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This work presents the complete nucleotide sequences of p0801-IMP from Klebsiella

pneumoniae, p7121-IMP from K. oxytoca, and p17285-IMP from Citrobacter freundii,

which are recovered from three different cases of nosocomial infection. These

three plasmids represent the first fully sequenced blaIMP-carrying IncN2 plasmids.

Further comparative genomics analysis of all the five integron-carrying IncN2 plasmids

p0801-IMP, p7121-IMP, p17285-IMP, pJIE137, and p34983-59.134kb indicates that

they possess conserved IncN2 backbones with limited genetic variations with

respect to gene content and organization. Four class 1 integrons (blaIMP-1-carrying

In1223 in p0801-IMP/p7121-IMP, blaIMP-8-carrying In655 in p17285-IMP, In27 in

pJIE137, and In1130 in p34983-59.134kb), two insertion sequence-based transposition

units (ISEcp1-orfRA1-14 in p17285-IMP, and ISEcp1-blaCTX-M-62-1orf477-orfRA1-14

in pJIE137), and a novel Tn1696-related transposon Tn6325 carrying In1130 in

p34983-59.134kb are indentified in the plasmid accessory regions. In1223 and In655

represent ancestral Tn402-associated integrons, while In27 and In1130 belong to

complex class 1 integrons. The relatively small IncN2 backbones are able to integrate

different mobile elements which carry various resistance markers, promoting the

accumulation and spread of antimicrobial resistance genes among enterobacterial

species.

Keywords: IncN2 plasmids, class 1 integron, transposon, blaIMP, antimicrobial resistance

INTRODUCTION

The Ambler B metallo-β-lactamases IMPs are capable of hydrolyzing almost all β-lactams
including carbapenems and, to date, 52 IMP-variant enzymes have been reported in at least 26
species of clinically important Gram-negative organisms such as Pseudomonas, Acinetobacter and
Enterobacteriaceae species all over the world (Zhao and Hu, 2015). IMP producers often employ
additional mechanisms (e.g., membrane permeability defects) and have gained significant attention
due to their high-level resistance to carbapenems.
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Class 1 integrons commonly carry a 5′-conserved segment [5′-
CS], which is composed of the integrase gene intI1, a specific
recombination site attI1 located next to intI1 and recognized by
intI1, and a promoter Pc driving the transcription of cassette-
borne genes and lying within intI1 (Partridge et al., 2009;
Domingues et al., 2012; Gillings, 2014). The blaIMP genes are
often found together with other resistance genes in the variable
gene cassette arrays of class 1 integrons, and these integrons
are further associated with mobile elements such as transposons
and plasmids, leading to the easily mobilization of cassette-borne
resistance genes across various bacterial species (Gillings et al.,
2008).

Plasmids belonging to the IncN incompatibility group are
the important mobile genetic platforms for dissemination of
clinically important resistance genes among enterobacterial
species (Poirel et al., 2011; Chen et al., 2012; Partridge et al.,
2012; Netikul et al., 2014; Sun et al., 2015; Tijet et al., 2016). The
IncN group can be further divided into three subgroups IncN1 to
IncN3. These three subgroups have very similar backbone gene
organization but with limited nucleotide sequence homology
over the backbones. There is still no report of blaIMP-carrying
IncN2 or IncN3 plasmid.

This work present the complete nucleotide sequences of three
novel IncN2 plasmids, p0801-IMP from Klebsiella pneumoniae,
p7121-IMP from K. oxytoca, and p17285-IMP from Citrobacter
freundii. p0801-IMP and p17285-IMP harbor the class 1
integrons In1223 and In655 carrying the cassette arrays blaIMP-1-
gcu162-aacA4- aadA6 and blaIMP-8-aacA4, respectively. Further
comparative genomics assay of all the fully sequenced integron-
carrying IncN2 plasmids indicates that different mobile elements
including integrons, transposons and insertion sequence-based
transposition units can be inserted through transposition at
different sites of the relatively small IncN2 backbones. Data
presented here would promote us to gain insights into genetic
variation and evolutionary history of IncN2 plasmids.

MATERIALS AND METHODS

Bacterial Isolation and Identification
The use of human specimens and all related experimental
protocols were approved by the Committee on Human Research
of the 307th Hospital of the People’s Liberation Army and that
of the First Affiliated Hospital of Anhui Medicial University,
and carried out in accordance with the approved guidelines. The
research involving biohazards and all related procedures were
approved by the Biosafety Committee of the Beijing Institute of
Microbiology and Epidemiology. Bacterial species was identified
by 16S rRNA gene sequencing (Frank et al., 2008). The major
plasmid-borne carbapenemase genes were screened for by PCR
(Chen et al., 2015), followed by amplicon sequencing on ABI
3730 Sequencer.

Plasmid Conjugal Transfer
Plasmid conjugal transfer experiments were carried out with the
rifampin-resistant Escherichia coli EC600 (LacZ−, NalR, RifR)
being used as recipient and strain 0801 or 7121 or 17285
or as donor (Chen et al., 2015). 3 ml of overnight culture

of each of donor and recipient bacteria were mixed together,
harvested and resuspended in 80µl of Brain Heart Infusion
(BHI) broth (BD Biosciences). The mixture was spotted on
a 1 cm2 filter membrane that was placed on BHI agar (BD
Biosciences) plate, and then incubated for mating at 37◦C for
12–18 h. Bacteria were washed from filter membrane and spotted
on Muller-Hinton (MH) agar (BD Biosciences) plate containing
1,000µg/ml rifampin and 2µg/ml imipenem for selection of
blaIMP-positive E. coli transconjugants.

Detection of Carbapenemase Activity
Activity of class A/B/D carbapenemases in bacterial cell extracts
was determined via a modified CarbaNP test (Chen et al., 2015).
Overnight bacterial cell culture in MH broth was diluted 1:100
into 3 ml of fresh MH broth, and bacteria were allowed to grow
at 37◦C with shaking at 200 rpm to reach an OD600 of 1.0 to
1.4. If required, ampicillin was used at 200µg/ml. Bacterial cells
were harvested from 2 ml of the above culture, and washed twice
with 20 mM Tris-HCl (pH 7.8). Cell pellets were resuspended
in 500µl of 20 mM Tris-HCl (pH 7.8), and lysed by soniation,
followed by centrifugation at 10,000× g at 4◦C for 5min. 50µl of
the supernatant (the enzymatic bacterial suspension) were mixed
with 50µl of substrate I to V, respectively, followed by incubation
at 37◦C for a maximum of 2 h. Substrate I: 0.054% phenol
red plus 0.1 mM ZnSO4 (pH7.8). Substrate II: 0.054% phenol
red plus 0.1 mM ZnSO4 (pH7.8), and 0.6 mg/µl imipenem.
Substrate III: 0.054% phenol red plus 0.1 mM ZnSO4 (pH7.8),
0.6 mg/µl mg imipenem, and 0.8 mg/µl tazobactam. Substrate
IV: 0.054% phenol red plus 0.1mMZnSO4 (pH7.8), 0.6mg/µl mg
imipenem, and 3mMEDTA (pH7.8). Substrate V: 0.054% phenol
red plus 0.1 mM ZnSO4 (pH7.8), 0.6 mg/µl mg imipenem,
0.8mg/µl tazobactam, and 3 mM EDTA (pH7.8).

Bacterial Antimicrobial Susceptibility Test
Bacterial antimicrobial susceptibility was tested by BioMérieux
VITEK 2 and interpreted as per Clinical and Laboratory
Standards Institute (CLSI) guidelines (ClSI, 2015).

Plasmid Sequencing and Sequence
Assembly
Plasmid DNA was isolated from E. coli transconjugant using
a Qiagen Large Construct Kit, and then sequenced with a
paired-end library with an average insert size of 500 bp and a
mate-pair library with average insert size of 5,000 bp, using an
Illumina MiSeq sequencer (Illumina). Reads from each sample
were trimmed to remove poor quality sequences, and then the
contigs were assembled with Newbler 2.6 (Nederbragt, 2014).

Sequence Annotation and Genome
Comparison
Open reading frames and pseudogenes were predicted using
RAST 2.0 (Brettin et al., 2015) combined with BLASTP/BLASTN
searches (Boratyn et al., 2013) against the UniProtKB/Swiss-Prot
(Boutet et al., 2016) and RefSeq (O’leary et al., 2016) databases.
Annotation of resistance genes, mobile elements, and other
features was carried out using the online databases including
CARD (Jia et al., 2016), ResFinder (Zankari et al., 2012), BacMet

Frontiers in Cellular and Infection Microbiology | www.frontiersin.org 2 March 2017 | Volume 7 | Article 102

http://www.frontiersin.org/cellular_and_infection_microbiology
http://www.frontiersin.org
http://www.frontiersin.org/cellular_and_infection_microbiology/archive


Jiang et al. blaIMP-Carrying IncN2 Plasmids

(Pal et al., 2014), ISfinder (Siguier et al., 2006), INTEGRALL
(Moura et al., 2009), and the Tn Number Registry (Roberts
et al., 2008). Multiple and pairwise sequence comparisons were
performed using MUSCLE 3.8.31 (Edgar, 2004) and BLASTN,
respectively. Gene organization diagramswere drawn in Inkscape
0.48.1.

Nucleotide Sequence Accession Numbers
The complete sequences of p0801-IMP, p7121-IMP, and p17285-
IMP were submitted to GenBank under accession numbers
KT345947, KX784502, and KX784503, respectively.

RESULTS

Case Reports
K. pneumoniae 0801, K. oxytoca 7121, and C. freundii 17285
were isolated from three different inpatients designated Patient
1 to Patient 3, respectively, with nosocomial infections. Patient
1 was a 35-year-old woman admitted to Hospital 1 in May
2013 and diagnosed to have acute lymphoblastic leukemia, and
she received chemotherapy for 1 week. Pulmonary infection,
septicemia and recurrent fever occurred during chemotherapy,
and she received empirical intravenous administration with
moxifloxacin. K. pneumoniae 0801was isolated from the blood
specimens on the next day after chemotherapy. The patient
was discharged 3 days later upon request from her family
members.

Patient 2 was a 43-year-old woman admitted to Hospital 1 in
January 2014 and diagnosed to have acute myeloid leukemia, and
she received hematopoietic stem cell transplantation. Pulmonary
infection occurred in the convalescent period, and K. oxytoca
7121 was then isolated from the sputum specimens. The
patient received intravenous administration with flucloxacillin
empirically at first, which was switched into levofloxacin based on
antimicrobial susceptibility test results. Her symptoms associated
with pulmonary infections progressively improved. The patient
was discharged at 2 weeks after transplantation.

Patient 3 was a 66-year-old woman admitted to Hospital 2
in July 2013 and diagnosed to have adult onset Still’s disease,
and she received antianaphylactic treatment. Urinary tract
infection occurred at 1 week after hospitalization, and C. freundii
17285 was then isolated from the voided midstream urine
specimens. The patient received intravenous administration with
teicoplanin. Her symptoms associated with infection and adult
onset Still’s disease progressively improved. The patient was
discharged at 2 weeks after hospitalization.

General Features of Resistant Strains
PCR screening assay indicated the presence of blaIMP but not any
of the other carbapenemase genes tested in strains 0801, 7121,
and 17285, and the blaIMP-carrying plasmids were designated
p0801-IMP, p7121-IMP, and p17285-IMP, respectively. Each of
these plasmids could be transferred into strain EC600 through
conjugation, generating E. coli transconjugants 0801-IMP-
EC600, 7121-IMP-EC600, and 17285-IMP-EC600, respectively,
indicating that all these three plasmids are conjugative. All the
above wild-type and transconjugant strains have the class B

carbapenemase activity (data not shown), and are resistant to
ceftriaxone, ceftazidime, imipenem and meropenem (Table 1).
Strains 0801, 7121, and 17285 are resistant to gentamicin but the
other strains remain susceptible to this drug, and all of them are
susceptible to amikacin.

Overview of Sequenced Plasmids
Genome sequencing shows that p0801-IMP, p7121-IMP, and
p17285-IMP have 42,580-bp, 42,461-bp and 43797-bp circularly
closed DNA sequences, respectively, all of which carry 54
predicted open reading frames in total (Figure S1). These three
plasmids belong to the IncN2 group because each of them
contains an IncN2-type repA (plasmid replication initiation)
gene. Further comparative genomics analysis is applied to all the
five integron-carrying IncN2 plasmids p0801-IMP, p7121-IMP
and p17285-IMP (this study), pJIE137 (Partridge et al., 2012),
and p34983-59.134kb (accession number CP010378), together
with the IncN2 reference plasmid pYNKP001-NDM (Sun et al.,
2015), and the modular structure of each plasmid is divided
into the IncN2 backbone as well as one or more accessory
modules inserted at different sites of the backbone (Figure S1,
Figure 1). Although p271A is the first fully sequenced IncN2
plasmid, pYNKP001-NDM is more appropriate as the IncN2
reference, because a 5.2-kb backbone region within the CUP-
controlled regulon is absent from p271A relative to pYNKP001-
NDM (Poirel et al., 2011; Sun et al., 2015).

Backbones of Integron-Carrying IncN2
Plasmids
The six plasmids involved in genomic comparison possess
conserved IncN2 backbones, each of which can be further
divided into the regions responsible for plasmid replication
(repA and its iterons), maintenance [the CUP (conserved
upstream repeat)-controlled regulon, the stbABC-orfD operon,
and resD), and conjugal transfer (tra and kikA-korB) (Figure S1,
Figure 1).There are two major differences among the backbones
of these six plasmids: (i) a region between repA and its iterons
from pYNKP001-NDM differs from all the other counterparts,
and (ii) insertion, deletion, and rearrangement occur within the
CUP-controlled regulons.

Gene organization and function of the IncN1 CUP-controlled
regulon (Delver and Belogurov, 1997) have been described in
the IncN1 reference plasmid R46 (accession number AY046276).
Similarly, four putative operons (i.e., the ardK operon, the
CUP-4 operon, the CUP-3 operon, the CUP-2 operon and the
CUP-1 operon) arranged in the same orientation are annotated
within the IncN2 CUP-controlled regulon, and CUP-4, CUP-3,
CUP-2 and CUP-1 are located at the 5′-ends of the last four
operons, respectively (Figure 2). Each of these operons contains
a putative ArdK-binding site and a promoter, accounting for
ArdK-dependent expression of operon-borne genes. A 40-bp
deletion is found within CUP-3 of p7121-IMP. An ISEcp1-
blaCTX-M-62-∆orf477-orfRA1-14 transposition unit is inserted
between CUP-4 and ardB in pJIE137 (Partridge et al., 2012),
which would impair the gene expression of the CUP-4 operon.
In p0801-IMP, homologous recombination medicated by CUP-3
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TABLE 1 | Antimicrobial drug susceptibility profiles.

Category Antibiotics MIC (mg/L)/antimicrobial susceptibility

0801 0801-IMP-EC600 7121 7121-IMP-EC600 17285 17285-IMP-EC600 EC600

Third-generation cephalosporins Ceftriaxone >=64/R >=64/R >=64/R >=64/R >=64/R >=64/R <=1/S

Ceftazidime >=64/R >=64/R >=64/R >=64/R >=64/R >=64/R <=1/S

Carbapenems Imipenem >=16/R >=16/R >=16/R >=16/R >=16/R >=16/R <=1/S

Meropenem 4/R 8/R 4/R 4/R >=16/R 4/R <=0.25/S

Aminoglycosides Gentamicin >=16/R 2/S >=16/R <=1/S >=16/R 2/S <=1/S

Amikacin <=2/S <=2/S <=2/S <=2/S <=2/S <=2/S <=2/S

Fluoroquinolones Ciprofloxacin <=0.25/S <=0.25/S <=0.25/S <=0.25/S >=4/R <=0.25/S <=0.25/S

Levofloxacin 1/S 0.5/S <=0.25/S 0.5/S >=8/R 0.5/S 0.5/S

S, sensitive; R, resistant.

FIGURE 1 | Linear comparison of sequenced plasmids. Genes are denoted by arrows. Genes, mobile elements and other features are colored based on function

classification. Shading denotes regions of homology (>95% nucleotide identity).

and CUP-1 likely leads to an inversion of the orf792 to ros region
as well as the disruption of CUP-3 and CUP-1.

Accessory Regions of Integron-Carrying
IncN2 Plasmids
p0801-IMP and p7121-IMP carry a novel class 1 integron In1223,
containing 5′-CS, the cassette array blaIMP-1-gcu162-aacA4-
aadA6, and the complete Tn402 tni module (tniABQ-res-tniR),
which is bordered by IRi (inverted repeat at the integrase end)
and IRt (inverted repeat at the tni end) (Figure 3A). blaIMP-1
and aacA4/aadA6 account for resistance to carbapenems and
aminoglycosides, respectively, while gcu162 is a novel gene
cassette of unknown function.

There are two accessorymodules in each of pJIE137 (Partridge
et al., 2012) and p17285-IMP. As shown in Figures 3A,B,
p17285-IMP contains In655 (inserted into resD) and a 2554-
bp ISEcp1-orfRA1-14 transposition unit (inserted between

orf333 and orf648), while pJIE137 harbors ISEcp1-blaCTX-M-62-
∆orf477-orfRA1-14 (inserted within the CUP-4 operon) and
In27 (inserted between resD and orf333). In655 differs from
In1223 by presence of a distinct cassette array blaIMP-8-aacA4
and, notably, its Tn402-family tnimodule is maximally only 95%
identical to the others at nucleotide level. ISEcp1 captures and
arranges orfRA1-14 and blaCTX-M-62-∆orf477 at its immediately
downstream, which generates the transposition units ISEcp1-
orfRA1-14 and ISEcp1-blaCTX-M-62-∆orf477, respectively,
bordered by terminal inverted repeats IRLISEcp1 and IRRISEcp1.
Similar ISEcp1-blaCTX-M-∆orf477 structures (containing
different variants of the blaCTX-M-1 group) are found on
plasmids from various bacterial hosts, while the ISEcp1-orfRA1-
14 elements are found on plasmids from only enterobacterial
species. ISEcp1-blaCTX-M-62-∆orf477-orfRA1-14 is a hybrid of
ISEcp1-blaCTX-M-62-1orf477 and an ISEcp1-orfRA1-14-related
element that originates from splitting of ISEcp1-orfRA1-14 into
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FIGURE 2 | CUP-related sequences. (A) CUP-control regulons and associated regions. Genes are denoted by arrows. Genes, mobile elements and other features

are colored based on function classification. Shading denotes regions of homology (>95% nucleotide identity). (B) CUP promoter-proximal regions. Shown are

putative ArdK-binding sites, core promoter −10 and −35 regions, and 3 different consensus sequences within CUP promoter-proximal regions.
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FIGURE 3 | Plasmid accessory modules. Genes are denoted by arrows. Genes, mobile elements and other features are colored based on function classification.

Shading denotes regions of homology (>95% nucleotide identity). Shown are the alignment of intergrons and transpsons (A) and ISEcp1-associated transposition

units (B), and also the organization of the res sites from Tn1696 and its derivatives (C).

the 5′- and 3′-parts, followed by inversion of the 5′-part (Zong
et al., 2010).

Tn6325 (Figure 3A) from p34983-59.134kb is a novel
derivative of Tn1696 belonging to the Tn21 subgroup of
the Tn3 transposon family. Tn1696, located in the IncP1
plasmid R1033 from clinical P. aeruginosa, is generated from
insertion of In4 within the resolution (res) site of a transposon
backbone structure IRL-tnpA (transposase)-tnpR (resolvase)-res-
mer (mercury resistance locus)-IRR, interrupting res into two
separate parts (Partridge et al., 2001). Close Tn1696 relatives,
which contain different In4-type integrons inserted at exactly
the same position as In4, have been found on plasmids such
as pHCM1, pSRC125 and pSRC26 (Cain et al., 2010). Tn6325
differs from Tn1696 by (i) insertion a distinct integron In1130
at the same position as In4 within res (Figure 3C), and (ii)

disruption of IRLTn6325 into two parts by IS4321 (Figure 3A)
that is a hunter of terminal inverted repeats of Tn21 subgroup
transposons (Partridge and Hall, 2003).

The modular structure of a typical complex class 1 integron
is organized sequentially as IRi, 5′-CS, variable region 1 (VR1),
the first copy of 3′-CS [3′-CS1: qacED1 (quaternary ammonium
compound resistance)-sul1 (sulfonamide resistance)], the
common region ISCR1, VR2, the second copy of 3′-CS (3′-CS2;
qacED1-sul1-orf5-orf6), tni, and IRt (Partridge et al., 2009). In27
from pJIE137 and In1130 from p34983-59.134kb (Figure 3A)
belong to complex class 1 integrons because they contain all
of the above core components with modifications of 3′-CS2.
For both In27 and In1130, the connection of VR2 [∆sapA-
orf462-qnrB2 (quinolone resistance)] with 3′-CS2 leads to the
truncation of qacED1 at the 5′-terminus of 3′-CS2. In addition,
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the tnimodule within the 3′-CS2 has been replaced by an IS6100
element in In1130, while the 3′-CS2 of In27 is interrupted into
two separate parts 1qacED1-sul1-1orf5 and 1tniA due to
the insertion of a 6.8-kb region [composed of the chromate-
resistance unit chrA-orf98 and the macrolide-resistance unit
IS26-mph(A)-mrx-mphR(A)-IS6100], which is highly similar to
the 3′-region of In37 from p112298-KPC (Feng et al., 2015).
In In1130, ISCR1 is interrupted by the insertion of a cryptic
Tn3-family unit transposon Tn5403.

The insertion of each of In1223, In655, ISEcp1-orfRA1-
14, In27, ISEcp1-blaCTX-M-62- ∆orf477-orfRA1-14, In1130 and
Tn6325 into the relevant plasmids leaves target site duplication
signals of transposition, manifesting as various types of 5-bp
direct repeat at the sites of insertion.

DISCUSSION

A collection of fully sequenced plasmids including p0801-IMP,
p7121-IMP, p17285-IMP, p271A, pYNKP001-NDM, pNDM-
ECS01, pTR3, p34983-59.134kb, pJIE137, pKPC-SMH, and
p34998-53.129kb (Poirel et al., 2011; Chen et al., 2012; Partridge
et al., 2012; Netikul et al., 2014; Sun et al., 2015; Tijet et al.,
2016) carry the IncN2 replicon and very similar backbones, which
dramatically differ from IncN1 and IncN3, and thereby they are
assigned into the IncN2 subgroup (Figure 4).

Each of the four class 1 integrons including In1223 from
p0801-IMP/p7121-IMP, In655 from p17285-IMP, In27 from
pJIE137, and In1130 from p34983-59.134kb has a complete set
of IRi/IRt, intI1, and attI1. In1223/In27, In655, and In1130 have
the promoters PcWTGN-10 (Strong) (Nesvera et al., 1998), PcS
(Strong) (Collis and Hall, 1995), and PcW (weak) combined with
P2 (strong) (Wei et al., 2011), respectively, which would drive the
high-level expression of cassette-borne genes.

Tn402 acts as a primary carrier of class 1 integrons, and
the evolution of Tn402-associated class 1 integrons involves at

least three stages as summarized previously: stage I, insertion of
ancestral integron sequence (containing captured gene cassettes
but lacking 3’-CS) into Tn402 (harboring the tni module) to
generate a hybrid structure, thereby combining the ability of
integron to capture gene cassettes with the mobility of Tn402,
which occurs prior to or concomitant with capture of qacE;
stage II, capture of sul1-orf5-orf6 and then formation of 3′-
CS (qacED1-sul1-orf5-orf6-tni) after deletions between qacE and
sul1; and stage III, deletions within the tni region, impairing
the tni-mediated mobility (Chen et al., 2014). In1223 and In655
represent ancestral Tn402-associated integrons at stage I, while
In27 from pSC138 (Chiu et al., 2005) and In4 from Tn1696 are
at stage III (Figure 3A). In27 from pJIE137 and In1130 from
p34983-59.134kb have evolved into complex class 1 integron with
integration of one or more additional regions containing several
resistance markers, which might involve complex homologous
recombination events involving IS6100 and IS26(Feng et al.,
2015).

The 7 mobile elements including In1223 from p0801-
IMP/p7121-IMP, In655 and ISEcp1-orfRA1-14 from p17285-
IMP, In27 and ISEcp1-blaCTX-M-62-∆orf477-orfRA1-14 from
pJIE137, and In1130 and Tn6325 from p34983-59.134 kb are
inserted at different sites and their mobilization into relevant
plasmids leaves targeting signals of transposition, indicating
that they are simple insertions due to transposition without
adjacent deletions and rearrangements. The relatively small
IncN2 backbones are able to integrate different mobile elements
such as integrons, transposons and insertion sequence-based
transposition units, which carry different resistance markers,
thereby promoting accumulation and spread of antimicrobial
resistance among bacterial species. Comparative genomics
analysis of a larger collection of fully sequenced IncN1,
IncN2, and IncN3 plasmids would promote us to gain deeper
understanding of the horizontal transfer of antimicrobial
resistance genes through mobile genetic elements as well as

FIGURE 4 | Phylogenetic tree of repA sequences. The nucleotide sequences of the repA coding regions from all the fully sequenced IncN2 plasmids together with

R46 and pN-Cit (Villa et al., 2013) as the IncN1 and IncN3 reference, respectively, are aligned with MUSCLE 3.5 (Edgar, 2004). An unrooted neighbor-joining tree is

inferred from the aligned sequences by using MEGA7 (Kumar et al., 2016) with calculation of evolutionary distances by the Maximum Composite Likelihood method.

The percentages of replicate trees in which the associated taxa clustered together in the bootstrap test (500 replicates) are shown next to the branches.
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the molecular evolution mechanisms of diversification of IncN
plasmid scaffolds. The combination of additional molecular
epidemiological investigation will gain the highlights into not
only the ability of plasmids to transmit among bacterial species
and genera but also the underlying mechanisms of antibiotic
resistance spread associated with hospitalized patients.
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