 1997; Wendl et al. 2001), there is no established,
general methodology for resolving this aspect of the design problem a priori.

Table 2 shows that the covering process for this community is indeed biased. Specif-
ically, the amount of uncovered genome (vacancy) for each species is on the order of
kilobases, despite sequence depths that often substantially exceed 100×. Empirical-
theoretical comparisons for various other scenarios show that biases do not begin to
manifest themselves until significant amounts of coverage have been obtained (Wendl
and Barbazuk 2005; Wendl and Wilson 2008). In other words, it is not unusual that
much of a genome has little to no bias and closely follows theoretical coverage pre-
dictions, some fraction is moderately biased and consequently more difficult to cover,
and a small amount is extremely averse to being covered. In essence, the amount of
the genome that is accessible to “routine sequencing” is somewhat smaller than the
actual genome size (Thousand Genomes Project Consortium 2010; Ajay et al. 2011).
This aspect can be particularly problematic for an analysis such as ours, which relies
on “100 % coverage” as its metric.

We compare Corollary 1 specifically to S. artemidis and E. faecium, which are
the least (∼3 %) and most (∼12 %) abundant species in this community, respec-
tively (Fig. 3). Following the above observations, we estimate each species’ accessible
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Fig. 3 Comparison of data from bacterial community in Table 2 (circles) to the probability of total genome
coverage given by Corollary 1 (solid curves). Each datum represents the average of 50 random drawings
from ∼46 million reads, where a corresponding indicator variable was set to 1 or 0 depending upon whether
total coverage was achieved or not, respectively. Error bars are plotted at one standard deviation. Dashed
curve represents simple bias correction for E. faecium in the form of a 3 % lowered relative read length
from ϕ = 3.046 × 10−5 to 2.95 × 10−5

genome size as a minimum breadth of coverage obtained after repeated sampling and
assembly of a number of reads R such that P(B = 0) is close to unity. For example,
E. faecium (NCBI accession: AEBC00000000) has an actual genome size of 2,936,981
bp and R = 4.5 × 106 implies P(B = 0) ≈ 0.997 for this species, given an average
read length of L = 100. We then did 50 separate assemblies of 4.5 million reads, all
randomly-chosen without replacement, and found each assembly attained coverage
of at least 2,933,000 bp. This figure is taken as the amount of the E. faecium genome
that is routinely accessible to sequencing and the remaining 3,981 bases (0.14 %) are
taken to be non-compliant. (Note that roughly 1.25 kb still remains uncovered, even
after 188-fold redundancy for this species!) A similar calculation yields an estimate of
2,211,400 accessible bases from the total genome size of 2,215,616 of S. artemidis. We
deemed 50 simulations per datum to be sufficient, given that the maximum coefficients
of variation (quotient of standard deviation and mean) for E. faecium and S. artemidis
were 0.000083 and 0.000185, respectively, for all the assemblies represented in Fig. 3.

The plots show reasonable agreement when considered in light of the bias problem.
Although our elementary truncation procedure referenced above corrects somewhat
for the worst factors, it unquestionably falls short. If biases are “simple”, meaning
relatively benign and not distributed in complicated or extreme ways, it may be possible
to further compensate by artificially lowering the read length to simulate less efficient
covering. This procedure is demonstrated on E. faecium, where we reduced ϕ by about
3 %, from its actual value of 3.046 × 10−5 to a compensatory value of 2.95 × 10−5,
thereby fitting Corollary 1 almost exactly to the data. Conversely, coverage biases can
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Fig. 4 The metagenomic sequencing project design map. Coverage probability is plotted as a function of
the product R ·α for various values of ϕ. Example scenario discussed in Sect. 3.3 is denoted by the asterisk.
Curves do not include any compensation for bias

also be stronger and more complicated. In such instances, simple read reduction will
not help substantially, as is clear in the case of S. artemidis. Broadly speaking, it is
difficult to characterize biases a priori to a degree that could be formally incorporated
into a model. This remains a major unsolved problem in genomic coverage theory.

3.3 Empirical simplification and the metagenomic design map

Theorem 1 is completely general in that it describes probability as a function of all
four independent variables: P = P(B, R, α, ϕ). Metagenomic sequencing projects
impose additional empirical constraints on these variables such that, to a very good
approximation, α and R act as a product rather than independently (implied in Fig. 2
for B = 0 and demonstrated in Methods), effectively reducing the problem to just three
variables for gap census, P = P(B, αR, ϕ), and two for coverage, P = P(αR, ϕ).
Contrast this to the functional dependence of E〈C〉 on only a single variable, the
redundancy, which lumps ϕ into the product αRϕ.

With respect to coverage, the two-variable dependence enables us to construct what
is essentially a “design map” for all metagenomic projects in the form of a single plot
(Fig. 4). Assuming estimates of ϕ and α are available for the target species, one
simply picks the covering probability on the ordinate, moves horizontally from there
to the intersection with the appropriate ϕ curve, then moves vertically down and to
the corresponding αR value on the abscissa. The required number of reads for the
project is then found by simply dividing this value by α. The largely vertical stature
of the curves reiterates the observation that predicted data requirements are relatively
insensitive to the chosen measure.

123



1154 M. C. Wendl et al.

Let us illustrate the process with a brief example. Suppose our hypothetical 1 Mb
target discussed above in the context of the Rusch et al. (2007) project is to be fully
recovered at 90 % power using 100 bp reads. This scenario is denoted by the asterisk
in Fig. 4 and corresponds to an abscissa value of roughly αR = 1.4 × 105, or a target
redundancy of 14×. Given its abundance of 0.1 %, the total number of project reads
is then about 140 million, or 14 Gb of total sequence data. For comparison, we cite
Rusch’s actual figure of about 6.4 million assembled Sanger reads (5.9 Gb of data), as
well as the expectation-based prediction of 92 million next-gen 100 bp reads (9.2 Gb
of data), assuming we have chosen E〈C〉 = 99.99 %. Note that this calculation does
not include any reduction of ϕ to compensate for bias, as discussed above.

Let us also illustrate the compounding effect of size by now increasing the target
to 10 Mb while holding all other parameters constant. Expectation theory simply
multiplies everything by 10, according to the rule that the redundancy is constant if
we maintain E〈C〉 = 99.99 %. That is, 920 million reads would now be generated.
However, the probability equation accounts for the fact that it is indeed harder to cover
a bigger target with constant-size reads. Instead of simply multiplying by 10 to get 1.4
billion reads, the above calculation procedure specifies 1.65 billion reads, or 16.5×
target redundancy at 90 % power.

3.4 Assessing community membership

So far, we have concentrated on the special case P(B = 0), i.e. full coverage, as the
relevant measure, which will be useful primarily for discovery-oriented projects that
rely on assembly of previously unknown species. However, there is also increasing
interest in application-oriented projects that seek instead to assess community mem-
bership, the goal being to accumulate enough sequence to determine whether a known
species is present or not (Eisen 2007; Kunin et al. 2008; Stanhope 2010). Because
these will rely on alignment more than assembly, read hits and contig lengths are also
relevant, suggesting application of Corollary 2 and Theorem 2.

Consider the example of a 50 kb target at 0.05 % abundance (Fig. 5), which is char-
acteristic of a relatively rare virus. Assuming a read length of 100 bp, i.e. ϕ = 0.002,
we plot a broad spectrum of representative sequencing milestones. (These are not nec-
essarily indicative of the minimum or maximum required amounts of information to
reliably indicate species presence, since those undoubtedly vary with the species. The
analysis is also predicated on the existence of a well-posed viral reference sequence,
which can be an issue in cases of high evolutionary rate). Calculations show that even
a moderate number of project reads will very likely result in some number of reads
hitting the target organism. For example, for P(T = k) = 0.95, the k = 5, 20, and
100 thresholds are reached with around R = 18,000, 55,000, and 235,000 project
reads, respectively. These cases are not predicated on any coverage model and it is
likely that the reads will exist almost exclusively as singletons without any real contig
structure. Expectation theory concurs, for instance it suggests around 20 % coverage
for the 100 read hit threshold.

Substantive contigs start to form only at higher levels of coverage. For example,
average contig length reaches 2 kb (20 read lengths) at 95 % probability only after
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Fig. 5 Quantification of various sequencing milestones when using 100 bp reads for a 50 kb target at an
abundance of 0.0005 (i.e. 0.05 %). The curve for expected coverage is computed from classical theory,
while probability results are calculated from Corollaries 1 (complete coverage) and 2 (average contig size
≥2 kb, implying upper limit of 25 gaps) and Theorem 2 (number of reads hitting target, here ≥5, ≥20, or
≥100, without regard to their associated coverage structures). Curves do not include any compensation
for bias

about 4.9 million project reads. Expectation theory predicts > 99 % coverage at this
point, consistent with our earlier assertions regarding loss of resolution of E〈C〉. In
other words, despite “almost” complete coverage, the actual genome is still appreciably
fragmented. The apparent contradiction is simply a consequence of the fact that the
rate of change of coverage in the late-stages of a project is very small. For comparison,
Fig. 5 also shows the complete coverage curve, P(B = 0). Here, roughly 11.7 million
project reads are required at the same 95 % probability level.

The results for this target virus are readily transformed to other abundance values
on the basis that α and R act asymptotically as a product. For example, this same
virus at an abundance of 0.5 %, i.e. 10 times more frequent than above, would require
approximately 23,500 project reads for 100 hitting reads, 490,000 for 2 kb average
contig length, and 1.17 million reads for complete coverage. Note that transforming
does not hold in the case of changing read length or genome size for Theorem 1
or its derivative implementations. These expressions would require new evaluation.
It does hold for Theorem 2, since that result does not speak to coverage structure and
is independent of read and genome length.

Finally, it is interesting to assess the maximum data required for very complex
communities. For instance, the (Breitbart et al. 2003) power law estimation suggests
the least abundant species in their viral community (Fig. 1) is on the order of α = 10−4,
about 5 times more rare than the example just discussed. Taking a conservative value
of ϕ = 0.0008 to account for both bias-related coverage inefficiencies and overlaps
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in assembling unknown species, Fig. 4 suggests α · R ≈ 20, 000 for high probability
of complete coverage. This implies R = 200 million reads, or 20 GB of data for
100 bp read length. For equally rare 2 Mb bacteria take ϕ = 2 × 10−5, whereby
α · R ≈ 1 × 106, indicating 10 billion reads and 1 Tb of data. Such communities are
probably near the outer edge of the design space, suggesting an approximate upper
bound for the required data.

3.5 Closing remarks

We have described a rigorous mathematical framework for the analysis and design
of metagenomic sequencing projects that does not suffer from various resolution,
consistency, or closure problems of earlier works. Though it does not address every
outstanding issue, including those related to bias, the theory will be useful for a broad
spectrum of calculations. We demonstrated several such aspects above, including use
of P(B = 0) as a coverage metric, empirical comparison to a bacterial community, use
of the “product simplification”, and community membership assessment. Numerical
implementations of the mathematical results are straightforward, though we are glad
to furnish our own code upon request.

Some have argued that sufficiently complex communities will necessarily remain
beyond reach (DeLong 2005; Wooley et al. 2010), primarily because of limitations in
sampling, while others have maintained that it is simply a matter of generating enough
data (Venter et al. 2004; Tyson et al. 2004; Allen and Banfield 2005). This issue may
be debatable in the philosophical sense of “proving a negative”. Yet, in a practical
sense, our theory furnishes quantitative conditions under which even the most complex
metagenomes can be decoded and the least abundant species recovered. Developments
in instrumentation continue apace, suggesting many of these communities will be
within reach in the near future.

4 Methods

4.1 Proof of Theorem 1

Assume all reads are independently and identically distributed (IID) among species
in the metagenome, each with a Bernoulli probability α of representing the target
species. The probability that i of R reads are indeed derived from the target species is
then binomial. Consequently, the probability of k gaps in the target species is obtained
by further conditioning Stevens’ theorem (Stevens 1939; Solomon 1978; Wendl and
Waterston 2002) upon the number of resident reads i ∈ {k, k + 1, . . . , R},

P(B = k) =
R∑

i=k

(
R

i

)
αi (1 − α)R−i

(
i

k

) η∑
j=k

(
i − k

j − k

)
(−1) j−k (1 − jϕ)i−1 .

Here, η = min
(

i, int(1/ϕ)
)

is the appropriate Stevens limiter. Distribute the bino-

mial and re-order the resulting set of terms, effectively switching the inner and outer
summations, to obtain

123



Metagenomic coverage theories 1157

P(B = k) =
η∑

j=k

R∑
i= j

(
R

i

)(
i

k

)(
i − k

j − k

)
αi (1 − α)R−i (−1) j−k (1 − jϕ)i−1 .

The following combinatorial identity can readily be constructed

(
R

i

)(
i

k

)(
i − k

j − k

)
=

(
R

k

)(
R − k

j − k

)(
R − j

R − i

)

and substituting this result leads to the factored expression

P(B = k) =
(

R

k

) η∑
j=k

(
R − k

j − k

)
(−1) j−k f j

1 − jϕ

R∑
i= j

(
R − j

R − i

)
gR−i f i− j ,

where f = α (1 − jϕ) and g = 1 − α. Reversing the order of terms for the inner
summation and making a suitable change of variables shows that the inner summation
collapses via the binomial theorem to ( f + g)R− j . Theorem 1 follows from straight-
forward algebra.

4.2 Proof of Theorem 2

Given the IID property of reads, the Bernoulli proposition of either hitting or missing
the target species implies binomial distribution. Theorem 2 follows directly from its
Poisson approximation (Feller 1968), justified by the fact that α is sufficiently close
to zero and R � 1.

4.3 Derivation of numerical heuristic in Equation 1

The heuristic is based on the notion that rate of growth of successive terms in Corol-
lary 1 is bounded to the degree that the largest one does not overwhelm standard
arithmetic precision. The first term is always unity, so we focus on the second. Given
R � 1, α < 1, and ϕ generally less than 0.002, we use asymptotic approximation,
finding R α exp

(−αϕR
) ≤ ζo, where ζo is our empirically-chosen limiter. Straight-

forward algebra leads to Eq. 1.

4.4 Collapse of variables

The independent variables in Theorem 1 are governed by B ≥ 0, R > 0, 0 <ϕ < 1,
and 0 < α ≤ 1. However, metagenomic sequencing projects place the further empiri-
cal restrictions that R and ϕ are very large and small compared to 1, respectively, and
furthermore that R � 1/ϕ. The last equation means that the overall number of reads
in a project is far more than the minimum number required to cover just the target
species. These conditions further imply R � β and R � B, enabling a significant
simplification of the system, wherein the number of independent variables is reduced
by one.
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The outer and inner combinatorial terms are well-approximated by Rk/k! and
Rβ−k/(β − k)!, respectively, whereby (αR)β can be factored. Asymptotic approx-
imation also applies, such that (1 − βϕα)R−β ∼ exp(−αR · β · ϕ). Finally, the series
is always limited by 1/ϕ rather than R, meaning that in all places where α and R
appear, they act as a product.

4.5 Sequence generation and analysis

Whole genome shotgun libraries were constructed from 1 µg of starting DNA. The
DNA samples were fragmented, end repaired, A-tailed, and ligated. The ligation was
size selected for 300–500 bp fragments via ampure beads and 5 µl were then ampli-
fied. The final library was quantitated via Qubit and size was verified by Agilent. A
5nM stock was then made from equal pooled volumes of each library followed by
qPCR. Sequencing was performed on the Illumina GA-IIx instrument following man-
ufacturer’s instructions. We obtained 50,085,061 reads from the 12 known bacterial
genomes, 25,077,278 and 25,007,783 from the two respective ends. A small fraction,
266,146 reads (0.53 %), could not be assigned to any of the 12 species (Table 2).

Analytical processing and assembly of the 12 genomes were managed with the
Genome Institute automated pipeline. It initially performs a BWA-style trim (Li and
Durbin 2009) to a threshold of q10 on all input instrument data. Reads trimmed to less
than 35 bp were discarded. The pipeline then runs Velvet (Zerbino and Birney 2008),
which cycles through the 31–35 kmer range, optimizing for the kmer which produces
the longest N50 contig length. The entire data set is publicly available through the
NCBI Sequence Read Archive (SRA) under the accession numbers listed in Table 2.

BWA (Li and Durbin 2009) was used to align clean paired end reads to the 12
bacterial assemblies, ultimately placing 46,079,563 reads. Up to 5 mismatches were
allowed per read, corresponding roughly to minimum 95 % identity. The distribution
among the 12 organisms was then assessed using an in-house program called Refcov
(Todd Wylie, unpublished) based on the generated alignments. Experimental coverage
was then simulated by randomly picking reads from the total pool and assessing
subsequent coverage for the target organism again using Refcov. For E. faecium (NCBI
accession: AEBC00000000), we ran 50 simulations each of 3, 3.5, 4, and 4.5 million
reads and for S. artemidis (NCBI accession: AECV01000000), which were based on
50 selections each of 9, 10, 11, 12, and 15 million reads. These numbers were based
on species abundance within the community in Table 2.
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