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Abstract

Atmospheric air temperature is the most crucial metrological parameter. Despite its influ-

ence on multiple fields such as hydrology, the environment, irrigation, and agriculture, this

parameter describes climate change and global warming quite well. Thus, accurate and

timely air temperature forecasting is essential because it provides more important informa-

tion that can be relied on for future planning. In this study, four Data-Driven Approaches,

Support Vector Regression (SVR), Regression Tree (RT), Quantile Regression Tree (QRT),

ARIMA, Random Forest (RF), and Gradient Boosting Regression (GBR), have been applied

to forecast short-, and mid-term air temperature (daily, and weekly) over North America

under continental climatic conditions. The time-series data is relatively long (2000 to 2021),

70% of the data are used for model calibration (2000 to 2015), and the rest are used for vali-

dation. The autocorrelation and partial autocorrelation functions have been used to select

the best input combination for the forecasting models. The quality of predicting models is

evaluated using several statistical measures and graphical comparisons. For daily scale,

the SVR has generated more accurate estimates than other models, Root Mean Square

Error (RMSE = 3.592˚C), Correlation Coefficient (R = 0.964), Mean Absolute Error (MAE =

2.745˚C), and Thiels’ U-statistics (U = 0.127). Besides, the study found that both RT and

SVR performed very well in predicting weekly temperature. This study discovered that the

duration of the employed data and its dispersion and volatility from month to month substan-

tially influence the predictive models’ efficacy. Furthermore, the second scenario is con-

ducted using the randomization method to divide the data into training and testing phases.

The study found the performance of the models in the second scenario to be much better

than the first one, indicating that climate change affects the temperature pattern of the stud-

ied station. The findings offered technical support for generating high-resolution daily and

weekly temperature forecasts using Data-Driven Methodologies.
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1. Introduction

It is well-known that numerous meteorological and ecological events, human life, and crops in

agricultural areas are significantly influenced by climate conditions as well as several factors

related to the environment’s physical conditions. The natural resources that provide humans

basic needs and opportunities for social and economic development are part of the physical

environment, including land, air, and water. A clean and healthy environment is one of the

essential principles that should be preserved and protected [1]. The temperature parameter is

seen as the most influential parameter out of all meteorological parameters, which reflects the

effect of climate change on earth and its surrounding atmosphere. Recently, climate change

has caused extreme natural phenomena such as heat waves, severe winters, heavy snowfall,

and droughts worldwide, leading to environmental and health crises [2–6]. Air temperature

prediction helps meteorologists to know the likelihood of hurricanes and floods in an area [7].

Various meteorological parameters such as rainfall, humidity, atmospheric pressure, wind

speed, solar energy, and soil temperature are significantly correlated to air temperature [8].

Moreover, air temperature is one of the most influential factors in evapotranspiration, which

is vital for managing water resources and agricultural activities [9]. Accurate air temperature

prediction is substantial in many decision-making sectors, such as energy, agriculture, trans-

portation, and tourism [10]. Additionally, accurately predicting air temperature is the most

crucial aspect of environmental studies involving operational eco-environmental systems.

From the industrial aspect, predicting air temperature is essential in energy management strat-

egies to obtain comfortable indoor temperatures and eventually reduce the consumption of

energy [11].

According to the literature, two main approaches have been used to predict air temperature:

general circulation (GCM) and statistical models. The GCM is utilized to comprehend the

dynamics behind climate system physical components, derive global temporal and spatial

changes and make predictions based on the future forcing of greenhouse gasses and aerosols

[12]. GCMs can be applied to the problem of attributing climate change from a season to a

decade ahead. Conversely, statistical models attempt to determine whether climate change is

externally driven by minimizing the utilization of complex climate models. They are generally

more straightforward and less computationally intensive than the GCMs, and several studies

have showed that the use of statistical models has produced results consistent with GCMs. Var-

ious statistically based approaches have been proposed recently, several of which have been

developed in the econometric literature. The statistical models can be categorized into two

approaches: cointegration approaches which determine the relationship between non-station-

ary and stationary times series [13], and regression approaches which evaluate the characteris-

tics of time series for a given temperature data [14, 15]. However, since temperature prediction

involves high nonlinearity and dimensionality, the statistical models faced some drawbacks in

capturing them [16].

Meanwhile, machine learning (ML) approaches have attracted much attention due to their

superlative performance in dealing with high nonlinearity phenomena [17, 18] and solving

complex problems such as drought [19–24], rainfall [25–29], evapotranspiration [30–34] and

streamflow [35–38]. For example, a study was conducted in the Queensland area where ML

models’ performances were compared with the Australian Predicted Ocean-Atmosphere

Model (POAMA) for precipitation prediction. The POAMA model showed a significant

improvement in the predictive performance of the ML modeling framework. It was reported

that the performance of the neural network (NN) model was superior to POAMA in precipita-

tion prediction over three regions in Queensland [39–41]. For temperature prediction, A.

Sekertekin et al. [6] used the adaptive neuro-fuzzy inference system (ANFIS) and long-short
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term memory (LSTM) network to predict temperature for both ultra short-term and short

term period(hourly and one day ahead). The results showed that the LSTM model was able to

efficiently predict the temperature for both the time scales. However, the LSTM has several dis-

advantages, such as it requires longer time and more memory to train. Besides, its parameters

are difficult to assign and implement and the outcomes are vulnerable to various random

weight initializations. S. Salcedo-Sanz et al. [12] used the support vector regression (SVR) and

multi-layer perceptron (MLP) models to predict the mean monthly air temperature. The data-

set from the monitoring stations located in New Zealand and Australia was used for the model

development. The results showed that the SVR model provided the best accuracy in tempera-

ture prediction. Overall, very few studies based on daily temperature prediction have been

conducted for regions with continental climatic conditions Therefore, the main objective of

this study is to forecast air temperature over a continental climate case study which is in North

America. Two-time scales are adopted in this study, daily and weekly. For fulfilling this task,

four Data-driven models i.e., Support Vector Regression (SVR), Regression Tree (RT), Quan-

tile Regression Tree (QRT), and Gradient Boosting Regression (GBR) have been applied.

These models have been used to predict one-day and one-week temperature ahead depending

on the past temperature values for both time scales (weekly and daily). Comprehensive com-

parisons supported by statistical measures and comparative figures have been applied to select

the most efficient models.

2. Methodology

2.1 Case study

North Dakota is located in the middle of North America and is subjected to extreme climate

conditions, with hot summers and cold winters. Due to its inland location and proximity to

both the North Pole and the Equator, which are almost equal, there are noticeable temperature

fluctuations. Furthermore, it has been observed that the temperature varies extremely from

season to season, which may be responsible for the changes in weather throughout the time

[42]. Since North Dakota has a continental climate, forecasting the patterns of meteorological

parameters is a challenging task. The difficulty in simulating weather parameters in such

region may be due to the nature of the fluctuating climate during the seasons.

Tables 1 and 2 show the statistical characteristics of the minimum, mean, average, standard

deviation, and skewness of the daily and weekly air temperature values at the Crary

Table 1. Statistical characteristics of Crary station: Daily scale.

Month/statics Min Average Max St. D Skewness

Jan -35.50 -13.018 4.12 7.905 -0.194

Feb -32.55 -12.847 5.70 7.695 0.015

Mar -28.19 -4.191 14.85 7.465 -0.349

Apr -11.80 4.542 18.38 5.919 -0.320

May -1.67 11.860 24.87 5.072 -0.008

Jun 5.15 17.944 30.56 3.626 -0.101

Jul 12.28 20.799 27.65 2.916 -0.340

Aug 9.19 19.408 28.28 3.248 0.147

Sep 0.66 14.598 27.89 4.555 -0.078

Oct -8.15 6.098 22.86 5.436 0.137

Nov -19.79 -2.479 12.81 6.430 -0.165

Dec -30.83 -10.901 5.00 7.147 -0.320

https://doi.org/10.1371/journal.pone.0277079.t001
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meteorological station from 2000 to 2021. According to reported data, the three hottest

months are June (17.944 C˚), July (20.799 C˚), and August (19.408 C˚) while the coldest

months in this case study are December (-10.901 C˚), January (-13.018 C˚), and February

(-12.847 C˚). Furthermore, the recorded air temperatures have extreme values (far from the

mean) in four months (i.e., December to March). In these months, the standard deviation val-

ues of the data are very high compared to other months. Nevertheless, the dispersion of the

data through June (St. D = 3.626), July (St. D = 2.916), and August (St. D = 3.248) is very little,

which means that the data are more consistent with their normal rates. Notably, the utilized

data in this study are collected from the open-source website of the Crary station [43]. Finally,

the location of the studied region is shown in Fig 1.

2.2 Support vector regression

Support vector regression (SVR) is considered a powerful and efficient tool based on the

notion of statistical learning and was first introduced by Vapnik [44] to describe regression as

a part of the support vector machine (SVM). Based on the principle of structural risk minimi-

zation (SRM), SVR has been successfully implemented in real-world challenge modeling by

overcoming classification and regression tasks [45]. The linear relationship between indepen-

dent variables (x1, x2, x3, � � �, xr) and dependent variable (y) is given in the equation below.

y ¼ f xð Þ ¼ w; xð Þ þ b ð1Þ

Where wi and b are the weight and bias of the model, respectively. ;(x) is the higher dimen-

sional feature space converted from the independent vector (input). These parameters can be

determined by minimizing kwk2 = (w.w) as follows

min
1

2
k w2 k þC

Xr

i¼1

xi þ xi
�ð Þ ð2Þ

under the constraints

yi � w; xð Þ � b � εþ xi
yi � w; xð Þ � b � � ε � xi

� 8i

xi ; xi
� � 0

8
><

>:
2 1; . . . nf g ð3Þ

Table 2. Statistical characteristics of Crary station: Weekly scale.

Month/statics Min Average Max St. D Skewness

Jan -28.23 -13.112 -1.84 5.882 -0.070

Feb -27.35 -13.191 0.26 6.093 0.111

Mar -20.56 -5.287 11.32 6.311 -0.115

Apr -10.33 3.833 12.74 4.926 -0.383

May 3.22 11.185 21.55 3.879 0.101

Jun 10.28 17.461 23.22 2.743 -0.133

Jul 15.76 20.644 24.47 1.949 -0.384

Aug 13.98 19.650 25.50 2.292 -0.056

Sep 6.20 15.149 22.96 3.319 -0.229

Oct -3.89 7.212 18.09 4.414 0.036

Nov -14.03 -1.822 8.59 5.210 -0.133

Dec -22.77 -9.993 1.34 5.816 -0.380

https://doi.org/10.1371/journal.pone.0277079.t002
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Where, C is the regularization constant, ξi, ξi� are the slack variables and ε is the size of the

tube, "denoting the accuracy of the function to be approximated" [46].

Based on Lagrange multipliers, the standard SVR can overcome the following optimization

problem.

min �
1

2

Xr

ij
ðai � a

�

i Þ aj � a
�

j

� �
xi; xj
� �

�
Xr

i¼1
ai þ a

�

i

� �
þ
Xr

i¼1
gi ai � a

�

i

� �
¼ 0 ð4Þ

Fig 1. The location of Crary station. Source (https://d-maps.com/index.php?lang=en; https://www.usgs.gov/).

https://doi.org/10.1371/journal.pone.0277079.g001
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Which is subjected to:

Xr

i¼1

ai � a
�

i

� �
¼ 0 ð5Þ

ai; a
�

i 2 0;r½ � ð6Þ

Where ρ are the cost factor, ai; a
�
i � 0 are the Lagrange multiplier factors. The linear SVR can

be written as follows

f xð Þ ¼
Xr

i¼1

ai � a
�

i

� �
xi; xð Þ þ b ð7Þ

This equation may be considered inappropriate for solving many engineering problems

because of its linear characteristic, while engineering problems often need a non-linear regres-

sion analysis. Therefore, in order to switch the input data to a much higher-dimensional space,

nonlinear kernel functions are utilized. In this regard, the radial bases kernel function (RBF) is

used in this study and can be expressed mathematically in the equation below.

K xi; xð Þ ¼ exp � b k x � xi k
2ð Þ ð8Þ

Where K(xi, x) represents the kernel function and β is the bandwidth of K(xi, x).

2.3 Regression tree and quantile regression tree

A decision tree (DT) is a supervised machine learning-based technique that uses labeled data

(data with known target attributes) to carry out simulations with the help of classification and

regression algorithms [47]. In general, DT’s consist of three types of nodes: decision Root

nodes, internal nodes, and leaf nodes, where each node or leaf denotes a class label while the

branches denote the outcome of the test performed [48]. The technique splits the input dataset

on the basis of the most significant splitter or differentiator in the input variables. This process

of data division and selection of the most significant attribute in the dataset is governed by the

classification and regression algorithms. The technique follows a top-down approach as the

top portion holds all the observations at one spot, which splits into two or more branches that

further split. This approach is also referred to as the greedy approach, as it only incorporates

the current nodes without focusing on the future nodes [49]. The decision tree algorithm con-

tinues to run until a stop criterion such as the minimum number of observations etc., is

attained. Once this criterion is achieved and a decision tree is developed, many nodes are

detected as outliers which may be addressed through the tree pruning method. This, in turn,

improves the forecasting accuracy of the DT-based model.

In the same method that regression minimizes cost function (i.e., squared-error loss) when

forecasting a single point estimate, the quantile regression tree (QRT) minimizes the loss func-

tion in forecasting a particular quantile. The median, or 50th percentile, is the most commonly

used quantile, and the quantile loss is just the sum of absolute errors in this case. Additionally,

quantiles can be used as endpoints of prediction intervals; for instance, the 10th and 90th per-

centiles define an 80-percentile range in the middle. It appears that the quantile loss differs

according to the evaluated quantile, with higher quantiles penalizing more for negative errors

and lower quantiles penalizing more for positive errors. Accordingly, in this study, we used the

median (the 50th percentile), which is the most well-known quantile.

In the fields of artificial intelligence and search algorithms, pruning is a data compression

method used to minimize the size of decision trees by deleting parts of the tree that are deemed
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non-critical and repetitive to the regression of instances. By assessing the predictive value of

each node in a regression tree, regression tree pruning decreases the danger of overfitting.

Nodes that do not increase the anticipated prediction efficiency on new data are substituted

with leaves.

2.4 Gradient Boosting Regression (GBR)

GBR is an ensemble machine learning approach that enhances the prediction performance of

a classical decision tree by incorporating a sequential statistical process called boosting, of

which the principle idea is to combine a set of weak predictive models to form a single and

high accurate predictive model [50, 51]. The technique applies an iterative procedure, where

the estimates of the new tree model (weak learner) are updated with the pseudo residuals (neg-

ative gradient of the loss function) of the current learner [52]. This process is repeated until

the loss function of the model is reduced to a minimum value, thus improving the forecasting

performance of the model.

The iterative training process of the GBRT with K decision trees can be briefly explained as

follows:

For a given training dataset D = {(x1, y1), (x2, y2),. . .. . ., (xn, yn)}, the loss function is com-

puted as:

L y; f xð Þð Þ ¼ y � f xð Þð Þ
2

ð9Þ

Step 1. Initialize the new tree model (weak learner) with a constant value:

f0 xð Þ ¼ arg minc

XN

i¼1
L yi; cð Þ ð10Þ

Step 2. Assume the number of iterations m = 1, 2, 3. . .. . .., K
(a) For i = 1,2,3. . .. . ..,N.The pseudo residuals of the ith training data is calculated as:

rmi ¼ �
@L y; f xið Þð Þ

@f xið Þ

� �

f xð Þ¼fm� 1 xð Þ

ð11Þ

(b) Fit a regression tree in terms of rmi, and deduce the leaf node area Rml of the mth tree.

Predict the leaf node area of the decision tree to attain an approximate value of the fitting

residual.

(c) For l = 1,2,3. . .. . .., L. Adopt linear search to attain the value in the leaf node range and

minimize the loss function with gradient descent. The best residual fitting value of each blade

is as follows:

cm ¼ argminc

XN

i¼1
L yi; fm� 1 xið Þ þ cð Þ ð12Þ

(d) Update the regression tree

fm xð Þ ¼ fm� 1 xð Þ þ
XL

l¼1
cmlI x 2 Rmlð Þ ð13Þ

Step 3. Obtain the final model

f xð Þ ¼ fM xð Þ ¼
XM

m¼1

XL

l¼1
cmlI x 2 Rmlð Þ ð14Þ
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2.5 Autoregressive model

The autoregressive integrated moving average (ARIMA) is a historical data-based model and

is considered the most common time series modeling approach first introduced by Box and

Jenkin in 1976 [53]. ARIMA model is considered a hybrid model in which the Autoregressive

(AR) and moving average (MA) models generalized forms are combined for modeling non-

stationary univariate time series data by approximating the time series using a mathematical

model based on past and current values. The utilization of ARIMA model is done by setting

the order of three terms: autoregressive, sequence difference, and moving average. The general

successive difference equation for dth order can be mathematically expressed as follows.

D
dTt ¼ 1 � Bð Þ

dTt ð15Þ

Where d is the order of sequence difference and B is the backshift operator. The general

ARIMA equation can be briefly presented as follows [54].

;p Bð Þwt ¼ yq Bð Þet ð16Þ

Where ;p(B) is the autoregressive operator of order p, θq(B) is the moving average term of

order q and wt = ΔTt.

2.6 Random forest

Random forest is a supervised machine learning technique which is made up of large number

of small decision trees, known as estimators, which generate their own predictions. ’Forest’

generated by the random forest algorithm is trained through bagging or bootstrap aggregating

[55]. Bagging is an ensemble meta-algorithm that fine-tunes the prediction accuracy of

machine learning algorithms. The (random forest) algorithm produces the output based on

the predictions of the decision trees. It predicts by taking the average or mean of the output

from various trees. Increasing the number of trees increases the precision of the outcome. The

various advantages of this technique over other machine learning approaches such as need of

less computation time, ease of working with high-dimensional data, strong fault tolerance and

parallel processing make it suitable even for very high-dimensional problems like air tempera-

ture forecasting.

2.7 Model development

In this work, four regression models i.e., SVR, GBR, QRT, and RT have been used to predict

the daily and weekly air temperatures over the continental climatic region of North America.

The time-series data was collected from the Crary meteorological station from 2000 to 2021.

For selecting the best input lags, the autocorrelation function (ACF) and partial autocorrela-

tion function (PACF) have been used to analyze the data. According to Fig 2, the ACF provides

more information on the time series properties like stationary, trend pattern, seasonality, and

randomness. The daily and weekly temperature patterns were examined to determine the

most appropriate predictors utilizing correlation statistics such as ACF and PACF, respec-

tively. The statistical techniques used the time-lagged data from temperature time series to esti-

mate the daily and weekly intervals between the present T value and prior T value for any

given observation (i.e., a time lag) [55]. Thus, selecting which lags have a significant correlation

and significant information may benefit. Besides, the lags confined between upper and lower

bounds are neglected because they have lower correlations and represent the white noise in the

time series, which cannot be predicted. Both ACF and PACF are provided in the following
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Fig 2. ACF and PACF for input determination.

https://doi.org/10.1371/journal.pone.0277079.g002
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equations:

ACF ¼
PN� k

t¼1
Xt � �xð Þ Xtþk �

�X
� �

PN� k
t¼1

Xt �
�Xð Þ

ð17Þ

PACF ¼
ACF �

Pk� 1

j¼1
PACFk� 1;jACFk� 1

1 �
Pk� 1

j¼1
PACFk� 1;jACFk� 1

ð18Þ

The N is the total number of temperature records, Xt and � X is the time series record at

time t and the mean of the temperature records, and finally, the k is number of lags in the time

series data. lower and upper limits (UP, LO) can be determined at 95% significant level by the

following equation:

LO;UP ¼ �
1:96
ffiffiffiffi
N
p ð19Þ

The ACF declines more slowly concerning the daily scale, which means that the time series

data is not stationary. It is challenging to select the most effective lags for daily scale using ACF

because of seasonality. The PACF, similar to the ACF, shows the association between two rec-

ords that the shorter delays between those observations do not describe. For instance, the par-

tial autocorrelation coefficient for the third lag in the daily scale temperature is only a

correlation that the previous short lags (lag two and lag one) have not explicitly explained.

Therefore, the PACF is more suitable for selecting the input lags for predicting the short scale

of time series than the ACF. Table 3 shows the input combinations used in this study. It is

worth mentioning that 70% of the data is used to train the suggested models, and 30% of the

data included the end of the time series of the data utilized for the testing phase and checking

the models’ performances (see Fig 3). The following steps summarize the primary process of

developing the models for forecasting short-and mid-term air temperature.

Table 3. Air temperature input design for Baker and Crary stations.

Model Input groups Output Scale Training data records Testing data records

M1 Tt−1 Tt Daily 5624 2411

M2 Tt−1, Tt−3 Tt Daily 5622 2411

M3 Tt−1, Tt−3, Tt−4 Tt Daily 5621 2411

M4 Tt−1, Tt−3, Tt−4, Tt−5 Tt Daily 5620 2411

M5 Tt−1, Tt−3, Tt−4, Tt−5, Tt−6 Tt Daily 5619 2411

M6 Tt−1, Tt−3, Tt−4, Tt−5, Tt−6, Tt−7 Tt Daily 5618 2411

M7 Tt−1, Tt−3, Tt−4, Tt−5, Tt−6, Tt−7, Tt−8 Tt Daily 5617 2411

M8 Tt−1, Tt−3, Tt−4, Tt−5, Tt−6, Tt−7, Tt−8, Tt−9 Tt Daily 5616 2411

M9 Tt−1, Tt−3, Tt−4, Tt−5, Tt−6, Tt−7, Tt−8, Tt−9, Tt−10 Tt Daily 5615 2411

M10 TWt−1 TWt Weekly 803 344

M11 TWt−1, TWt−2 TWt Weekly 802 344

M12 TWt−1, TWt−2, TWt−3 TWt Weekly 801 344

M13 TWt−1, TWt−2, TWt−3, TWt−4 TWt Weekly 800 344

M14 TWt−1, TWt−2, TWt−3, TWt−4, TWt−5 TWt Weekly 799 344

M15 TWt−1, TWt−2, TWt−3, TWt−4, TWt−5, TWt−6 TWt Weekly 798 344

M16 TWt−1, TWt−2, TWt−3, TWt−4, TWt−5, TWt−6, TWt−7 TWt Weekly 797 344

M17 TWt−1, TWt−2, TWt−3, TWt−4, TWt−5, TWt−6, TWt−7, TWt−8 TWt Weekly 796 344

https://doi.org/10.1371/journal.pone.0277079.t003
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1. Collecting the daily data for air temperature from a continental climate. In this study, Crary

station is selected.

2. Converting the temperature values from Fahrenheit to Celsius using the following formula.

TC ¼
5

9
ðTF � 32Þ ð20Þ

TC and TF are temperatures measured in degrees Celsius and Fahrenheit.

3. Computing the mean weekly temperatures.

4. Selecting the best lags using ACF, and PACF for both scales (weekly and daily).

Fig 3. Daily and hourly air temperature measured in Crary station over the period from 2000 to 2021.

https://doi.org/10.1371/journal.pone.0277079.g003
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5. Data partition: The time-series data is relatively long (2000 to 2021), 70% of the data are

used for model calibration (2000 to 2015), and the rest are used for testing. The number of

data points was fixed in that case to ensure a fair evaluation of the proposed model through-

out the most critical step (testing phase). Notably, this procedure does not affect the data

partitions. For example, for daily scale 2411, which represents about 30% of the entire daily

records (Table 3)

6. Normalizing the training and testing dataset based on the minimum and maximum tem-

perature in the training data set using the following formula [56]:

Tnormalized ¼
Ti� Tmin

Tmax� Tmin
ð21Þ

Tnormalized is the normalized temperature for ith temperature record (Ti) while Tmin and Tmax

are minimum and maximum and temperature data obtained from the training data set.

7. Assigning the hyperparameters of the applied models. The trial- and error- method is used

for this process where each model was trained 100 times over the training dataset with dif-

ferent parameters. When these models were trained several times, the best ones were

selected according to the statistical criteria. According to several statistical metrics, the

model which generates lowest forecasting error in the training step is selected. In addition,

the performance of the model should be stable so that there is no significant difference

between its performance in the training and testing phase.

8. De-normalizing the data based on the following formula:

Ti ¼Tmin þ Tnoralizei
Tmax� Tminð Þ

� �
ð22Þ

9. Evaluating the accuracy of the models with the testing dataset.

It is important to mention that all models are constructed using MATLAB software. The

candidate parameters of the applied models can be illustrated below:

• RF: The number of trees is selected between 20–100 while the leaf node ranges from 1–5.

• GBR: the learning rate 2 [0 1] and the number of trees 2 [150,1]. In Bag fraction = 1.

• SVR: Box Constraints "regularization parameter "is set between 0.7 to 1. mean the sigma

ranges from 0.8452 to 0.7071.

• Epsilon parameter 2 [0.6 1] and sigma. Finally, the kernel scale parameter ranges from 0.8 to

1.

• DT: MaxNumSplits (maximum number of decision splits) 2 [1 8]. Tree depth controllers 2

[5 10].

• Bag fraction = 1 for assembling models that’s mean "roughly 2/3 of input data is selected for

training for every tree and the remaining 1/3 is used as out-of-bag observations".

In the second scenario of this work, we used the randomization method to divide the data

into the training and testing phase. In this scenario, the effect of the climate would be more
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obvious on the performance of the AI models. Accordingly, the models in this scenario will be

trained using some recent records.

2.8 Statistical metrics

Different statistical metrics assess the best model accuracy in daily and weekly temperature

forecasting. Furthermore, it is vital to recognize the most efficient model with the least fore-

casted error. Four statistical measures can be adopted to examine the forecasting accuracy of

the suggested modeling approaches, such as root mean square error (RMSE), correlation coef-

ficient (R), Thiels’ U-statistics (U), and mean absolute error (MAE). The mathematical expres-

sions of these measures are presented below [57, 58].

RMSE ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

N

XN

i¼1

ðAi � PiÞ
2

s

ð23Þ

MAE ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

N

XN

i¼1

jAi � Pij

s

ð24Þ

U ¼
PN

i¼1
ðAi � PiÞ

2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
PN

i¼1
Ai

2

q

þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
PN

i¼1
Pi2

q ð25Þ

R ¼
PN

i¼1
Ai � A�ð Þ Ai � P�ð Þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
PN

i¼1
ðAi � A� Þ2

q ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
PN

i¼1
ðPi � P� Þ2

q ð26Þ

Where, Ai, and Pi are the actual and forecasting temperature for ith observation. While A−, and

P− are the mean of actual and predicted value, and N is the total number of observations. The

stated statistical parameters have been used frequently in the literature for model comparison,

and their estimation can be achieved directly from the observed and predicted values. Based

on the results of these statistical measures, the model presenting the lowest value of forecasting

error and the highest value of R (close to one) is selected as the best model for predicting the

air temperature for short- and mid-term forecasting.

3. Result and discussion

3.1 First scenario

This scenario investigates the capability of the AI models to predict the one-step ahead values

for daily and weekly temperature. In this part of the work, we divide the data into two phases:

training and testing. The classical method is used to separate the data into two steps; the first

70% of the recorded temperature is used for training, and the last 30% of the data is used for

testing. In this scenario, the effect of the current temperature trends is not considered. In other

words, the current records of temperatures are used in the testing phase. Thus, the models are

tested and evaluated based on their ability to predict the current temperature values of the

time series data. Furthermore, the input lags were determined by AFC and produced to the

adopted models like RF, SVR, GBR, RT, and QRT. Different statistical parameters and compa-

rable figures are used to assess the models’ performances.

This part discusses the performance of the proposed models for predicting the daily and

weekly temperature over the training and testing phases for different input lags. Tables 4 and 5

show the performance of the proposed models during the training phase for both daily and
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weekly temperature prediction. For daily forecast, all models provide satisfactory results. Nev-

ertheless, the RF provides the best performance, with RMSE ranging from 1.807 to 2.824, R

ranging from 0.978 to 0.991, U ranging from 0.065 to 0.101, and MAE ranging from 1.389 to

2.157, followed by the QRT model with RMSE ranging from 2.0874 to 3.1830, R ranging from

0.9722 to 0.9882, U ranging from 0.0745 to 0.1134, and MAE ranging from 1.3492 to 2.24, and

RT model with RMSE ranging from 2.3687 to 3.09, R ranging from 0.9738 to 0.9849, U rang-

ing from 0.0849 to 0.1106, and MAE ranging from 1.7951 to 2.374. While GBR and SVR mod-

els came last with RMSE ranging from 3.4233 to 3.6633 and from 3.6821 to 3.7887, R ranging

from 0.963 to 0.9677 and from 0.9604 to 0.9626, U ranging from 0.1229 to 0.1328 and from

0.1321 to 0.1353, and MAE ranging from 2.6659 to 2.8746 and from 2.8369 to 2.8965, respec-

tively. Furthermore, increasing the number of input lags increases the accuracy of the QRT,

RT, and SVR models. Here the QRT model reaches the optimum accuracy when the input lag

is nine (QRT − M9), the RT model with eight input lags (RT − M8), SVR model with ten input

lags (SVR − M9) and the GBR model with five input lags (GBR − M5). On the contrary, the RF

model only requires one input lag to reach its optimum performance RF–M1.

For weekly temperature prediction, all models provide satisfactory predictions reaching the

best performance with the QRT model with RMSE ranging from 2.5069 to 3.7157, R ranging

from 0.9589 to 0.9817, U ranging from 0.0932 to 0.11386, and MAE ranging from 1.6300 to

2.5880, followed by RF model with RMSE ranging from 2.799 to 3.647, R ranging from 0.960

to 0.977, U ranging from 0.105 to 0.136, and MAE ranging from 2.116 to 2.787. Moreover,

increasing the input lags for weekly prediction improves the accuracy of QRT, RF, RT, and

SVR models which allows them to reach their optimum accuracy (QRT − M16, RF − M16,

Table 4. The performance of the proposed models for daily temperature prediction: Training phase.

Models GBR QRT RT SVR RF

RMSE R U MAE RMSE R U MAE RMSE R U MAE RMSE R U MAE RMSE R U MAE

M1 3.663 0.963 0.132 2.829 3.183 0.972 0.113 2.24 3.09 0.974 0.111 2.374 3.789 0.96 0.135 2.897 1.807 0.991 0.065 1.389

M2 3.573 0.965 0.128 2.771 2.763 0.979 0.099 1.878 2.851 0.978 0.102 2.171 3.745 0.961 0.134 2.886 2.824 0.978 0.101 2.157

M3 3.553 0.965 0.128 2.759 2.621 0.981 0.094 1.768 2.75 0.979 0.099 2.123 3.734 0.961 0.134 2.873 2.756 0.979 0.099 2.117

M4 3.521 0.966 0.127 2.734 2.357 0.985 0.084 1.562 2.529 0.983 0.091 1.923 3.724 0.962 0.133 2.864 2.521 0.983 0.090 1.919

M5 3.423 0.968 0.123 2.666 2.281 0.986 0.081 1.51 2.486 0.983 0.089 1.896 3.716 0.962 0.133 2.861 2.488 0.983 0.089 1.895

M6 3.472 0.967 0.125 2.701 2.267 0.986 0.081 1.49 2.488 0.983 0.089 1.892 3.709 0.962 0.133 2.853 2.497 0.983 0.090 1.904

M7 3.488 0.967 0.126 2.72 2.109 0.988 0.075 1.37 2.4 0.984 0.086 1.817 3.698 0.962 0.133 2.851 2.366 0.985 0.085 1.792

M8 3.639 0.965 0.133 2.875 2.094 0.988 0.075 1.361 2.369 0.985 0.085 1.795 3.692 0.962 0.132 2.841 2.368 0.985 0.085 1.800

M9 3.503 0.966 0.126 2.734 2.087 0.988 0.074 1.349 2.387 0.985 0.086 1.812 3.682 0.963 0.132 2.837 2.369 0.985 0.085 1.803

https://doi.org/10.1371/journal.pone.0277079.t004

Table 5. The performance of the proposed models for weekly temperature prediction: Training phase.

Models GBR QRT RT SVR RF

RMSE R U MAE RMSE R U MAE RMSE R U MAE RMSE R U MAE RMSE R U MAE

M10 3.898 0.954 0.146 3.02 3.716 0.959 0.139 2.588 3.663 0.96 0.137 2.792 4.648 0.935 0.174 3.607 3.647 0.960 0.136 2.787

M11 3.797 0.957 0.143 2.971 3.486 0.964 0.13 2.379 3.522 0.963 0.132 2.713 4.607 0.936 0.173 3.584 3.458 0.965 0.130 2.669

M12 3.837 0.956 0.144 2.992 3.256 0.969 0.121 2.215 3.578 0.962 0.135 2.72 4.598 0.936 0.173 3.572 3.455 0.965 0.130 2.668

M13 3.333 0.967 0.125 2.605 2.898 0.975 0.108 1.93 3.167 0.971 0.119 2.398 4.543 0.938 0.17 3.528 3.126 0.972 0.117 2.400

M14 3.125 0.971 0.117 2.428 2.756 0.978 0.103 1.827 3.036 0.973 0.114 2.332 4.473 0.94 0.167 3.459 3.075 0.973 0.115 2.341

M15 3.466 0.965 0.131 2.72 2.645 0.98 0.099 1.737 3.019 0.974 0.113 2.302 4.422 0.941 0.166 3.383 3.036 0.973 0.114 2.305

M16 3.392 0.967 0.128 2.651 2.507 0.982 0.093 1.63 2.816 0.977 0.105 2.142 4.308 0.944 0.162 3.303 2.799 0.977 0.105 2.116

M17 3.827 0.962 0.147 3.044 2.853 0.976 0.106 1.880 2.822 0.977 0.106 2.144 3.532 0.963 0.131 2.689 2.737 0.978 0.102 2.109

https://doi.org/10.1371/journal.pone.0277079.t005
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RT − M16, SVR − M16). It is observed that any increase in the number of lags beyond a value

of seven imparts a negative effect on the model performance. At the same time, the GBR

model requires five lags (same as the daily prediction) to reach its optimum accuracy

(GBR − M14). Overall, QRT, RF, RT, and SVR models better predict daily temperature than

weekly during the training phase. On the other hand, the GBR model better predicts the

weekly temperature.

Based on the training phase, all models perform very well in predicting the daily and weekly

temperature. However, the assessment of the model performances based on the testing dataset

is also crucial. For the training phase, the models are provided with complete data (input and

targets), which may result in overfitting. Thus, excluding the models’ performances in the test-

ing phase may provide users with misleading results. It is known that in the testing phase mod-

els received only input features and thus the forecasting accuracy would be more reliable than

in the training phase [46, 59].

During the testing phase, the performance of the proposed models was assessed firstly by

comparing the performance with each other and secondly by comparing the performance with

the ARIMA model as a benchmark model. Table 6 shows the performance of the proposed

models during the testing phase for daily temperature prediction. For daily forecast, the RF

model provides the best performance, with RMSE ranging from 1.776 to 3.765, R ranging

from 0.960 to 0.991, U ranging from 0.063 to 0.133, and MAE ranging from 1.353 to 2.898 fol-

lowed by the SVR model with RMSE ranging from 3.5915 to 3.6599, R ranging from 0.9621 to

0.9635, U ranging from 0.1265 to 0.1288, and MAE ranging from 2.7451 to 2.7902. Moreover,

the RF model requires only one input lag (RF − M1) to reach the best accuracy, while the SVR

model requires five input lags. On the other hand, despite the RT and QRT models showing

the best performance during the training phase, they came last during the testing phase as they

have a tendency to overfit during the training phase.

For further assessment, the ARIMA model was implemented for daily and weekly predic-

tions using two different scenarios. The first one, the ARIMA used for the prediction of tem-

perature using a raw data set. However, the second one, data preprocessing, is used to improve

the capacity of ARIMA. At that stage, the differencing method is used to remove seasonality. It

is possible to utilize that method to get rid of the temporal reliance, also known as the series

dependence on time. The best prediction results are used as a benchmark to validate the AI

models. Itis important to mention that the time series data became smoother after the applica-

tion of differencing transformation technique (see Fig 4a and 4b). Considering the PACF

Table 6. The performance of the proposed models for daily temperature prediction: Testing phase.

Models GBR QRT RT SVR RF�

RMSE R U MAE RMSE R U MAE RMSE R U MAE RMSE R U MAE RMSE R U MAE

M1 3.697 0.961 0.131 2.84 4.015 0.954 0.141 3.07 3.978 0.955 0.14 3.055 3.66 0.962 0.129 2.79 1.776 0.991 0.063 1.353

M2 3.654 0.962 0.129 2.808 3.808 0.959 0.134 2.913 3.748 0.96 0.132 2.883 3.616 0.963 0.127 2.77 3.765 0.960 0.133 2.898

M3 3.639 0.963 0.129 2.807 3.735 0.96 0.132 2.866 3.725 0.961 0.132 2.872 3.606 0.963 0.127 2.758 3.740 0.960 0.132 2.884

M4 3.634 0.963 0.129 2.795 3.744 0.96 0.132 2.866 3.693 0.961 0.131 2.849 3.602 0.963 0.127 2.75 3.687 0.961 0.130 2.841

M5 3.623 0.963 0.128 2.794 3.701 0.961 0.13 2.839 3.67 0.962 0.13 2.831 3.592 0.964 0.127 2.745 3.678 0.962 0.130 2.836

M6 3.612 0.963 0.128 2.791 3.697 0.961 0.13 2.851 3.691 0.961 0.131 2.848 3.593 0.963 0.127 2.747 3.686 0.962 0.130 2.841

M7 3.617 0.963 0.128 2.791 3.714 0.961 0.131 2.842 3.68 0.962 0.13 2.855 3.593 0.963 0.127 2.755 3.696 0.961 0.131 2.850

M8 3.714 0.963 0.134 2.917 3.727 0.961 0.131 2.843 3.684 0.962 0.13 2.838 3.593 0.963 0.127 2.752 3.690 0.961 0.131 2.849

M9 3.633 0.963 0.129 2.813 3.691 0.961 0.13 2.835 3.692 0.961 0.131 2.857 3.595 0.963 0.127 2.758 3.720 0.961 0.132 2.872

� Symbol is the hyperparameter for the best model are number of trees = 4, and leaf node = 6.

https://doi.org/10.1371/journal.pone.0277079.t006
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presented in Fig 4c for daily temperature prediction, three input lags (2,3, and 4 days) are con-

sidered for the model development. As shown in Table 7, the ARIMA model performs on par

with the QRT model and underperforms in comparison to the other models for daily scale.

Furthermore, the ARIMA model requires only three input lags (ARIMA 3,1,2) to reach its best

performance. On top of that, the application of the data transformation approach enhances the

efficiency of the ARIMA prediction considerably. On the other hand, compared to the

ARIMA model, the RF improves the prediction accuracy by 3% in terms of R and reduces the

prediction error by 52.33%, 51.16%, and 52.1% in terms of RMSE, U, and MAE, respectively.

For weekly temperature prediction, as presented in Table 8, the RF model demonstrates

excellent performance in weekly temperature prediction by providing high prediction accu-

racy with R ranging from 0.933 to 0.982 and fewer prediction errors with RMSE ranging from

2.478 to 4.665, U ranging from 0.091 to 0.173 and MAE ranging from 1.874 to 3.614 compared

to the other models. Furthermore, the high performance of the RF model was achieved using

only one input lag (RF − M10), while the other models require significantly higher input lags

(seven lags) to reach their optimum performance (SVR − M16, RT − M16, GBR − M16,

Fig 4. Input determination for ARIMA model, a) is the original data, b) after applying differencing method, c) PACF for daily scale.

https://doi.org/10.1371/journal.pone.0277079.g004

PLOS ONE Air temperature forecasting: Mutli-time scale

PLOS ONE | https://doi.org/10.1371/journal.pone.0277079 November 3, 2022 16 / 31

https://doi.org/10.1371/journal.pone.0277079.g004
https://doi.org/10.1371/journal.pone.0277079


QRT − M16) and increasing the lags beyond seven tends to reduce the models’ performance.

Overall, the proposed models performed slightly better in predicting the daily temperatures

than the weekly ones.

On the other hand, the performance of the ARIMA model for weekly temperature predic-

tion is presented in Table 9. Notably, the differencing method smoothens the time series data

by removing a seasonal signal from a series (see Fig 5a and 5b). According to Fig 5c, based on

PACF, three lags (1, 2, and 3 weeks) have been considered for the model development. As

shown in Table 9, the performance of the ARIMA model is significantly lower than the RF

model, and the latter has been able to increase the prediction accuracy by 5.36% in terms of R

and reduce the prediction error by 48%, 47%, and 48% in terms of RMSE, U, and MAE.

Table 7. The performance of the ARIMA model for daily temperature prediction: Testing phase.

Without removing With removing

Model RMSE R U MAE RMSE R U MAE

ARIMA (2,1,1) 21.868 -0.053 0.596 17.418 3.727 0.961 0.13 2.828

ARIMA (2,2,1) 169.046 -0.034 0.903 142.136 205.266 0.115 0.949 156.224

ARIMA (2,1,2) 21.489 -0.053 0.594 17.034 3.738 0.961 0.129 2.825

ARIMA (3,1,1) 21.526 -0.053 0.594 17.073 3.727 0.961 0.129 2.826

ARIMA (3,1,2) 21.493 -0.053 0.594 17.038 3.726 0.961 0.129 2.825

ARIMA (4,1,2) 21.714 -0.053 0.595 17.261 3.786 0.961 0.13 2.859

ARIMA (4,1,1) 21.361 -0.053 0.593 16.91 3.786 0.961 0.13 2.859

https://doi.org/10.1371/journal.pone.0277079.t007

Table 8. The performance of the proposed models for weekly temperature prediction: Testing phase.

Models GBR QRT RT SVR RF�

RMSE R U MAE RMSE R U MAE RMSE R U MAE RMSE R U MAE RMSE R U MAE

M10 4.693 0.932 0.172 3.62 4.922 0.925 0.179 3.795 4.796 0.929 0.175 3.721 4.54 0.936 0.167 3.465 2.478 0.982 0.091 1.874

M11 4.611 0.934 0.17 3.556 4.703 0.932 0.172 3.632 4.615 0.934 0.169 3.561 4.51 0.937 0.166 3.476 4.580 0.935 0.168 3.516

M12 4.575 0.935 0.168 3.475 4.73 0.931 0.174 3.628 4.654 0.933 0.172 3.588 4.5 0.938 0.166 3.463 4.665 0.933 0.173 3.614

M13 4.618 0.934 0.17 3.5 4.649 0.933 0.17 3.556 4.605 0.934 0.17 3.576 4.461 0.939 0.164 3.44 4.597 0.935 0.169 3.564

M14 4.557 0.936 0.167 3.513 4.653 0.933 0.171 3.564 4.585 0.935 0.17 3.525 4.416 0.94 0.162 3.404 4.562 0.936 0.169 3.525

M15 4.443 0.94 0.165 3.494 4.487 0.938 0.165 3.404 4.441 0.939 0.165 3.406 4.365 0.941 0.161 3.348 4.492 0.938 0.167 3.506

M16 4.423 0.941 0.165 3.472 4.423 0.94 0.163 3.382 4.247 0.945 0.157 3.291 4.286 0.944 0.158 3.283 4.358 0.941 0.161 3.349

M17 4.582 0.941 0.174 3.707 4.552 0.936 0.168 3.521 4.297 0.943 0.160 3.262 4.613 0.934 0.169 3.495 4.293 0.943 0.159 3.305

� Symbol is the hyperparameter for the best model are number of trees = 50, and leaf node = 5.

https://doi.org/10.1371/journal.pone.0277079.t008

Table 9. The performance of the ARIMA model for weekly temperature prediction: Testing phase.

Without removing With removing

Model RMSE R U MAE RMSE R U MAE

ARIMA (1,1,1) 16.566 -0.058 0.567 12.983 4.77 0.932 0.172 3.622

ARIMA (1,1,2) 16.144 -0.058 0.565 12.711 4.797 0.932 0.171 3.657

ARIMA (2,1,1) 16.506 -0.058 0.567 12.94 4.84 0.932 0.172 3.701

ARIMA (2,2,1) 196.082 -0.061 0.917 171.482 38.946 0.488 0.763 31.783

ARIMA (2,1,2) 21.698 -0.047 0.596 17.36 4.797 0.932 0.171 3.657

ARIMA (3,1,1) 18.169 -0.086 0.573 14.07 4.847 0.932 0.172 3.708

ARIMA (3,1,2) 22.362 -0.042 0.602 18.035 4.794 0.932 0.171 3.652

https://doi.org/10.1371/journal.pone.0277079.t009
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Furthermore, the ARIMA model requires only one input lag (ARIMA 1,1,1) for weekly predic-

tion to reach its best performance.

For further assessment, we compared the performance of the best models obtained from

the daily prediction (SVR − M5, RT − M5, GBR − M6, QRT − M9, and RF-M1) for each

month of the year. In other words, the daily temperature prediction may vary from month to

month, so it is essential to investigate the performance of the applied models for each month.

What supports the importance of conducting this investigation is the considerable variation in

temperature during the months of the year (see Table 2). It can be observed that the Standard

deviation (St.D) varies from 2.916 to 7.905. The other significant indicator is that the data

length varies monthly (see Fig 6).

Fig 7 shows the performance of the best models based on RMSE statistics for each month of

the year. After the training process was completed, the performance of each model was

assessed individually. In general, statistical metrics such as RMSE provide the model’s overall

evaluation. Therefore, this figure is created to see the monthly performance of each model. It is

observed that the models have faced problems in estimating the temperatures for the winter

Fig 5. Input determination for ARIMA model., a) is the original data, b) after applying differencing method, c) PACF for weekly scale.

https://doi.org/10.1371/journal.pone.0277079.g005
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season. According to the Fig 7, the RF and SVR model provided the least amount of prediction

error for almost all months, followed by the GBR model. It can be observed that the highest

forecasted error is observed in January, February and December. Two reasons may efficiently

explain this problem. The first reason may be associated with variability of temperature in the

Fig 6. Percentage of data length used in this study.

https://doi.org/10.1371/journal.pone.0277079.g006

Fig 7. The performance of proposed models in predicting the air temperature for each month.

https://doi.org/10.1371/journal.pone.0277079.g007
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winter season (St. D range from 2.916 to 7.905) which leads to a considerable effect on the

model performance. The second significant reason is that the training data doesn’t have large

number of negative extreme values which limits the training efficiency of the model in this

scenario.

In terms of the total number of days, February is the shortest month. It can be observed

from Fig 7 that the number of data records used in this month constitutes only 7.74% of the

total data, which is undoubtedly the lowest percentage of data used in this study. Therefore,

the models do not have enough training to simulate that period of the year in which the tem-

perature changes significantly within a short period. Furthermore, the RF provides better effi-

ciency in predicting the temperatures measured in February. The model presents less variance

in comparison to the other models. A further noticeable observation related to daily tempera-

ture prediction is the fact that all the models except the QRT model require fewer input lags to

reach their optimum performance (RF − M1, SVR − M5, RT − M5, GBR − M6), while the

QRT model requires more input lags (nine lags) to achieve the optimum performance

(QRT − M9).

The performance of the proposed models during the testing phase is also assessed using

scatter diagrams (see Figs 8 and 9), histograms (see Figs 10 and 11), and box plots (see Figs 12

and 13). Figs 8 and 9 represent the scatter plot between the observed and predicted tempera-

tures for daily and weekly prediction. The plots examine the cause-effect relationship between

the predicted and the observed temperatures and check the degree of association between

these two variables in terms of coefficient of determination (R2). For daily prediction, the RF

model yielded the best prediction performance in terms of R2� 0.983, while the other models

provided slightly similar performance in terms of R2. Additionally, for all data samples, there

is considerably less diversion with the ideal line for the RF model compared to the other mod-

els. For weekly prediction, the RF model still demonstrated a robust prediction performance

with a significantly higher R2 values (R2� 0.964) compared to the other models. At the same

time, the RF model showed the least diversion with the ideal line for all data samples compared

to the other models.

Figs 10 and 11 show the histogram plots for the forecasting error in the case of both hori-

zons (i.e., daily and weekly) during the testing phase. The plot visually interprets the error dis-

tribution by showing the number of error values within a specified range and includes the

Gaussian kernel density function to check the error normality. From Figs 10 and 11, it can be

inferred that the RF model performs better than the other models in terms of mean error and

standard deviation for daily temperature and weekly predictions and provides an error distri-

bution similar to the normal distribution. Moreover, box plots are also constructed to depict

the distribution and skewness of forecasting error values by displaying quartiles and averages.

The plots display the values in a standardized manner using a five-number summary (i.e., min-

imum, first quartile, median, third quartile, and maximum) and present more visual informa-

tion regarding the effectiveness of each model separately. The figures help to better understand

the characteristics of forecasting errors generated by the applied models. For daily scale, all

models provide the same outlier values, slightly less for the RF − M1 model (see Fig 12a). The

quantile of the measured errors is provided in Fig 12b. Accordingly, the RF − M1 model gener-

ates a lower interquartile range (IQR = 3.93) than the other models, indicating the efficiency of

predicting the daily temperature. For the weekly time scale, the RF − M1 model shows the best

performance because its median and mean values are very close to zero compared to other

models (Fig 13a). Besides, the generated outliers are fewer than those reported in other models.

The most important note can be observed in Fig 13b which shows that the RF-M1 model gen-

erates significantly fewer outliers (IQR = 2.554) in comparison to the other models whose IQR

ranges from 4.738 to 5.353.
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For further evaluation, the residual error diagrams for both daily and weekly scales have

been developed (Figs 14 and 15). The diagram acts as a performance measure for the applied

models and represents the difference between the forecasted and the actual temperature values.

It is observed from Figs 14 and 15 that the RF model demonstrates the least residual error in

comparison to all other applied models and outmatches them in terms of prediction accuracy

and performance.

Lastly, the capacity of the predictive models has been investigated through the hottest

months (June, July, and August). These months have the highest temperatures; thus, it is vital

to see which applied AI models mimic the extreme temperature values. For that, the probabil-

ity records (data points), which have lined at 95% confidence interval (mean ± standard devia-

tion), have been computed; it can be seen from Fig 16 that only the RF-M1 model managed to

generate more excellent performance than the comparable models. Moreover, the SVR-M5

model could not deal well with the high-temperature values in the hottest months for this

study area.

Fig 8. Comparison between measured daily temperatures and predicted ones through the testing phase.

https://doi.org/10.1371/journal.pone.0277079.g008
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3.2 Second scenario

The previously described findings were obtained when data from 2000 to 2015 were utilized

for training the applied models. This data counted for 70% of the total records and the rest of

the measured data, which represented 30% of the entire data points, was used for testing the

models. This type of data division helps to test how these models can simulate the pattern of

data recorded in recent years. It is known that the world, in not a few parts of it, is facing a

global warming crisis and the time series of temperatures studied in the last decade have

shown a behavior and pattern which differs somewhat from what they were observed in the

previous years. Accordingly, this study investigates how climate change affects the temperature

records. The current records of temperature were used in both the training and testing phases.

To do that, the data records are randomly divided into two phases: training (70%) and testing

Fig 9. Comparison between measured weekly temperatures and predicted ones through the testing phase.

https://doi.org/10.1371/journal.pone.0277079.g009
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(30%). After that, the data-driven models (QRT, GBR, RF, and RF) were trained and assessed

using several statistical metrics based on this data division. Furthermore, the outcomes of

these models are compared with their corresponding results, which have already been dis-

cussed. This technique may help observe whether there is an effect on the behavior and accu-

racy of the model predictions when using recent time series data during the training process.

According to the results shown in Table 10, all the predictive models’ performances are posi-

tively affected using the Randomization method approach. For example, when classical data

division procedure was used the RF model generates relatively higher errors (RMSE = 1.776,

U = 0.063, and MAE = 1.353) and however, the prediction accuracy is slightly enhanced and

the model provides lower forecasting error (RMSE = 1.697, U = 0.061, and MAE = 1.325).

Overall the Randomization method has a role in improving the model capacity because it

includes features related to future temperature trends in the training data used to train the sug-

gested models in this work.

4. Conclusion

The accuracy of the Data-Driven Models, namely RT, SVR, QRT, RF, ARIMA, and GBR, have

been investigated to forecast atmospheric air temperature on different time scales (daily and

weekly) using historical meteorological data. The data was collected from Cray station, located

in North Dakota, USA. This region experiences a volatile continental climate throughout the

year. The time-series data is relatively long (2000 to 2021), 70% of the data are used for model

calibration (2000 to 2015), and the rest are used for testing. Several input groups were

Fig 10. The histogram and Gaussian kernel density function for daily temperature prediction during the testing phase.

https://doi.org/10.1371/journal.pone.0277079.g010
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examined with different times of lags. The daily scale showed that the RF technique provided

more accurate outcomes than the comparable models.

Moreover, the advanced analysis of forecasting error exhibited that the performance of the

models was significantly affected by data variability, consistency, and extreme temperature val-

ues. As January, February and December had higher variability of temperature data values, the

effect on the model performance was greater for these months. In addition to this, the forecast-

ing errors observed for these months were higher than other months due to the fact that the

average temperature observed for these months fell below the overall average temperatures

observed for the entire dataset.

The models performed very well for the weekly time scale, but the RF, modeling technique

provided more accurate results compared to other models. In general, the accuracy of daily

Fig 11. The histogram and Gaussian kernel density function for weekly temperature prediction during the testing phase.

https://doi.org/10.1371/journal.pone.0277079.g011
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forecasting temperature was higher than the weekly scale. This may be because the weekly rec-

ords were calculated by taking the average temperatures for seven days, which led to the loss of

some critical data characteristics. Furthermore, as the weekly scale was derived from the daily

records, the length of the time-series data reduced significantly, which affected the efficiency

of the model during the training process.

This study also investigated the AI models’ capacity to predict temperature when the future

pattern data is included. In this scenario, the randomization data division was applied to divide

the data into training and testing. The study found that the prediction models’ performance

was enhanced after using these techniques. This means that the current pattern of the tempera-

ture data affecting climate change influences the quality of predictions. Besides, the case study

location starts to be gradually affected by climate change and its impact on temperature values.

Thus, this study suggests the following recommendations:

• Adopting a robust approach to determine the best input combination instead of existing

(ACF and PACF) methods.

Fig 12. a) Boxplot of the forecasting error in daily temperature prediction for all proposed models. b) Quantile percent of the

forecasting error.

https://doi.org/10.1371/journal.pone.0277079.g012
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Fig 13. a) Boxplot of the forecasting error in weekly temperature prediction for all proposed models. b) Quantile percent of the forecasting error.

https://doi.org/10.1371/journal.pone.0277079.g013

Fig 14. Daily residual: testing phase. a) GBR-M6, b) RT-M5. c)SVR-M5. d)QRT-M9. e) RF-M1.

https://doi.org/10.1371/journal.pone.0277079.g014
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Fig 15. Weekly residual: testing phase. a) GBR-M16, b) RT-M16, c) SVR-M16, and e) are RF-M10.

https://doi.org/10.1371/journal.pone.0277079.g015

Fig 16. The probability of the data falling at the confidence level of 95% (μ±2σ). μ is the average, and σ is the standard deviation.

https://doi.org/10.1371/journal.pone.0277079.g016
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• Applying a Bio-inspirited algorithm to select the optimal hyperparameters of SVR

• Studying to what extent the size of the data used to train the performed models affects the

accuracy of predictions. This task can be accomplished using different training and testing

rations.
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