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Abstract Sensory systems relay information about the world to the brain, which enacts

behaviors through motor outputs. To maximize information transmission, sensory systems discard

redundant information through adaptation to the mean and variance of the environment. The

behavioral consequences of sensory adaptation to environmental variance have been largely

unexplored. Here, we study how larval fruit flies adapt sensory-motor computations underlying

navigation to changes in the variance of visual and olfactory inputs. We show that variance

adaptation can be characterized by rescaling of the sensory input and that for both visual and

olfactory inputs, the temporal dynamics of adaptation are consistent with optimal variance

estimation. In multisensory contexts, larvae adapt independently to variance in each sense, and

portions of the navigational pathway encoding mixed odor and light signals are also capable of

variance adaptation. Our results suggest multiplication as a mechanism for odor-light integration.

DOI: https://doi.org/10.7554/eLife.37945.001

Introduction
The world is not fixed but instead varies dramatically on multiple time scales, for example from

cloudy to sunny, day to night, or summer to winter; and contexts: from sun to shade, or burrowing

to walking. Nervous systems must respond appropriately in varied environments while obeying bio-

physical constraints and minimizing energy expenditure (Niven and Laughlin, 2008). Sensory sys-

tems use strategies at all levels of organization, from sub-cellular to network-level structures, to

detect and transmit relevant information about the world to the rest of the brain, often operating

near the limits imposed by their physical properties (Bialek, 1987; Niven and Laughlin, 2008).

One strategy to maximize the conveyance of sensory information is to reduce redundancy by fil-

tering out predictable portions of sensory inputs (Barlow, 1961; Attneave, 1954; Srinivasan et al.,

1982). Early evidence of efficiency in the way sensory neurons encode environmental information

was found in the large monopolar cells of the blowfly retina, whose responses to intensity changes

were found to be optimally matched to the range of stimuli encountered in the fly’s natural environ-

ment (Laughlin, 1981). If neurons’ responses are indeed tuned to a specific environmental distribu-

tion of inputs, then when environmental conditions change, the neurons’ coding must adapt to the

new environment’s statistics to maintain an efficient representation of the world (Tkačik and Bialek,

2016; Maravall, 2013).

A rich field of study has explored adaptation of neural coding to the statistics, particularly the

mean and variance, of sensory stimuli (Wark et al., 2007). Variance adaptation has been measured

across diverse organisms in visual, auditory, olfactory, and mechanosensory systems and in deeper

brain regions (Brenner et al., 2000; Fairhall et al., 2001; Kvale and Schreiner, 2004; Dean et al.,

2005; Nagel and Doupe, 2006; Dahmen et al., 2010; Maravall et al., 2007; De Baene et al.,

2007; Wen et al., 2009; Gorur-Shandilya et al., 2017; Clemens et al., 2018; Smirnakis et al.,
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1997; Gollisch and Meister, 2010; Clifford et al., 2007; Liu et al., 2016; Kim and Rieke, 2001)

pointing to a potentially universal function implemented by a broad range of mechanisms.

Classic experiments in blowfly H1 neurons showed that variance adaptation in the firing rate max-

imized information transmission (Brenner et al., 2000; Fairhall et al., 2001). Because the role of

these neurons is to transmit information, we can say this adaptation is ‘optimal,’ in a well-defined

theoretical sense. It is less clear how to test for optimality in the adaptation of behaviors to changes

in environmental variance.

If the brain enacts behavior based on rescaled sensory input, one might expect that these behav-

iors should also adapt to stimulus variance. In rhesus monkeys performing an eye pursuit task

(Liu et al., 2016), adaptation to variance was observed in both the firing rates of MT neurons, maxi-

mizing information transmission, and in the ultimate eye movements, minimizing tracking errors,

showing that efficiency in neural coding has observable effects on behavioral responses.

On the other hand, animals choose behaviors to achieve an end goal. For general sensory-driven

behaviors, this goal, for example flying in a straight line or moving toward a potential food source,

does not require maximizing the transmission of information about the stimulus to an observer of

the behavior. In these cases, it might be adaptive for the brain to restore some or all information

about environmental variance before choosing which behaviors to express.

To explore the role of variance adaptation in a general sensory information processing task, we

studied how Drosophila larvae adapt their navigational decisions to variance in visual and olfactory

stimuli. Navigation requires the larva to transform sensory information into motor output decisions in

order to move to more favorable locations, and the larva’s navigational strategies have been charac-

terized for a variety of sensory modalities (Gomez-Marin and Louis, 2012; Gershow et al., 2012;

Gomez-Marin and Louis, 2012; Gomez-Marin et al., 2011; Kane et al., 2013; Lahiri et al., 2011;

Louis et al., 2008; Luo et al., 2010; Sawin et al., 1994). Drosophila larvae move in a series of rela-

tively straight runs interspersed with reorienting turns. A key element of the larva’s navigational

strategy is the decision to turn, that is to cease forward movement and execute a reorientation

maneuver to select a new direction for the next run. This decision can be modeled as the output of a

Linear-Nonlinear-Poisson (LNP) cascade and characterized through reverse correlation

(Gepner et al., 2015; Hernandez-Nunez et al., 2015; Aljadeff et al., 2016; Parnas et al., 2013;

Schwartz et al., 2006; Chichilnisky, 2001).

In this work, we investigate how the navigational decision to turn adapts to the variance of sen-

sory input by characterizing how changes in stimulus variance lead to changes in LNP model parame-

ters. We show that larvae adapt to the variance of visual stimuli and of olfactory inputs processed by

a range of olfactory-receptor neurons. We find that adaptation can be characterized as a rescaling

of the input by a factor that changes with the variance of the stimulus. We show that the timescales

of turn-rate adaptation are asymmetric with respect to the direction of variance switches and are

consistent with optimal estimation of environmental variance (Wark et al., 2009; DeWeese and

Zador, 1998). We find that in a multi-sensory context, adaptation is implemented independently on

visual and olfactory inputs and also in the pathway that processes combined odor and light signals.

We propose that multisensory integration may result from multiplication of signals from odor and

light channels.

Results
As a model for how organisms adapt their behavioral responses to changes in environmental vari-

ance, we explored visual and olfactory decision making by larval Drosophila. In previous work, we

modeled the larva’s decision to turn (stopping a run in order to pick a new heading direction) as the

output of a Linear-Nonlinear-Poisson (LNP) cascade (Figure 1a). This model took as its input the

derivative of stimulus intensity, and we used reverse-correlation to find the LNP model parameters

(Figure 1b).

In this work, we extended the analysis to ask how larvae adapt their responses to changes in the

variance of the input stimuli. We again provided visual stimuli through blue LED illumination and fic-

tive olfactory stimuli through red LED activation of CsChrimson expressed in sensory neurons. The

illumination was spatially uniform and temporally fluctuating, with derivatives randomly drawn from

normal distributions. The variance of these normal distributions dictated the amplitude of temporal

fluctuations. We changed the variance of these distributions (Figure 1c), and studied the resulting
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Figure 1. Reverse correlation analysis of variance adaptation. (a) Linear-Nonlinear-Poisson (LNP) model of the decision to turn. Sensory input is

processed by a linear filter to produce an intermediate signal. The rate at which the larva initiates turns is a nonlinear function of this signal. Turns are

initiated stochastically according to a Poisson process with this underlying turn rate. (b) Reverse correlation to determine LNP model parameters. The

kernel of the linear filter is proportional to the ’turn-triggered-average’, the average input preceding turns. The rate function is calculated by comparing

the turn-conditioned filtered inputs to the entire input ensemble. (c) Experimental setup to test for behavioral adaptation to variance. We presented

fluctuating light intensities - with randomly-picked derivatives - to groups of larvae crawling on an agar surface, and recorded their trajectories using IR

lights and camera. Blue light provided a visual stimulus and red light activation of CsChrimson labeled neurons provided a fictive olfactory stimulus.

The derivative of the light intensity was the input to our LNP model, and the variance of this input periodically changed between low and high values.

Figure 1 continued on next page
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changes in the behavioral response as measured by changes in the LN model parameters

(Figure 1d,e).

There is a subtle difference between stimulus and model input. For instance, in work on adapta-

tion in blowfly H1 (Brenner et al., 2000; Fairhall et al., 2001), the stimulus was light reflected from

a pattern of black and white stripes, while the model input was the horizontal velocity of this pattern.

The experimenters then measured adaptation to the variance of this input.

In our experiments, the stimulus was projected light whose intensity varied in a Brownian random

walk. The model input was the time-derivative of the stimulus intensity. This has two important

advantages. First, it provides a mean zero input that is uncorrelated on all time scales, simplifying

analysis and interpretation. Second, when we change the variance of the input, we change the statis-

tics of how quickly the light level changes, but we do not change the mean or variance of the light

intensity itself, eliminating potential confounds due to adaptation to overall light intensity.

Larvae adapt their turn-rate to the variance in visual and olfactory
sensory inputs
We first asked whether larvae adapt their behavior to changes in the variance of sensory input and if

so, how. In one set of experiments, we presented wild-type larvae with blue light whose intensity

derivatives were randomly drawn from normal distributions with low or high variance. In another set

of experiments, we used a fictive olfactory stimulus generated by red light activation of CsChrimson

expressed in Or42a sensory neurons.

In both sets of experiments, the environment switched between low and high variance ðs2

high ¼
9s2

lowÞ every 60 s. We expected that following a switch in variance, larvae would require some time

to adapt their behaviors. We therefore discarded the first 15 s (this amount of time is justified later)

following each transition and analyzed the larvae’s responses separately in low and high variance

contexts.

In the LNP framework, adaptation to variance could take two forms - a change in the shape of the

linear filter kernel (Kim and Rieke, 2001; Baccus and Meister, 2002), representing a change in the

temporal dynamics of the response, and/or a change in the shape of the nonlinear function, repre-

senting a change in the strength of the response to a particular pattern of sensory input. Both forms

of adaptation have been reported in sensory neurons (Wark et al., 2007; Maravall, 2013). In adult

Drosophila, ORN firing rates adapt to variance of both natural and optogenetic inputs through a

change in the nonlinearity (Gorur-Shandilya et al., 2017).

We first examined the shape of the filter kernel. To find the kernel, we calculated the ’turn-trig-

gered average’ (Gepner et al., 2015), the average input preceding a turn, at both low and high vari-

ance. Given an uncorrelated input and a large number of turns, the kernel is proportional to the

turn-triggered average (Chichilnisky, 2001), but the constant of proportionality is unknown and can

be absorbed into the nonlinear stage. We therefore scaled both the low and high variance turn-trig-

gered averages to have the same peak value. We found that for both visual and fictive olfactory

stimuli, the scaled turn-triggered averages were nearly identical at low and high variance

(Figure 1d), although at low variance, the averages had a slightly longer ‘shoulder’ 3–4 s prior to the

eventual turn.

Figure 1 continued

(d) Turn-triggered averages measured at low and high variances for visual (Berlin, blue light) and fictive attractive odor (Or42aCsChrimson, red light)

stimuli. To ease comparison of the temporal structure, the averages are scaled to have the same peak value. (e) Nonlinear rate functions measured at

low and high variances. A single convolution kernel was calculated for the entire experiment; the turn rate as a function of the filtered input was

calculated separately for low and high variance. Note logarithmic y-axis. Number of experiments, animals in Table 1.

DOI: https://doi.org/10.7554/eLife.37945.002

The following figure supplements are available for figure 1:

Figure supplement 1. Overview of analysis steps.

DOI: https://doi.org/10.7554/eLife.37945.003

Figure supplement 2. Rate functions following single filter vs variance-specific filters.

DOI: https://doi.org/10.7554/eLife.37945.004
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Figure 2. Comparing rescaling models of variance adaptation. (a) Best fit rate functions to visual (Berlin with blue light stimulus) data of Figure 1, for

various functional forms of rescaling, and for a null model with no rescaling. DBIC indicates difference in Bayes Information Criterion between the

adapting model and the null model. A negative value indicates the adapting model is preferred, and a difference of more than 10 is considered to be

highly significant. (b,c) Ability of models to predict held-out data. In repeated ‘trials,’ each model was fit to a subset (14/17 experiments) of the data.

The fit model was applied to calculate the likelihood of the data in the held out sets. Because test data sets varied in size, the log likelihood of each

Figure 2 continued on next page
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As the kernel shape did not strongly depend on the input variance, we first used the turn-trig-

gered average for all data to estimate a single kernel for both low and high variance. We scaled this

kernel so that the filter output had variance one in the low-variance condition. We then calculated

the rate function at low and high variance to determine whether the magnitude of the larva’s

response to stimulus changes adapted to environmental variance (Figure 1—figure supplement 1).

We found that for both visual and fictive olfactory stimuli the rate function (Figure 1e) was steeper

at low variance than high variance, indicating a more sensitive response to the same input in the low

variance context.

We then asked whether it might be more appropriate to use separate filters for low and high vari-

ance stimuli. We separately convolved the high and low variance stimuli with filters derived from the

high and low variance turn-triggered averages (Figure 1d) and again calculated nonlinear rate func-

tions at high (Figure 1—figure supplement 2a,c) and low (Figure 1—figure supplement 2b,d) vari-

ance. These rate functions were nearly identical to those we found using a single shared kernel.

Thus, the different slopes of the rate functions at high and low variance (Figure 1e) are not due to

mismatches in temporal dynamics between the filter derived from the pooled data and the variance-

specific filters.

As it had little effect on the extracted rate functions and greatly simplified analysis, we used a sin-

gle filter derived from pooled data in the remainder of our work.

Larvae adapt to variance by rescaling the input
A larger response to the same input in a low variance context indicates variance adaptation. Several

functional forms of adaptation have been proposed and measured. Rescaling the sensory input

(input rescaling) by its standard deviation maximizes information transmission and has been

observed in blowfly H1 neurons (Brenner et al., 2000) and in salamander retina (Kim and Rieke,

2001; Kim and Rieke, 2003), equivalently characterized as a change in amplitude of the linear filter

kernel. On the other hand, many biophysically plausible models of variance adaptation (Ozuysal and

Baccus, 2012) function by rescaling the output of a nonlinear function or by the summation of satu-

rating nonlinear functions of correlated input (Nemenman, 2012; Nemenman, 2010; Borst et al.,

2005).

We asked whether the adaptation we observed in the nonlinear rate function could be better

described as an input or output rescaling. We used maximum likelihood estimation to find the best

fit model of each form for the entire visual or olfactory data set and measured the improvement

compared to the best-fit model without rescaling (Figure 2a,d). We found that an input rescaling far

better described the adaptation than an output rescaling, a straightforward consequence of the high

and low variance rate functions having the same non-zero output at zero stimulus input. We there-

fore also considered whether recentering followed by rescaling of the output could describe the

adaptation, but again found that input rescaling better described the adaptation.

Next we asked whether the models differed in their abilities to predict held out test data. We fit

each model to a subset of 14 out of 17 experiments and found the likelihood of the data in the held

out three experiments given the fit model. For each permutation of fit and test data, we calculated

the improvement in the log likelihood of the test data compared to the predictions of a null model

without rescaling. As with the fits to the entire data set, we found that the input rescaling model was

better at predicting held out data than either output rescaling model, in the aggregate (Figure 2b,

e) and on a trial-by-trial basis (Figure 2c,f).

Figure 2 continued

data set was normalized to the mean length of all test data sets. (b) Increase in log-likelihood of test data when predicted with rescaling models over

the predictions of a null model without rescaling. Bars show mean increase and error bars the standard error of the mean. (c) Histogram of

improvement of input rescaling model predictions over recentered output rescaling model predictions for each ‘trial.’ D log-likelihood > 4.6

corresponds to p<0:01. (d–f) Same as (a–c), but for fictive olfactory (Or42a>csChrimson with red light stimulus) data of panel 1. Number of experiments,

animals in Table 1

DOI: https://doi.org/10.7554/eLife.37945.005
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Asymmetric rates of variance adaptation to a variety of sensory inputs
Having found that larvae adapt to the variance of visual stimuli and of optogenetically induced activ-

ity in the Or42a receptor neuron, we next explored the timescales and generality of the adaptation.

We expected that following a change in environmental variance, larvae would require some time to

adapt their responses, a process that could be described by adding time dependence to the nonlin-

ear rate function. Since we found that adaptation was best described as a rescaling of the input to a

nonlinear function, we modeled the time-variation of the rate function as a time-varying input

rescaling

rðt;xÞ � lðaðtÞxÞ (1)

lðxÞ ¼ l0 expðbxþ cx2Þ (2)

where x is the output of the linear filter stage and l0;b;c are constants to be determined.

To find the time scales of turn-rate adaptation to abrupt changes in sensory input variance, we

decreased the period of the variance switching experiments to 40 s to increase the number of transi-

tions. To test the generality of adaptation, we explored the visual response, activation of neurons

that produce attractive responses (Or42a, Or42b), and activation of neurons that produce aversive

responses (Or59a, Or35a, Gr21a). We found that in all cases, the linear filters were nearly the same

Figure 3. Variance adaptation and temporal dynamics of input rescaling. Larvae were exposed to alternating 20 s periods of high and low variance

intensity derivative white noise. For Berlin, the stimulus was visual (blue light). For all other genotypes, the stimulus was optogenetic activation of the

indicated receptor neuron type via CsChrimson and red illumination. (a) Turn-triggered averages measured at low and high variances. To ease

comparison of the temporal structure, the averages are scaled to have the same peak value. (b) Nonlinear rate functions measured at low and high

variances. A single convolution kernel was calculated for the entire experiment; the turn rate as a function of the filtered stimulus was calculated

separately for low and high variance. Note logarithmic y-axis. (c) Scaling factor (aðtÞ) vs. time since switch to low variance, averaged over many cycles.

Schematic at top indicates low and high variance conditions. Colored lines (experiment) are maximum likelihood fits to data. Gray lines (step control)

are maximum likelihood fits to data generated by a model in which the input rescaling changes instantly when the variance changes. a was normalized

so that the average over the entire experiment was 1. Number of experiments, animals in Table 1

DOI: https://doi.org/10.7554/eLife.37945.006

Figure 4. Variance adaptation to a stimulus with uncorrelated values. Berlin wild type animals were exposed to blue light. Every 0.25 s, the intensity of

the light was chosen from a random normal distribution with fixed mean and low or high variance. (a) Turn-triggered average deviation from mean

intensity, scaled to have same peak value at high and low variance. Analogous to Figure 1d. (b) Nonlinear rate functions measured at low and high

variances. A single convolution kernel was calculated for the entire experiment; the turn rate as a function of the filtered input was calculated separately

for low and high variance. Note logarithmic y-axis. Analogous to Figure 1e. (c) Scaling factor (aðtÞ) vs. time since switch to low variance, averaged over

many cycles. Colored lines (experiment) are maximum likelihood fits to data. Gray lines (step control) are maximum likelihood fits to data generated by

a model in which the input rescaling changes instantly when the variance changes. a was normalized so that the average over the entire experiment

was 1. Analogous to Figure 3c. Number of experiments, animals in Table 1.

DOI: https://doi.org/10.7554/eLife.37945.007

The following figure supplement is available for figure 4:

Figure supplement 1. Comparison of stimulii with uncorrelated random derivatives and uncorrelated random values.

DOI: https://doi.org/10.7554/eLife.37945.008
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at high and low variances and that the slope of the nonlinear rate function adapted to variance

(Figure 3a,b).

We then estimated the time-varying input rescaling aðtÞ (Figure 3c). We found that for all inputs

this scaling factor decreased suddenly following a step increase in variance but increased more grad-

ually following a step decrease. This is consistent with the response of an optimal variance estimator

(DeWeese and Zador, 1998).

We asked whether the temporal dynamics in our estimate of aðtÞ arose from the larva’s behavior

or from the estimation process itself. To control for the latter possibility, for each set of experiments,

we developed a control model in which acontrol switched instantly along with the variance while all

other parameters of the model were unchanged. We used this control model to generate a fictional

set of turn responses to the same input stimulus, matching the number of experiments and larvae to

Figure 5. Input rescaling as a function of variance. Larvae were exposed to intensity derivative white noise whose standard deviation steadily increased

and decreased in a 120 s period triangle wave. Top row: visual stimulus - blue light was presented to Berlin wild type. Bottom row: fictive attractive

odor stimulus - red light activated CsChrimon expressed in Or42a receptor neurons. (a) Rescaling factors (a) and stimulus standard deviation (s) vs. time

since variance started increasing. (b) Rescaling factor (a) vs. stimulus standard deviation, as calculated from data in (a). Rising, falling indicate a vs. s

calculated using only data when variance was increasing or decreasing respectively. Solid black line is a fit to Equation 3 using all data. Number of

experiments, animals in Table 1

DOI: https://doi.org/10.7554/eLife.37945.009
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the original data set. We passed this fictive data set through our estimator and recovered acontrolðtÞ
(Figure 3c, gray line). We found that, the estimator always reported a sharp and symmetric transition

in acontrol. Therefore the observed slower adaptation of a to variance decreases does not result from

the estimation process.

Variance adaptation under different stimulus statistics
In these experiments, we chose a stimulus whose derivatives at all time points were uncorrelated

random gaussian variables. The trace of light intensity vs. time was therefore a Brownian random

walk with reflecting boundary conditions, and changing the variance of the derivatives was equiva-

lent to changing the diffusion constant (Figure 4—figure supplement 1a,b). An advantage of this

Figure 6. Optimal variance estimator predicts input rescaling. We generated an estimate of the input variance using a Bayes estimator that sampled

the stimulus at an interval of Dt, with a prior t that represented the expected correlation time of environmental variance, which we converted to an input

rescaling parameter using the relation found in Figure 5. We found the static rate function parameters that in combination with this rescaling

parameter best predicted the actual experimental data. We repeated this process for various combinations of Dt and t to find the one that best

modeled the experimental data (a) Difference from the optimal log likelihood of data given model for various choices for Dt, t, for the visual and fictive

olfactory (Or42a>CsChrimson) variance switching experiments of Figure 3. (b) Measured (black line) and predicted (colored lines) input rescaling vs.

time for variance switching experiments, for the best fit value of t and varying values of Dt. The thickest colored line is the prediction of the best-fit

estimator. Number of experiments, animals in Table 1

DOI: https://doi.org/10.7554/eLife.37945.010
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Figure 7. Multisensory variance adaptation and temporal dynamics of input rescaling. Or42a>CsChrimson larvae were exposed to both visual (dim blue

light) and fictive olfactory (red light) stimuli with random intensity derivatives. Top row: visual input had constant variance, while olfactory input

alternated between high and low variance every 20 s. Middle row: Olfactory input had constant variance and visual input alternated between high and

low variance. Bottom row: Both olfactory and visual inputs had constant variance, but alternated between correlated and anti-correlated every 20 s. (a)

Estimated input rescaling vs. time since variance switched to low, averaged over many cycles, for light and odor (top two rows) or combinations of light

and odor (bottom row). (b) Turn rate vs. output of odor filter at high and low variance of the switching stimulus (top two rows) and vs. a linear

combination of light and odor (bottom row). (c) Turn rate vs. output of light filter at high and low variance of the switching stimulus (top two rows). Note

logarithmic y-axis in b,c. Number of experiments, animals in Table 1

DOI: https://doi.org/10.7554/eLife.37945.011
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stimulus is that the light levels themselves are uniformly distributed over the entire range, for both

low and high variance conditions (Figure 4—figure supplement 1c), so that adaptation to variance

cannot be explained, for instance, as due to saturation of channels or receptors at high light

intensities.

It is also possible to perform behavioral reverse correlation using a stimulus with uncorrelated ran-

dom values (Hernandez-Nunez et al., 2015). We wondered whether we would also observe vari-

ance adaptation using such a stimulus. We exposed Berlin wild type larvae to a blue light stimulus

with random intensity updated every 0.25 s. The mean of the intensities was constant, but the vari-

ance switched periodically (s2

high ¼ 9s2

low). When the variance of the intensities switched so did the

variance of the derivatives (Figure 4—figure supplement 1g-i,k). While the intensities were uncorre-

lated on all time scales (Figure 4—figure supplement 1j), subsequent changes in intensity were

strongly anti-correlated (Figure 4—figure supplement 1i).

We first considered a stimulus whose variance changed every 60 s. We analyzed the responses as

we did for the analogous visual experiments of Figure 1. The linear filter, found as the mean

Table 1. Number of experiments, animals, turns.

# experiments - number of 20 min duration experiments; a different noise input was used for each

experiment within a group; # animals - estimate of total number of individual larvae surveyed in each

set; animal-hours - total amount of animal-time analyzed; # turns total number of turns observed

Figure Genotype # expts # animals animal-hours # turns

Figure 1,Figure 2 Berlin 17 811 219.3 48711

Or42a>CsChrimson 17 743 201.1 33822

Figure 3 Berlin 30 1087 302.4 55776

Or42a>CsChrimson 19 838 247.5 44806

Or42b>CsChrimson 15 600 163.3 23826

Or59a>CsChrimson 15 723 177.6 16418

Or35a>CsChrimson 11 430 121.1 13149

Gr21a>CsChrimson 19 786 230.1 36121

Figure 4a,b Berlin 16 483 133 22741

Figure 4c Berlin 18 699 189 28226

Figure 5 Berlin 10 372 102.5 18397

Or42a>CsChrimson 13 553 147.2 21897

Figure 7 Or42a>CsChrimson

Odor switches variance, visual constant 6 165 46.1 6772

Odor constant variance, visual switches 10 391 105.4 15210

Correlation switches 16 616 156.8 22142

Figure 9a Gr21a>CsChrimson

High Variance CO2 6 242 66.2 11286

Low Variance CO2 6 242 62.4 10534

Figure 9a Or42a>CsChrimson

High Variance CO2 7 286 80.5 12976

Low Variance CO2 7 276 77.9 12096

Figure 9b Gr21a>CsChrimson

High Variance CO2 3 121 33.2 7289

Low Variance CO2 3 116 32.7 7023

Figure 9b Or42a>CsChrimson

High Variance CO2 2 94 25 5174

Low Variance CO2 2 82 22.4 4571

DOI: https://doi.org/10.7554/eLife.37945.016
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Figure 8. Multisensory combination models. (a) Indepdendent pathways: two independent LNP models transform

odor and light stimuli into decisions to turn; these turn decisions are combined by an OR operation at a late

stage. This model is inconsistent with data from multisensory white noise experiments. (b) Early linear

combination: Filtered odor and light signals are combined via linear summation prior to nonlinear transformation

of the combined signal. This model is difficult to reconcile with adaptation to variance on a single-sense basis. (c)

Multiplicative integration: Separate LN models for odor and light are combined via multiplication of the nonlinear

function outputs. This model allows for unisensory variance adaptation via rescaling of a rectifying nonlinearity and

is consistent with data from multisensory white noise experiments. Adapted from Gepner et al. (2015).

DOI: https://doi.org/10.7554/eLife.37945.012

The following figure supplements are available for figure 8:

Figure supplement 1. Reanalysis of white noise experiments.

DOI: https://doi.org/10.7554/eLife.37945.013

Figure supplement 2. Reanalysis of multisensory step experiments.

DOI: https://doi.org/10.7554/eLife.37945.014
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subtracted and scaled turn-triggered average, encoded the same temporal dynamics at low and

high variance (Figure 4a). The nonlinear rate function was steeper in the low variance condition (Fig-

ure 4—figure supplement 1b) indicating variance adaptation. We then examined the temporal

dynamics of adaptation using a stimulus whose variance switched every 20 s (in analogy to Figure 3)

and found a faster adaptation to an increase in variance than a decrease (Figure 4c). These results

all agreed with those of our experiments using uncorrelated stimulus derivatives.

Larvae adapt to variance through a simple rule
Although the temporal dynamics of the input rescaling are consistent with an optimal estimate of

the variance, it is not straightforward to test whether the observed aðtÞ truly reflects an optimal esti-

mate. When the spike rate of a neuron adapts to environmental variance, there is a sound theoretical

reason to believe it does so to maximize information transmission (Brenner et al., 2000; Tkačik and

Bialek, 2016) and therefore that a / 1=s. However, for behavior, it is not clear if there is a theoreti-

cally optimal relation between a and s2.

We therefore sought to experimentally determine the relation chosen by the larva between input

rescaling and observed variance. To do this, we slowly varied the stimulus variance in time in a trian-

gular pattern and continuously monitored the scaling parameter aðtÞ (Figure 5a). If the variance

changed slowly enough, the larva would be constantly adapted and the input rescaling aðtÞ could be

taken to be a function of the variance s2ðtÞ at that time point only.

We related aðtÞ, the time-varying rescaling parameter averaged over many cycles (colored lines,

Figure 5a) to sðtÞ, the cycle averaged stimulus standard deviation (black line, Figure 5a) to calculate

aðsÞ (Figure 5b). We estimated aðsÞ using the full data set and separately for periods of increasing

and decreasing variance. If the larvae were not continuously adapted to the variance, we would

expect to see different estimates of a during the rising and falling phases, due to hysteresis. We

found the same scaling vs. variance curve for the rising and falling phases, indicating that our mea-

sured aðsÞ represented the larva’s adapted rescaling law.

To analytically describe the larva’s rescaling rule, we began with the input rescaling that maxi-

mizes information rescaling: a / 1=s. To better fit the data, we considered the possibility that the

total variance might be due to both sensory input and other intrinsic noise sources: s2

total ¼ s2 þ s2

0
,

where s2 is the variance we introduce through the sensory input and s2

0
, the intrinsic noise, is a fit

parameter.

The solid line in Figure 5b shows the best fit to the data of this rescaling model

aðsÞ / 1
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

s2 þs2

0

p (3)

This model can be interpreted as an attempt at ‘optimal’ rescaling in the presence of intrinsic

noise s2

0
and/or as an adaptation to prevent large behavioral responses to minute changes in an oth-

erwise static environment.

Adaptation is consistent with an optimal variance estimate
Now that we could relate aðtÞ, the measured input rescaling, to the larva’s internal estimate of vari-

ance, we asked whether the larva’s estimate of variance made the best use of sensory input. We con-

structed an optimal Bayes estimator that periodically sampled the input stimulus and assumed that

environmental variance changed diffusively. The variance estimator has two free parameters. One, t,

represents a prior assumption of the time-scale on which the variance is expected to fluctuate; the

other, Dt, represents the frequency with which the estimator receives new measurements. Measuring

more often leads to faster adaptation.

We fed our experimental stimulus into this estimator to determine what an observer would deter-

mine the best estimate of the variance to be at each time in the experiment. This variance estimate

depended on the stimulus history and the parameters t and Dt.

st;DtðtÞ ¼ sestðxstimðt0<tÞ;t;DtÞ (4)

We then calculated the appropriate input rescaling using Equation 3 and found the parameters
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Figure 9. Adaptation to variance in a natural odor background. (a) Optogenetic activation of odor receptor

neurons with a fluctuating background of carbon dioxide. Above: Noise of constant variance was provided to

either the CO2 receptor neuron (Gr21a>CsChrimson) or an Ethyl Acetate receptor neuron (Or42a>CsChrimson) in

a flow chamber with a time-varying CO2 concentration. The mean CO2 concentration was 5% in both high and low

variance conditions, but the amplitude of the fluctuation was larger in the high variance condition. Below: turn rate

as a function of filtered stimulus for both high and low variance conditions. Note logarithmic y-axis. (b) Visual

Figure 9 continued on next page
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of the static rate function that maximized the log-likelihood (Materials and methods) of the observed

sequence of turns:

lnðPðdatajt;DtÞÞ ¼
X

turn

lnðrpredðt;Dt;tÞdtÞ�
X

no turn

rpredðt;Dt;tÞdt (5)

with

rpredðt;Dt;tÞ ¼ lðaðst;DtðtÞÞ � xfiltðtÞÞ (6)

and dt = 1=20 second, the interval at which we sampled the behavioral state.

From these calculations, we found the values of t and Dt that maximized the likelihood of the

data: For visual response these were Dt ¼ 0:85� :07 s and t ¼ 6� 2:5 s, and for Or42a activation,

these were Dt ¼ :7� :15 s and t ¼ 11� 5 s (95% confidence intervals, dotted white regions in

Figure 6a).

We then compared the predicted rescaling vs. cycle time for the best fit model to the observed

rescaling (Figure 6b) and found close agreement between the predicted and measured rescalings.

When we compared the predictions produced by estimators with the same value of t but different

values of Dt, we found substantial disagreement between the predicted and measured rescalings

(Figure 6b). Thus, the larva’s adaptation to environmental variance is consistent with an optimal esti-

mate of that variance and indicates an input sampling rate of ~ 1.2–1.5 Hz.

Larvae adapt to variance at multiple levels in the navigational pathway
Previously, we studied how larvae combine visual and olfactory information to make navigational

decisions. We found that in response to multisensory input, the turn rate was a function of a single

linear combination of filtered odor and light signals (Gepner et al., 2015). We also found that larvae

used quantitatively the same linear combination of light and odor to make decisions controlling turn

size and turn direction, suggesting that light and olfactory signals are combined early in the naviga-

tional pathway. Here, we asked whether adaptation to environmental variance occurs upstream or

downstream of this combination.

To determine the locus of variance adaptation, we presented visual and olfactory white noise

inputs simultaneously. The inputs were uncorrelated with themselves or each other; one input

remained at constant variance while the other periodically switched between low and high variance.

We analyzed the resulting behavior assuming that the turn rate was a nonlinear function of a linear

combination of filtered light (xL) and odor (xo), each of which was subject to independent input

rescaling

rðt;xo;xLÞ ¼ lðaðtÞxo;bðtÞxLÞ (7)

lðxo;xLÞ ¼ l0 expðaxo þ bxLÞ (8)

If the larva adapted to variance in each sense individually, we would expect that only the stimulus

whose variance was changing would be subject to adaptation, for example for changing odor vari-

ance, we would expect a to vary in time and b to be constant. On the other hand, if the larva

adapted to the variance of, and hence rescaled, the combined odor and light input, we would

expect that whether the odor or light were switching variance, both a and b would change. We

found that only the response to the switching stimulus adapted, while for the fixed-variance stimulus,

the turn-rate remained constant (Figure 7), indicating that variance adaptation is accomplished on a

uni-sensory basis and prior to multi-sensory combination.

Note that we have simplified the rate function to be an exponential of a linear (rather than qua-

dratic) function of xo and xL. This choice is motivated in the next section, but the same conclusion -

Figure 9 continued

stimulus with a fluctuating background of carbon dioxide. The same as (a) but the stimulus was blue noise of

constant variance. Number of experiments, animals in Table 1

DOI: https://doi.org/10.7554/eLife.37945.015
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that larvae adapt to variance on a unisensory basis - is reached if a quadratic combination of odor

and light is used instead.

We next asked whether variance adaptation was a unique feature of the sensory systems or a

more general feature of the navigational circuit. To probe whether variance adaptation can occur in

the portion of the navigational circuit that processes combined odor and light information, we pre-

sented larvae with visual and olfactory stimuli of fixed variance, but changed the variance of the

combined input.

To create a stimulus with constant uni-sensory variance but changing multi-sensory variance, we

presented random white noise visual and olfactory stimuli of constant variance but altered the corre-

lation between them. In the ‘high variance’ condition, changes in odor and light were negatively cor-

related (correlation coefficient = �0.8), so unfavorable decreases in odor coordinated with

unfavorable increases in light. In the ‘low variance’ condition, changes in odor and light were posi-

tively correlated (correlation coefficient = +0.8), so that favorable increases in odor were coupled

with unfavorable increases in light. A circuit element that received only light or odor inputs would be

unable to distinguish between the ‘high’ and ‘low’ variance conditions, but an element that received

a sum of light and odor inputs would observe a much more dynamic environment in the ‘high vari-

ance’ condition.

To analyze these experiments, we created a rotated coordinate system based on xo and xL, the

outputs of the odor and light filters (Gepner et al., 2015) (Figure 8—figure supplement 1),

u¼ ðcosð�Þxo þ sinð�ÞxLÞ (9)

v¼ ð� sinð�Þxo þ cosð�ÞxLÞ (10)

� is a parameter that controls the weighting of odor and light along the two axes of the rotated

coordinate system. We constructed the stimulus so that for �¼ 45
�, u and v were uncorrelated, and

had oppositely changing variances with s2

high ¼ 9s2

low. We then analyzed the resulting behavior as

before, assuming the turn rate was a nonlinear function of u and v, each of which was subject to

independent input rescaling

rðt;u;vÞ � lðauðtÞu;avðtÞvÞ (11)

lðxo;xLÞ ¼ l0 expðauþ bvÞ (12)

As in our previous work (Gepner et al., 2015), we found a value of � (38�) for which b»0 for the

entire data set. For this value of �, b»0 in both the low and high variance conditions.

Because v had negligible influence on the turn decision, there was no way to determine av. We

found that au varied with time, increasing when the variance of u was lower, although the adaptation

was less pronounced than for the uni-sensory variance changes (Figure 7). This adaptation must be

implemented by circuit elements that have access to both light and odor inputs, showing that ele-

ments of the navigational circuit well downstream of the sensory periphery also have the ability to

adapt to variance.

Input rescaling likely occurs near the sensory periphery; sense-specific
variance adaptation suggests multiplication as a mechanism for
multisensory integration
When presented with both light and fictive odor cues, larvae adapt to the variance of each sense

individually prior to multi-sensory combination (Figure 7). We previously found that larvae linearly

combine odor and light stimuli to make navigational decisions (Gepner et al., 2015). Taken

together, these results require a form of variance adaptation that preserves linearity.

Measurement of variance is an inherently nonlinear computation, and we are not aware of any

biophysical model of variance adaptation that preserves a linear representation of the stimulus.

Adaptation to variance can be achieved by rescaling the output of a rectifying nonlinearity

(Ozuysal and Baccus, 2012) or by summation of saturating nonlinearities with correlated inputs

(Nemenman, 2012; Borst et al., 2005). A modified Hodgkin-Huxley model of salamander retinal

ganglion cells (Kim and Rieke, 2003; Kim and Rieke, 2001) showed that scaling of the linear filter

(equivalent to scaling the input to the nonlinear function) resulted from adaptation of slow Na
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+ channels to the mean firing rate of the neuron. While this model linearly rescales the filter, it

requires feedback from the nonlinear output of the neuron.

Rectified signals encoding opposite polarities can be combined to produce a linear response

(Werblin, 2010; Molnar et al., 2009), but there is no evidence of such competing pathways in the

larva’s olfactory system. The adult fly adapts to variance beginning in the olfactory receptor neurons

themselves (Gorur-Shandilya et al., 2017), making it further unlikely that variance adaptation in the

larva is accomplished through rescaling of downstream opponent pathways.

How does the larva adapt to variance through a nonlinear process, prior to apparently combining

sensory signals linearly? We can resolve this puzzle by changing our model of multisensory integra-

tion. In our previous work (Gepner et al., 2015), we considered a model in which odor and light

turning decisions were mediated by entirely separate pathways, both modeled as LNP processes

(Figure 8a).

l2ðxo;xLÞ ¼ loðxoÞþlLðxLÞ (13)

This model would be easy to reconcile with modality-specific variance adaptation, but it was far

less consistent with our observations of larvae’s responses to multisensory input than a competing

model (Figure 8b) that described the two-input rate function l2ðxo;xLÞ as a one-input function of a

linear combination of odor and light

l2ðxo;xLÞ ¼ l1ðaxo þ bxLÞ (14)

While this model makes predictions that are consistent with our multisensory white noise and

step experiments, to be consistent with our multisensory variance adaptation experiments, it

requires an unknown form of variance adaptation that preserves linearity.

We propose an alternate model (Figure 8c), that the two-input rate function might be the prod-

uct of two unisensory rate functions, as recently found in human psychophysical experiments

(Parise and Ernst, 2016).

l2ðxo;xLÞ ¼ loðxoÞlLðxLÞ (15)

Multiplicative multisensory integration would allow unisensory adaptation to variance through a

rectifying nonlinearity while preserving a fundamental feature we observed in multisensory decision

making, the ability of favorable changes in one stimulus modality to compensate for unfavorable

changes in the other.

In this work and previously (Gepner et al., 2015), we modeled the rate function as an exponential

of a polynomial function of the filtered input. For a linear polynomial, there is no difference between

adding odor and light inputs prior to the exponential nonlinearity and multiplying two exponential

functions

lðxo;xLÞ ¼ l0 expðaxoþ bxLÞ ¼ l0 expðaxoÞexpðbxLÞ (16)

In analyzing the multisensory experiments of Figure 7, we therefore modeled the rate as an expo-

nential of a linear combination of odor and light, to avoid favoring one model of integration over the

other.

For exponentials of a quadratic polynomial, like the ’ratio-of-gaussians’ (Pillow and Simoncelli,

2006) we used previously, there are quantitative differences between adding the rate function inputs

and multiplying rate function outputs, but these can be small, especially if the polynomials are nearly

linear over the range of inputs provided in the experiment. We reanalyzed the data of Gepner et al.

(2015) to determine if multiplicative integration could describe the results as well. While the two

models made very similar predictions, we found that for both white noise (Figure 8—figure supple-

ment 1) and step experiments (Figure 8—figure supplement 2), the multiplicative model produced

a statistically significantly better fit to the data than did the early linear combination model, even

after accounting for the different number of model parameters. The multiplicative model also better

predicted held-out data. Thus, the multiplicative model is at least as explanatory as the early linear

combination model for multisensory experiments with constant variance inputs, and it can be recon-

ciled more easily with our finding that larvae adapt to the variance of a sensory input prior to
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multisensory combination. Taken together, these results suggest multiplication as a mechanism for

multisensory integration.

Larvae adapt to variance of natural odor backgrounds
In all experiments presented so far, we explored variance adaptation using blue light to present a

natural visual stimulus and red light to create fictive olfactory stimuli via optogenetic activation of

sensory neurons. Although adaptation to variance of blue light clearly represents a natural response

of the visual system, we might wonder to what extent adaptation to variance of fictive stimuli reflects

particular properties of the optogenetic channel or peculiarities in fictive rather than natural sensory

transduction. We therefore sought to directly measure whether larvae adapt to variance in a natural

odor environment.

Although it is difficult to ’flicker’ an odor across an extended arena with the speed and precision

required for reverse correlation, it is more straightforward to create an odor background of known

variance, even if the actual gas concentrations at any particular point in space and time are unknown.

We placed larvae in a flow chamber with a constant stream of carrier air and a varying amount of car-

bon dioxide injected at the inlet. The resulting concentration fluctuations propagated across the

arena while being attenuated somewhat by diffusive mixing. Because the flow was laminar, the entire

system could be described by linear equations, and the average fluctuation of carbon dioxide at any

point in the arena was therefore linearly dependent on the magnitude of the fluctuations at the inlet.

We varied the concentration of CO2 at the inlet in a sinusoidal pattern

½CO2� ¼ �þA sinð2pt=tÞ (17)

In all our experiments, �, the mean concentration, was 5%, and t, the period of oscillation was 20

s. In the low variance condition, A, the amplitude of the oscillation was 1%, while in the high variance

condition A¼ 4%. In both conditions, we presented identical red light inputs of constant variance to

larvae expressing CsChrimson in CO2 receptor neurons. We then asked whether the larva’s response

to the fictive stimulus depended on the variance in the background concentration of natural carbon

dioxide.

Using our standard reverse-correlation analysis, we extracted the linear kernel (which was the

same in both low and high variance conditions) and nonlinear rate function. We found that the rate

function was steeper in the low variance context (ahigh=alow ¼ 1:56� 0:07), indicating that a fluctuat-

ing background of CO2 reduces the larva’s sensitivity to optogenetic activation of the CO2 receptor

neurons (Figure 9a).

We next asked whether changing the background variance of CO2 would influence the response

of the larva to activation of the Or42a receptor neuron, which does not respond to carbon dioxide.

We found that a higher variance CO2 reduced the response of larvae to activation of the Or42a

receptor neurons (ahigh=alow ¼ 1:35� 0:05), but this effect was less pronounced than for activation of

the CO2 receptor neurons (Figure 9a).

While it is sensible that variation in CO2 levels should affect the sensitivity of the larva to optoge-

netic perturbation of the CO2 receptor neuron, it is somewhat surprising that CO2 variation altered

the response to perturbation of an olfactory neuron that does not respond to CO2. This effect might

be due to interactions between the Gr21a and Or42a neurons or pathways, for example lateral pre-

synaptic inhibition (Olsen and Wilson, 2008). Or the variation in response to optogenetic activation

of the sensory neurons we measured could be due to other effects than variance adaptation -for

example, a mathematical result of combining an oscillating signal with white noise prior to a rectify-

ing nonlinearity.

Larvae did not modify their visual sensitivity in response to changes in fictive odor variance (Fig-

ure 7). We therefore expected that if the effect we observed were due to variance adaptation, it

would be absent for white noise visual stimuli combined with natural odor backgrounds. Indeed,

when we presented larvae with white noise visual stimuli in a fluctuating CO2 background, we found

that the visual response was insensitive to the magnitude of the fluctuations (Figure 9b).
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Discussion
In behavioral reverse correlation experiments, we analyzed the output of the entire sensory motor

pathway using techniques developed to characterize sensory coding. Despite measuring a behav-

ioral output rather than neural activity in early sensory neurons, we resolved features previously

described in sensory systems, including adaptation to variance by input-rescaling, temporal dynam-

ics of adaptation consistent with optimal variance estimators, and stimulus-specific variance

adaptation.

Rates of adaptation suggest that sensory input filters are matched to
motor output timescales
In LNP model fits to the reverse-correlation experiments, we found that the convolution kernels for

visual and fictive olfactory stimuli have very similar shapes, suggesting that both visual and olfactory

stimuli are low passed to the same temporal resolution (Gepner et al., 2015). This was somewhat

puzzling. In a natural environment and close to surfaces, we would expect that light levels could

change much faster than could odor concentrations, whose kinetics would be determined by diffu-

sion and laminar flow. Shouldn’t the larva therefore process light information faster than odor

information?

One resolution to this puzzle is that in behavioral reverse correlation we are not directly measur-

ing the sensory response, but instead the sensory response convolved with the larva’s motor output

and further limited by the temporal resolution of our video analysis. Therefore, the measured shape

of the filter could simply reflect the latency in the motor output pathway or in our analysis software.

But there are reasons to believe that the filter kernels reflect the true temporal dynamics of the

sensory systems. The decision to cease a run and end a turn is a navigational response to stimulus

changes generated by larva’s movement through the environment. For this decision, the larva should

seek sensory input that changes at the frequency of its own peristaltic movement, and this time scale

should be the same for light and odor.

More generally, there is little value in making a decision faster than it can be implemented by the

motor output pathway and a cost (less accuracy) to higher bandwidth measurements. These argu-

ments would suggest that the timescales measured in reverse correlation should be similar to the

actual timescales of the sensory neuron filters. Indeed, electrophysiological (Schulze et al., 2015;

Gorur-Shandilya et al., 2017) and optical (Si et al., 2017) recordings in olfactory sensory neurons

reveal that these neurons filter odor inputs with similar dynamics to those observed in our behavioral

reverse correlation experiments.

Variance adaptation provides an independent measure of the bandwidth of the sensory input pro-

cess. The time it takes larvae to adapt following a switch from high to low variance is long compared

to the latencies of the motor output pathway and our analysis software, and, if the larvae’s estimates

of variance are optimal, determined by the input sampling rate. If light and odor were sampled at

different rates, we would expect different rates of adaptation following a switch to low variance. In

fact, we see the same rates of adaptation for both light and odor, and these rates are consistent

with an optimal estimator sampling the stimulus at a similar frequency to the bandwidth of the con-

volution kernels. These suggest that sensory input is indeed filtered to match the frequency of the

larva’s own motion.

If the bandwidth of the filter kernels is set by the speed of the larva’s own motion and not the

temporal dynamics of the environment per se, this would also explain why the temporal structures of

the kernels do not adapt to changes in variance (Figure 1d, Figure 3a).

Conclusion
In this study, we used behavioral reverse correlation to measure adaptation to environmental vari-

ance in a complete sensory-motor transformation. We found that larvae adapted to the variance of

visual and fictive olfactory stimuli, that the rate of adaptation was consistent with an optimal esti-

mate of the variance, and that larvae adapted to the variance in each sensory input individually.

These results suggest a novel model of multisensory integration in the larva: multiplication of nonlin-

ear representations of sensory input rather than addition of linear representations.

While variance adaptation has been well studied in early sensory neurons, the study of variance

adaptation in complete sensory-motor transformations is in its early stages. This work contributes a
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study of variance adaptation in a navigational decision-making task as well as behavioral analysis

of multi-sensory variance adaptation. Because the larva is transparent and amenable to genetic

manipulation, the methods we developed here can be applied to optogenetic manipulation of inter-

neurons as well, to understand whether variance adaptation to neural activity is a general feature of

neural circuits or specific to early sensory inputs.

Changing the variance of background CO2 levels changes the larva’s response to activation of

the CO2 receptor neuron but not its response to activation of the photoreceptors, suggesting that

variance adaptation to a natural stimulus coupled with optogenetic activation of putative intermedi-

ate interneurons might be used to trace the flow of information through neural circuits.

Materials and methods

Key resources table

Reagent type
(species) or Resource Designation Source or reference Identifiers AdditionalInformation

Strain
(Drosophila melanogaster)

Berlin wild type gift of Justin Blau,
NYU

Genetic reagent
(D. melanogaster)

w1118;;20XUAS-
CsChrimson-mVenus

Bloomington Stock
Center

RRID:BDSC_55136

Genetic reagent
(D. melanogaster)

w*;;Gr21a-Gal4 Bloomington Stock
Center

RRID:BDSC_23890

Genetic reagent
(D. melanogaster)

w*;;Or42a-Gal4 Bloomington Stock
Center

RRID:BDSC_9969

Genetic reagent
(D. melanogaster)

w*;;Or42b-Gal4 Bloomington Stock
Center

RRID:BDSC_9972

Genetic reagent
(D. melanogaster)

w*;;Or35a-Gal4 Bloomington Stock
Center

RRID:BDSC_9968

Genetic reagent
(D. melanogaster)

w*;;Or59a-Gal4 Bloomington Stock
Center

RRID:BDSC_9989

Software,
algorithm

MAGATAnalyzer (Gershow et al., 2012)
github.com/samuellab/
MAGATAnalyzer-Matlab-Analysis/

d9d72b2b43c82af...

Fly strains
The following strains were used: Berlin wild type (gift of Justin Blau), w1118;; 20XUAS-CsChrimson-

mVenus (Bloomington Stock 55136, gift of Vivek Jayaraman and Julie Simpson, Janelia Research

Campus), w*;;Gr21a-Gal4 (Bloomington stock 23890), w*;;Or42a-Gal4 (Bloomington stock 9969),

w*;;Or42b-Gal4 (Bloomington stock 9972), w*;;Or35a-Gal4 (Bloomington stock 9968), w*;;Or59a-

Gal4 (Bloomington stock 9989)

Crosses
About 50 virgin female UAS-CsChrimson flies were crossed with about 25 males of the selected

Gal4 line. F1 progeny of both sexes were used for experiments.

Larva collection
Flies were placed in 60 mm embryo-collection cages (59–100 , Genessee Scientific) and allowed to

lay eggs for 3 hr at 25C on enriched food media (’Nutri-Fly German Food,’ Genesee Scientific). For

all experiments except the Berlin response to blue light (top rows of Figure 1d,e; Figure 2a,b; top

row of Figure 3; top row of Figure 5; left column of Figure 6), the food was supplemented with 0.1

mM all-trans-retinal (ATR, Sigma Aldrich R2500), and cages were kept in the dark during egg laying.

When eggs were not being collected for experiments, flies were kept on plain food at 20C.

Petri dishes containing eggs and larvae were kept at 25C (ATR +plates were wrapped in foil) for

48–60 hr. Second instar larvae were separated from the food using 30% sucrose solution and washed

in deionized water. Larval stage was verified by size and spiracle morphology. Preparations for

experiments were carried out in a dark room, under dim red (for phototaxis experiments) or blue
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(for CsChrimson experiments) illumination. Prior to beginning experiments, larvae were dark

adapted on a clean 2.5% agar surface for a minimum of 10 min.

Behavioral experiments
Approximately 40–50 larvae were placed on a darkened agar surface for behavioral experiments (as

in Gepner et al., 2015). The agar surface resided in a 23 cm square dish (Corning BioAssay Dish

#431111, Fisher Scientific, Pittsburgh, PA), containing 2.5% (wt/vol) bacteriological grade agar

(Apex, cat #20–274, Genesee Scientific) and 0.75% (wt/vol) activated charcoal (DARCO G-60, Fisher

Scientific). The charcoal darkened the agar and improved contrast in our dark-field imaging setup.

The plate was placed in a darkened enclosure and larvae were observed under strobed 850 nm infra-

red illumination (ODL-300–850, Smart Vision Lights, Muskegon, MI) using a 4 MP global shutter

CMOS camera (Basler acA2040-90umNIR, Graftek Imaging) operating at 20 fps and a 35 mm focal

length lens (Fujinon CF35HA-1, B&H Photo, New York, NY), and equipped with an IR-pass filter

(Hoya R-72, Edmund Optics). A microcontroller (Teensy ++2.0, PJRC, Sherwood, OR) coordinated

the infrared strobe and control of the stimulus light source, so stimulus presentation and images

could be aligned to within the width of the strobe window (2–5 ms). Videos were recorded using cus-

tom software written in LABVIEW and analyzed using the MAGAT analyzer software package

(Gershow et al., 2012; https://github.com/samuellab/MAGATAnalyzer-Matlab-Analysis). Further

analysis was carried out using custom MATLAB scripts. Table 1 gives the number of experiments,

animals, turns, and head sweeps analyzed for each experimental condition.

To determine the number of experiments to perform, we did a back-of-the-envelope calculation,

assuming that we would find the time-varying rate function by histogram division, and set 30 experi-

ments as the target for the visual switching experiment of Figure 3. When we actually analyzed the

data using more sophisticated methods, we found that fewer experiments would yield adequate sig-

nal to noise. We then aimed for at least 10 experiments for each condition, although we did more or

(in one instance) fewer depending on the fecundity of the flies. For Figure 9, only a single constant

rate function is extracted using all the available data, so fewer experiments could be performed in

each condition.

All replicates are biological replicates, except for the jackknife predictions of held-out data in Fig-

ure 2 and Figure 8—figure supplement 1 and bootstrapping to produce the shaded error regions

on the turn-triggered averages.

Stimuli
Light intensity
Stimuli were provided by changing the intensity of blue (central wavelength l ¼ 447:5 nm) and red

(l ¼ 655 nm) lights on a custom-built LED board (Gepner et al., 2015) for visual and fictive olfactory

signals respectively. The red light intensity varied from 0 to 900
�W
cm2. For unisensory visual experi-

ments, the blue light intensity varied from 0 to 50
�W
cm2. For multi-sensory experiments (Figure 7), the

blue light intensity varied from 0 to 3
�W
cm2.

Light sequences
Light levels were specified by values between 0 (off) and 255 (maximum intensity). These values

changed according to a Brownian random walk (Gepner et al., 2015), whose derivatives on all time

scales are independent identically distributed Gaussian variables.

The light level was set by pulse width modulation and updated every 1=120 s. Ij represents the

intensity at time tj ¼ j=120. For all experiments except those of Figure 7 (bottom row), sequences of

light levels were generated according to these rules:

I0 ¼ 127 (18)

Ijþ1 ¼ IjþNð0;sÞ (19)

Ij ¼�Ij if Ij<0 (20)

Ij ¼ 510� Ij if Ij>255 (21)

where Nð0;sÞ was a Gaussian random variable with mean 0 and variance s2. The sequence was gen-

erated in floating point (i.e. non-integer values were allowed) and converted to integers for output.
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We analyzed behavioral responses to light intensity derivatives, so the input variance was dictated

by s2. For low-variance conditions, s2 ¼ 1 and for the high variance condition s2 ¼ 9. In the experi-

ments displayed in the top two rows of Figure 7, the non-switching stimulus was generated with

s2 ¼ 4, although the same conclusions were reached when the non-switching stimulus was gener-

ated with s2 ¼ 1 or 9. In Figure 9, s2 ¼ 9 for all stimuli.

Sequences were not reused within an experimental group but might be reused between groups.

For multi-modal experiments in Figure 7 (top and middle), independent sequences were used for

each stimulus.

For the experiments with uncorrelated blue light intensities (Figure 4), a new light level was

selected every 0.25 s. In the low variance condition, these were drawn from a normal distribution

with mean 128 and standard deviation 17. In the high variance condition, the distribution had mean

128 and standard deviation 51. Out of range values (below 0 or above 255) were adjusted to 0 or

255 appropriately.

Correlated multisensory sequences
For multi-modal experiments in Figure 7 (bottom), we generated two correlated Brownian sequen-

ces Io and I l:

Iojþ1
¼ Ioj þ so (22)

I ljþ1
¼ I lj þ sl (23)

where so and sl were normally distributed with mean 0 and individual variances s2.

The correlation coefficient of the odor and light inputs, c, is given by

c¼ hsosli
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

hðsoÞ2ihðslÞ2i
q (24)

¼ hsosli
s2

(25)

In previous work, we found that larvae respond to a single combination of filtered odor and light

inputs

u¼ cosð�Þxo þ sinð�Þxl (26)

We did not know a priori the exact value of � we would find in a variance switching experiment,

so we created a stimulus that would have a comparable switch in variance s2

high ¼ 9s2

low for �¼ 45
�.

The variance of u ¼ 1
ffiffi

2
p ðso þ slÞ is

s2

u ¼ h1
2
ðsoþ slÞ2i ¼ s2ð1þ cÞ (27)

so to change the variance between s2

u ¼ 9 and s2

u ¼ 1, we periodically changed the light-odor correla-

tion coefficient between a positive and negative value: c¼�0:8, and set s2 ¼ 5.

To generate this signal, we chose

so ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffi

1� jcj
p

� x1 þ
ffiffiffiffiffi

jcj
p

� x3 (28)

sl ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffi

1�jcj
p

� x2 �
ffiffiffiffiffi

jcj
p

� x3 (29)

where jcj ¼ 0:8 and x1, x2, and x3 are three different and uncorrelated Gaussian random variables

with mean 0 and variance s2 ¼ 5. Keeping in mind that the odor kernel has opposite sign to the light

kernel, the high variance condition is when c¼�0:8 : sl ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffi

1� jcj
p

� x2 �
ffiffiffiffiffi

jcj
p

� x3 and the low variance

condition is when c¼þ0:8
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Natural carbon dioxide background
Reverse correlation experiments of Figure 9 were conducted in a laminar flow chamber with a glass

lid through which the behavioral arena could be observed. Mass Flow Controllers (AAlborg) were

controlled via Labview to generate a sinusoidally varying CO2 concentration via mixing of pure CO2

and filtered compressed air. Air flow was fixed at 4 L/min and CO2 flow varied sinusoidally, with a

period of 20 s, either between 0.12 and 0.22 L/min or between 0 and 0.35 L/min, respectively for

low and high variance experiments.

Data extraction
Videos of behaving larvae were recorded using LabView software into a compressed image format

(mmf) that discards the stationary background (Gershow et al., 2012; Kane et al., 2013). These vid-

eos were processed using computer vision software (written in C++ using the openCV library) to

find the position and posture (head, tail, midpoint, and midline) of each larva and to assemble these

into tracks, each following the movement of a single larva through time. These tracks were analyzed

by Matlab software to identify behaviors, especially runs, turns, and head sweeps.

The sequence of light intensities presented to the larvae was stored with the video recordings

and used for reverse-correlation analysis.

Data analysis
For all experiments, we discarded the first 60 s of data to let the larvae’s response to a novel envi-

ronment dissipate. We use lðxÞ to indicate a static rate function that does not contain a variance

adaptation term and rðxÞ; rðx; tÞ to indicate full rate functions that include variance adaptation.

Kernels and rate functions
We calculated kernels and rate functions separately for low and high variance by pooling together

all the data from low variance and high variance contexts. In Figure 1 and Figure 2, we discarded

the first 15 s from each cycle. In Figures 3 and 7, we discarded the first 10 s from each cycle.

Filters (Figures 1d, 3a and 4a): Filters, or kernels, were calculated as the ’turn-triggered’ average

signal for each set of experiments (Gepner et al., 2015). That is, we extracted the sequences of

light-intensity derivatives, in bins of 0.1 s, surrounding every turn, and averaged them together. We

scaled the low and high variance average signals to have the same maximum value.

For experiments with random intensities (Figure 4), we subtracted the mean of the stimulus from

the turn-triggered average prior to scaling. To remove artifacts associated with the 4 Hz update

rate, we low passed the turn-triggered averages using a Gaussian filter with s ¼ 0:25s.

To calculate the shaded error regions, we adopted a bootstrapping approach (Zhou et al.,

2018). For each set of experiments (e.g. the 17 blue light experiments of Figure 1):

1. We generated a resampled data set by randomly selecting experiments and larvae with
replacement
1. we selected, with replacement, a random subset of equal length. For example, if there

were four experiments, a valid subset might be (1,1,3,2)
2. For each experiment in this subset, we selected, with replacement, a random subset of

individual larvae.
2. We calculated the turn-triggered average of this resampled data set to create a single boot-

strapped average.
3. We repeated the above steps 100 times
4. The shaded error region is the standard deviation at each time bin of the 100 bootstrapped

averages.

Compared to simply calculating the standard error of the mean for each time bin, this approach

respects the possibility of correlated sources of noise in the experiments.

Direct estimation of turn rates (Figures 1e, 3b, 7 and 9): The turn rates (in min�1), were calculated

from the data as:

rðxf Þ ¼ 60 �Nturnðxf Þ
Nrunðxf Þ

� 1
Dt

(30)
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srðxf Þ ¼ 60 �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

Nturnðxf Þ
p

Nrunðxf Þ
� 1
Dt

(31)

where Dt¼ 1

20
s was the sampling period. Nturnðxf Þ is the number of turns observed with the filtered

signal xf within one of the n¼ 8 bins containing xf :Nrunðxf Þ is the total number of data points where

the filtered signal was in the histogram bin and larvae were in runs and thus capable of initiating

turns.

Maximum likelihood estimation of static turn rates
For Figures 1e, 3b and 9, we separately fit high and low variance rate functions to exponentials of

quadratics:

rðxÞ ¼ l
ðhÞ
0

expðbðhÞxþ cðhÞx2Þ high variance

l
ðlÞ
0
expðbðlÞxþ cðlÞx2Þ low variance.

(

(32)

with l
ðhÞ
0
;l

ðlÞ
0
, bðhÞ;bðlÞ, and cðhÞ;cðlÞ as independent parameters.

The probability of observing at least one turn in an interval Dt given an underlying turn rate r is

1� e�rDt. In the limit of short Dt this reduces to rDt. The probability of not observing a turn in the

same interval is e�rDt.

For a model of the turn rate, the log-likelihood of the data given that model is therefore

logðPðdatajmodelÞÞ ¼
X

turn

logðrðxÞDtÞ�
X

no turn

rðxÞDt (33)

where x is the filtered signal, rðxÞ is the turn rate predicted by the model, and Dt¼ 1

20
s is the sampling

rate in our experiments.
P

no turn is a sum over all points when larvae were in runs and thus capable of

initiating turns.

We used the MATLAB function fminunc to find the parameters that maximize this log- likelihood.

Figure 7b,c were fit in the same fashion but for exponentials of linear functions (c � 0).

Comparison of rescaling models (Figure 2)
For the experiments in Figure 1d–e, we model the rate function as: lðxÞ ¼ l0 expðbxþ cx2Þ, and ask

if adaptation is better characterized by:

. an input rescaling:

rðt;xÞ ¼ lðaðtÞ � xÞ

. an output rescaling:

rðt;xÞ ¼ aðtÞ �lðxÞ

. or a ’re-centered’ output rescaling (where the basal rate is adjusted after rescaling):

rðt;xÞ ¼ aðtÞ � ðlðxÞ�l0Þþl0

For each model, we fit low and high-variance rate functions simultaneously (excluding the first 15

s of each cycle) by minimizing the negative-log-likelihood. We set ahigh ¼ 1 and thus have four fit

parameters for each model (l0, b, c, and alow). We plot the resulting low and high-variance rate func-

tions for each model (Figure 2a,d), and also fit the data to a null model with no adaptation (only

three fit parameters: l0, b, c), for which the low and high-variance rate functions are identical. We

find that the input rescaling is the best model of the larvae’s turn-rate adaptation.

We then fit a subset (14/17 experiments) of the data to each model and find how well each one

predicts the remainder of the data (3/17 experiments). By permuting the fitted and tested portions

of the data, we find jackknife estimates of the log-likelihood of the test-data given the fit rate func-

tion (mean and standard error shown in Figure 2b,e). We then compare the input and recentered

output models directly, showing the histogram of log-likelihoods for all different permutations of fit-

ted and tested portions (Figure 2c,f).
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In Figure 2b,c 20/680 and in Figure 2d,f 97/680 jack-knives resulted in the recentered output

model producing a negative rate for some of the test data. These were excluded from analysis.

Assuming the entirety of a test data set is generated by the same process, we would expect that

the log-likelihood of that data set given any model would be proportional to the length of the data

set. To normalize out the effects of fluctuations in the number of animal-minutes in the held-out data

sets, we therefore normalized the log-likelihood

�LLj ¼ LLj � hTi=Tj (34)

where LLj is the likelihood of the test data in the jth jack-knife, Tj is the total observation time in the

jth test data set, and hTi ¼ 1

N

PN
j¼1

Tj.

Bayes information criterion
The Bayes Information Criterion (BIC) is defined as

logðndataÞ � nparams � 2 � logðPðdatajmodelÞÞ (35)

BIC is closely related to the Aikake Information Criterion (AIC) but more strongly favors models

with fewer parameters. DBIC<� 10 strongly favors the more negative model (roughly equivalent to

p<0:01).

We chose ndata, the sample size to be the total number of larva-seconds. If we had chosen ndata to

be the total number of larvae, DBIC would shift to favor models with more parameters by about

seven per extra parameter. If we had chosen ndata to be the total number images of individual larva

analyzed, then DBIC would shift to favor models with fewer parameters by 3 (log 20) per extra param-

eter. Neither of these changes would have affected which model fits were preferred or the signifi-

cance of the differences between models.

Calculation of aðtÞ (Figures 3c, 5a and 7a)
For uni-sensory experiments (Figures 3c and 5a), we characterized adaptation of the turn rate as an

input rescaling:

rðt;xÞ ¼ lðaðtÞ � xðtÞÞ (36)

where x is the (convolved) stimulus value, and l is a fixed nonlinear function:

lðxÞ ¼ l0 expðbxþ cx2Þ (37)

Our goal is to find the values of l0 , b, c, and aðtÞ that maximize the probability of the data and a

prior probability that constrains the smoothness of a. We grouped all experiments together and

found a single aðtÞ for each time point between 60 s and 20 min; we did not use any prior knowl-

edge of variance switching times in the extraction of best-fit parameters. We use an iterative process

to find the best fit model parameters.

First, we assume that a � 1, ignoring adaptation to variance, and calculate the best fit parameters

of a static rate function, lðxÞ ¼ l0 expðbxþ cx2Þ, using maximum likelihood estimation described

above.

Next, we calculate the time-varying scaling parameter aðtÞ. At each time point ti, we use Bayes’

rule to calculate the probability of a given value of a

Pðaijdataj�iÞ ¼
1



Pðdataijdataj<i;aiÞ �Pðaijdataj<iÞ (38)

In the LNP formulation, we assume that turns are generated by a memoryless Poisson process, so

we simplify Pðdataijdataj<i;aiÞ ¼ PðdataijaiÞ. We assume that the prior probability ai of alpha depends

only on ai�1, so Pðaijaj<iÞ ¼ Pðaijai�1Þ. We can then write

Pðaijdataj�iÞ ¼
1



PðdataijaiÞ �

Z

dai�1Pðaijai�1ÞPðai�1jdataj<iÞ (39)

where Pðai�1jdataj<iÞ is the distribution of a values at the previous time step, and PðdataijaiÞ is the
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likelihood of seeing the observed turn times, datai, given that they are generated by a Poisson pro-

cess with a mean rate ri:

PðdataijaiÞ ¼
Y

turn

riðxÞDt
Y

no turn

expð�riðxÞDtÞ (40)

where riðxÞ ¼ lðaixÞ, using the fixed static rate function calculated previously. For Pðaijai�1Þ, we

chose a Gaussian prior

Pðaijai�1Þ ¼
1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

4pDt=t
p expð�ðai�ai�1Þ2

4Dt=t
Þ (41)

Dt is the time-step of the fitting routine and t controls the smoothness of our estimate of a:Dt¼
0:1s in Figure 3c and Dt¼ 1s in Figure 5a, and with t¼ 5s for both.

Using this formulation, we calculate the most likely value of ai at each time point ti (aðtÞ) and the

uncertainty in this estimate (sðtÞ). We use the new values of aðtÞ to find new best fit parameters of

the static rate function and iterate the process until the log-likehood converges.

Finally, to describe how a varies in response to changes in variance, we calculated an appropri-

ately weighted average over cycle time. Call the time of the start of each cycle (e.g. switch to low

variance) tswitchk , then

aðtÞ ¼
X

k

wkaðtswitchk þ tÞ (42)

wk ¼
1

sðtswitchk þ tÞ=
X

k

1

sðtswitchk þ tÞ (43)

To verify that the asymmetry in the timescales behavior is not an artifact of our analysis, we gener-

ate artificial turn-decisions from a rate-function that switches instantaneously when the variance

switches. We then estimate the corresponding scaling factors for these new data and find that our

estimator tracks the adaptation equally quickly for upward and downward switches (black curves in

Figure 3c).

For multi-sensory experiments (Figure 7a), the rate is modeled as

rðxo;xlÞ ¼ lðaðtÞ � xoðtÞþbðtÞ � xlðtÞÞ

Two dimensional, (a;b) distributions are calculated at each time step:

Pðai;bijdataj�iÞ ¼
1



Pðdataijai;biÞ �Pðai;bijdataj<iÞ (44)

with

Pðai;bijdataj<iÞ ¼
Z

dai�1dbi�1Pðai;bijai�1;bi�1ÞPðai�1;bi�1jdataj<iÞ (45)

The prior is now a two-dimensional Gaussian:

Pðai;bijai�1;bi�1Þ ¼
1

2p
ffiffiffiffiffiffi

jSj
p exp

�

� 1

2
ða!� �!ÞTS�1ða!� �!Þ (46)

where

a!¼ a

b

� �

(47)

�!¼
�a

�b

� �

¼ ai�1

bi�1

� �

(48)
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S
�1 ¼ 1

2Dt

ta tab

tab tb

� �

(49)

and jSj is the determinant of S.

Dt ¼ 0:1s ta ¼ tb ¼ 5s, and tab ¼ 0 so that no correlation between changes in a and b was intro-

duced in our prior expectation.

To find aðtÞ and bðtÞ, we marginalize the (ai;bi) distribution at each time step and calculated the

most likely value and uncertainty of a and b separately.

For the correlated stimuli (Figure 7a, bottom row), we first looked for an angle � such that the

rate function could be characterized by a linear combination of filtered odor and light inputs,

u ¼ ðcosð�Þxo þ sinð�ÞxlÞ (Gepner et al., 2015). We thus looked for a model of the form:

rðuÞ ¼ lðauuÞ (50)

lðuÞ ¼ l0 expðauÞ (51)

where au described the rescaling from high to low variance. We fit low and high-variance rate func-

tions simultaneously (excluding the first 10 s of each cycle) by minimizing the negative-log-likelihood.

We set au;high ¼ 1 and thus have four fit parameters (l0, a, �, and au;low). In this way we found �»38�.

Using this value of �, we then fit the data to the two-coordinates model:

rðu;vÞ ¼ lðu;vÞ (52)

lðu;vÞ ¼ l0 expðauþ bvÞ (53)

with u defined above, v the coordinate orthogonal to u : v¼ ð� sinð�Þxoþ cosð�ÞxlÞ. There, we found

b»0.

We could then use the one-coordinate model (Equation 51) and the iterative procedure

described earlier in this section (Equation 40) to calculate auðtÞ using tu ¼ 5s for the correlation time

of the prior distribution (Figure 7a, bottom row).

Bayesian-optimal estimates of the stimulus variance (Figure 6)
We calculate Bayesian-optimal estimates of the stimulus variance (DeWeese and Zador, 1998):

Pðsijsj�iÞ ¼ 1



PðsijsiÞ �Pðsijsj<iÞ

¼ 1



PðsijsiÞ �

R

dsi�1Pðsijsi�1ÞPðsi�1jsj<iÞ
(54)

si = IðtiÞ� Iðti�1Þ is the total change in light level over the sampling interval and forms the input to

the estimator. si is the estimate of the standard deviation of the light level changes and is the output

of the model. We have replaced Pðsijsj<iÞ with PðsiÞ because stimulus samples are uncorrelated.

The sampling time, Dt, determines the rate at which the estimator picks out samples from the

stimulus ensemble to make estimates of the variance. The estimator requires a prior model of how

environmental variance changes with time. We chose a diffusive prior, parameterized by a correla-

tion time t:

Pðsijsi�1Þ ¼
1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

4pDt=t
p expð�ðsi�si�1Þ2

4Dt=t
Þ (55)

Decreasing t increases the speed at which the estimator responds to changes in variance at the

cost of decreasing stability during periods of constant variance. In the absence of measurement

noise, decreasing Dt strictly improves the performance of the estimator, increasing response speed

and stability.

To determine the values of Dt and t that were most consistent with the larva’s behavior, we esti-

mated the stimulus variance using a series of estimators with different choices of Dt and t. For each

such estimate of the signal variance:

st;DtðtÞ ¼ sestðxstimðt0<tÞ;t;DtÞ (56)

we calculated a mapping from variance to rescaling parameter using the relation:
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aðsÞ ¼ a0
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

s2 þs2

0

p (57)

with s0 taken from the switching experiments of Figure 3 and a0 chosen to enforce haðtÞi ¼ 1.

For each set of Dt, t, we now had a predicted rescaling for each time point in the experiments:

aoptðtÞ. To compare these predictions to the data, we found the log-likelihood of the observed

sequence of data given the rate rðt; xÞ ¼ lðaoptðtÞ � xðtÞÞ, with the parameters of the static rate func-

tion lðxÞ ¼ l0 expðbxþ cx2Þ found separately for each set of Dt, t by maximum-likelihood-estimation.

New methods developed
Behavioral reverse correlation using visual and optogenetic stimulation follows previous work

(Gepner et al., 2015; Hernandez-Nunez et al., 2015). Behavioral analysis software was developed

in Gershow et al. (2012). New to this work are: presentation of stimuli with changing variance; anal-

ysis of adaptation to variance, including estimation of the time-varying rescaling parameter, estima-

tion of the rescaling parameter vs. variance, and comparison of the adaptation with predictions of a

Bayes estimator; combination of optogenetic and visual manipulation with fluctuating CO2 back-

ground; multi-sensory variance adaptation including the use of correlated stimuli of constant vari-

ance to produce a multi-sensory signal with changing variance.
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