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The study was aimed to evaluate the elicitation of highly pathogenic avian influenza

(HPAI) virus (AIV) M2e and HA2-specific immunity in chicken to develop broad protective

influenza vaccine against HPAI H5N1. Based on the analysis of Indian AIV H5N1

sequences, the conserved regions of extracellular domain of M2 protein (M2e) and HA2

were identified. Synthetic gene construct coding for M2e and two immunodominant HA2

conserved regions was designed and synthesized after codon optimization. The fusion

recombinant protein (∼38 kDa) was expressed in a prokaryotic system and characterized

by Western blotting with anti-His antibody and anti-AIV polyclonal chicken serum. The

M2e–HA2 fusion protein was found to be highly reactive with known AIV-positive and

-negative chicken sera by ELISA. Two groups of specific pathogen-free (SPF) chickens

were immunized (i/m) with M2e synthetic peptide and M2e–HA2 recombinant protein

along with one control group with booster on the 14th day and 28th day with the same

dose and route. Pre-immunization sera andwhole blood were collected on day 0 followed

by 3, 7, 14, 21, and 28 days and 2 weeks after the second booster (42 day). Lymphocyte

proliferation assay by 3-[4,5-dimethylthiazol-2-yl]-2,5 diphenyl tetrazolium bromide (MTT)

method revealed that the stimulation index (SI) was increased gradually from days 0 to

14 in the immunized group (p < 0.05) than that in control chicken. Toll-like receptor (TLR)

mRNA analysis by RT-qPCR showedmaximum upregulation in the M2e–HA2-vaccinated

group compared to M2e- and sham-vaccinated groups. M2e–HA2 recombinant

protein-based indirect ELISA revealed that M2e–HA2 recombinant fusion protein

has induced strong M2e and HA2-specific antibody responses from 7 days

post-primary immunization, and then the titer gradually increased after booster dose.

Similarly, M2e peptide ELISA revealed that M2e–HA2 recombinant fusion protein
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elicited M2e-specific antibody from day 14 onward. In contrast, no antibody response

was detected in the chicken immunized with synthetic peptide M2e alone or control

group. Findings of this study will be very useful in future development of broad protective

H5N1 influenza vaccine targeting M2e and HA2.

Keywords: avian influenza, immunity, matrix and hemagglutinin, humoral and cell mediated immunity, recombinant

protein

INTRODUCTION

Influenza A viruses have been isolated from a wide range of
animals including poultry, wild and cage birds, pigs, horses, dogs,
sea mammals, and humans, although ducks are considered the
natural reservoirs of avian influenza viruses (AIVs). Based on
the antigenicity of two viral glycoproteins viz hemagglutinin
(HA) and neuraminidase (NA), influenza A viruses are further
classified into subtypes; to date, though 18 HA subtypes (H1–
H18) and 11 NA subtypes (N1–N11) have been identified (1),
only 16 HA subtypes (H1–H16) and nine NA subtypes are
considered true influenza viruses and the remaining two, namely,
H17N10 (2) and H18N11 (3), are considered influenza A-like
viruses (1). In South Asia, the H5N1 virus was first reported in
domestic poultry in India and Pakistan during February 2006
and followed by Bangladesh, Nepal, and Bhutan in March 2007,
January 2009, and February 2010, respectively (4). All the H5N1
viruses isolated from poultry and humans in South Asia until
2010 belong to clade 2.2 (5–8). The first introduction of clade
2.3.2 H5N1 virus to South Asia was reported from Nepal in
February 2010 (9, 10), followed by in India in February 2011
(11). Antigenic analysis showed 64–256-fold reduction of cross
reactivity in clade 2.3.2.1 as compared to clade 2.2 viruses,
which revealed that the likelihood of clade 2.2 viruses to provide
cross-protection against 2.3.2.1 viruses is less (11). Between
November 2014 to March 2015, clade 2.3.2.1c has been reported
as the new introduction to India (12), followed by worldwide
circulation of clade 2.3.4.4 including India (13–17). Due to the
continuous change of clades, cross protection between the clades
become uncertain.

M2 is a type III integral membrane protein forming a
pH-dependent proton-selective ion channel (18, 19) produced
by spliced mRNA translation of gene segment 7 of influenza
virus, which also codes for M1 protein (20). The M2 protein
(96 amino acids) contains three structural domains, namely,
amino-terminal extracellular domain M2e (23 residues), a
transmembrane domain (19 residues), and a cytoplasmic
domain (54 residues) (21), which gives the native tetrameric
conformation with disulfide bonds. Though M2 protein
molecules are estimated to be present at low level (20–60
numbers) on each virion, they are expressed at high levels on
the surface of infected cells (22). The amino acid sequence in
M2e is highly conserved among influenza A viruses (23, 24).
The five amino acids within the residues 10–20 of M2e were
observed to be host restricted: PIRNEWGCRCN (amino acids
10–20, human isolates), PTRNGWECKCS (amino acids 10–20,
avian isolates), and PIRNGWECRCN (amino acids 10–20, swine
isolates) (24). Due to the low degree of variation in the M2

extracellular domain, it is considered an attractive antigenic
target for developing a universal influenza vaccine.

Influenza virus HA is a homotrimeric protein molecule,
and each monomer consists of two disulfide-linked subunit
glycoproteins, a globular head of HA1 and a stem or stalk domain
composed of the N- and C-terminal parts of HA1 and all of HA2
(25). HA is synthesized as a precursor (HA0) that is cleaved into
HA1 and HA2 domains. The cleavage site of HA with the fusion
peptide and N-terminal portion of HA2 is the most conserved
sequence among influenza A viruses and has the potential
application as a universal antigen. Although HA stem region is
considered a good option for the development of the universal
vaccine, the frequency of anti-stem antibodies is considerably
lower than that of anti-globular head antibodies in natural
infection (26) due to the physical masking of immunodominant
head over the stem region and close proximity of stem epitope(s)
to the viral membrane (27).

It is always advantageous to add more conserved
immunogenic regions to get better cross-protection while
developing a universal vaccine instead of selecting a single
region. Most of the studies had been carried out to assess the
immunogenicity of M2e and HA2 region of stalk domain in
either mice or pigs. But it is essential to evaluate these types of
conserved region-based immunogens in chicken before applying
the universal vaccine strategy in poultry industry against H5N1
or other highly pathogenic AIV infections. Hence, the study was
aimed to develop highly pathogenic avian influenza (HPAI) virus
M2e and HA2-specific immunity in chicken to develop a broad
protective influenza vaccine against HPAI H5N1.

MATERIALS AND METHODS

Identification of M2e and HA2 Conserved
Region of Indian Avian Influenza H5N1
Viruses
For the identification of M2e and HA2, all the clades of Indian
AIVH5N1 virusM2 andHA sequences of 2006 to 2015 outbreaks
were included and analyzed by MegAlign software (DNASTAR,
Inc., USA). Conserved regions of extracellular domain of M2
protein (M2e) and HA2 were identified, and the identity was
compared with published M2e and HA2 sequences.

Synthesis of Avian Influenza M2e Antigen
The identified M2e (2–24 amino acid)
(SLLTEVETPTRNEWECRCSDSSD) was synthesized
commercially (Genscript, USA) as a synthetic peptide antigen.
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FIGURE 1 | Gene construction and expression of M2e–HA2 recombinant protein in Escherichia coli Rosetta Blue (DE3)pLysS. Sodium dodecyl sulfate-polyacrylamide

gel electrophoresis (SDS-PAGE) and Western blot analysis and evaluation of recombinant M2e–HA2 protein by indirect ELISA with positive control sera. (A) Synthetic

gene constructs coding for M2e (2–24 AA) and HA2 conserved regions (N-terminal 1–38 AA and Long α-helix 76–130 AA) with chicken dendritic cell binding peptides

were designed by placing glycine linkers (GGG) in between them. (B) SDS-PAGE analysis of recombinant M2e–HA2 protein by Coomassie blue stain and (C) Western

blot analysis of recombinant M2e–HA2 protein (38 kDa) showed high reactivity with polyclonal avian influenza virus (AIV) serum. (D) Indirect ELISA with recombinant

M2e–HA2 fusion protein showed high reactivity with different clades (2.2 and 2.3.2.1) of H5N1 AIV, H9N2 AIV but failed to react with NDV and control chicken serum.

Expression and Characterization of
M2e–HA2 Fusion Recombinant Protein
Synthetic gene constructs coding for M2e (2–24 AA) and HA2
conserved region (N-terminal 1–38 AA and Long α-helix 76–
130 AA) were designed by placing glycine linkers (GGG) and
chicken dendritic cell binding peptides (amino acid sequences
of chicken dendritic cell binding peptides were not shown)
in between them and synthesized commercially after codon
optimization (Genscript, NJ, USA) in pET 32b(+) vector system
along with His-Tag. Then, the gene was used for the expression
of recombinant protein in BL21 (DE3) pLysS cells and purified
using His-Bind purification kit (Merck Millipore, USA). Briefly,
a single colony of transformed Escherichia coli Rosetta Blue
(DE3)pLysS was incubated overnight on a shaker incubator
in 2ml LB medium containing ampicillin (100µg/ml) and
chloramphenicol (34µg/ml) at 37◦Cwith constant agitation (200
rpm). The next day, 500 µl of culture was inoculated in 50ml LB
broth (1/100) and grown up to an OD600 of 0.6 with vigorous
shaking (200 rpm) at 37◦C. Isopropyl-β-D-thiogalactopyranoside
(IPTG) was added to a final concentration of 1mM for expression
of fusion protein in E. coli and incubated further for another

4 h at 37◦C with shaking at 200 rpm. In order to produce the
expression protein, bacterial suspensions were tested at 2- and
4-h intervals and analyzed on 12% sodium dodecyl sulfate (SDS)-
polyacrylamide gel electrophoresis (PAGE). The fusion chimeric
protein (M2e–HA2) in the induced cell pellet as inclusion bodies
was purified using the BugBuster R© HisBind R© Purification Kit
(Novagen, USA) following the manufacturer’s protocol. The
purified M2e–HA2 recombinant protein was characterized by
Western blotting with anti-His antibody and anti-AIV polyclonal
chicken serum (Figure 1). Similarly, reactivity of M2e–HA2
fusion protein with known AIV-positive and -negative chicken
sera was tested by ELISA (Figure 1D).

Preparation of Immunogen
M2e Synthetic Peptide and M2e–HA2 Fusion

Recombinant Protein Emulsification
Six milliliters of synthetic peptides (M2e) and recombinant
protein (M2e–HA2) were emulsified with MontanideTM ISA 71
VG (SEPPIC) (14ml) in the ratio of 3:7 to prepare water-in-oil
(W/O) emulsion. Sham vaccine for control birds was prepared by
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emulsifying phosphate buffered saline (PBS) with MontanideTM

ISA 71 VG.

Immunization of Specific Pathogen-Free Chickens

With the Water-In-Oil Emulsified Synthetic Peptide

(M2e) and Recombinant Protein (M2e–HA2) Antigen
Four-week-old specific pathogen-free (SPF) chickens were
immunized with 0.5ml of emulsified antigen containing 100
µg of peptide (M2e) or 100 µg of recombinant protein (M2e–
HA2) per dose in breast muscle. Six birds in each group were
immunized with M2e synthetic peptide (A), recombinant M2e–
HA2 fusion protein (B), and six birds were sham vaccinated
(C) apart from unvaccinated control birds (D). Booster was
given on the 14th day and 28th day with the same dose
and route. Pre-immunization sera and whole blood with
ethylenediaminetetraacetic acid (EDTA) were collected on day 0,
followed by 3, 7, 14, 21, and 28 days, and 2 weeks after the second
booster (42nd day). All the samples were processed on the same
day of collection.

Measurement of Cell-Mediated Response
Separation of Peripheral Blood Mononuclear Cells

From Chicken Blood
Approximately 3ml of peripheral blood was collected from
the wing vein of each bird following sterile procedure and
immediately transferred into tubes containing EDTA. Buffy coat
(750 µl) was separated by centrifugation at 1,800 rpm for
40min. A 2-ml microcentrifuge tube, 750 µl of Histopaque R©-
1077 was taken, and 750 µl of buffy coat was gently layered
over it. Centrifugation for 30min at 1,800 rpm was done in
room temperature. The mononuclear cells were aspirated from
the opaque interface of the upper layer. The cells were washed
thrice with sterile PBS followed once with RPMI 1640 medium
by centrifuging at 1,000 rpm for 10min. Cells were resuspended
in 1ml of RPMI 1640 and counted using Neubauer chamber.
Then, the peripheral blood mononuclear cells (PBMCs) were
made into different aliquots to carryout FACS, lymphocyte
proliferation assay, and cytokine and Toll-like receptor (TLR)
mRNA expression studies.

Flow Cytometry Analysis of Chicken Peripheral Blood

Mononuclear Cells
PBMCs of post-immunized chicken were processed for the
analysis with flow cytometry using anti-chicken CD4 and CD8
fluorescein isothiocyanate (FITC) MAbs (Southern Biotech,
USA). Briefly, 100 µl of PBMCs (105-106 cells) in PBS was mixed
with 5 µl of MAbs (0.5 µg/µl) in individual tubes each along
with an isotype control for individual birds. Cells were mixed by
gentle vortexing and incubated at 37◦C for 1 h. Then, the tubes
were washed thrice with washing cum blocking buffer containing
PBS, 1% bovine serum albumin (BSA), and 0.1% sodium azide
(SA) by centrifugation at 4,000 rpm for 5min. Then, the cells
were resuspended and fixed with 0.5% paraformaldehyde (PFA)
for 30min at room temperature and analyzed by flow cytometry
FACSCanto (BD Biosciences, San Jose, CA, USA). The results
were analyzed with FACSDiVa R© software (BD Biosciences, San
Jose, CA, USA).

Lymphocyte Proliferation Assay
Lymphocyte proliferation assay was performed as described
previously (28) using CellTiter 96 R© Non-Radioactive Cell
Proliferation Assay kit (Promega, Madison, WI). Briefly,
triplicates of 1–2 × 105 number of PBMCs from each bird
of different groups were cultured in 96-well plates in 100
µl of RPMI 1640 medium. Ten micrograms of M2e peptide
or recombinant protein (M2e-HA2) were used as stimulating
antigen in their corresponding groups and concanavalin A
(ConA) and lipopolysaccharide (LPS) as positive controls in
triplicate wells for each sample. Similarly, triplicate wells of each
bird were kept as unstimulated control within the group. The
cells were incubated in a final volume of 100 µl complete RPMI
1640 for 72 h, and 15 µl of dye solution [3-[4,5-dimethylthiazol-
2-yl]-2,5 diphenyl tetrazolium bromide (MTT)] was added to the
plates and incubated further for 4 h at 37◦C. Then, 100 µl of
solubilization solution was added to all the wells. Then, the plates
were kept on an orbital shaker for 10min, and the absorbance was
finally measured at 550 nm using TriStar2S LB 942 multimode
reader (BERTHOLD Technologies, Germany). The proliferation
index or stimulation index (SI) was calculated compared to
negative control, and the results were expressed as the mean
of triplicate wells. The proliferation index was calculated by the
following formula:

Mean OD550 of antigen-treated well—Mean OD550 of
blank/Mean OD550 of unstimulated control well.

Quantification of Cytokines and Toll-Like
Receptors mRNA Expression in Chicken
Peripheral Blood Mononuclear Cells
The mRNA expressions of chicken cytokines [transforming
growth factor (TGF)-β, tumor necrosis factor (TNF)-α,
interferon (IFN)-α, IFN-β, IFN-γ, interleukin (IL)-1β, IL-6, IL-4,
and IL-10] and TLRs (1, 2, 3, 4, 5, 7, 15, and 21) were quantified
using primers listed in our earlier work (29, 30) by RT-qPCR
using Light Cycler 480 SYBR Green I master (Roche, Germany)
in Light Cycler R© 480 Real Time PCR System II (Roche,
Germany). Total RNA was extracted from PBMCs using RNeasy
minikit (Qiagen, USA) according to the manufacturer’s protocol,
and cDNA synthesis was carried out using First Strand cDNA
Synthesis Kit (Fermentas Life Sciences, USA) with random
hexamer primer and SuperScript II Reverse Transcriptase from
1 µg of RNA. Then, SYBR green-based qPCR was performed as
per the instructions of the manufacturer. Briefly, A total reaction
volume of 20 µl containing 10 µl of 2× SYBR Green I master
mix, 2 µl of cDNA, 1 µl of primers each (20 pmol) was used for
amplification in triplicates with the following thermal profile:
one cycle of 95◦C for 2min, 40 cycles of 95◦C for 10 s, 60◦C
for 30 s, and 72◦C for 30 s. The fluorescence was measured for
every cycle at the end of extension, and amplification product
dissociation was analyzed at the end of the PCR. Chicken
β-actin gene from the same sample was used as a reference gene
for normalization. Means of triplicate reactions were used to
determine mean cycle threshold (Ct) value of three birds (n
= 3, data points = 9), respectively. Comparative Ct value was
used to determine fold changes in gene expression, calculated
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as 2−11Ct (31) by using Relative Expression Software Tool
(REST) 2009. Data were analyzed using REST 2009, means and
SE were calculated using REST software, i.e., the results of the
2,000 random reallocations. The software uses pairwise fixed
reallocation randomization test to calculate the p-values between
groups. p < 0.05 was considered statistically significant.

Assessment of Humoral Immune
Response by M2e Synthetic Peptide, HA
Stalk Recombinant Protein, and M2e–HA2
Recombinant Protein-Based Indirect ELISA
Experimental hyper immune chicken sera of different clades
were tested by ELISA using M2e synthetic peptide and M2e–
HA2 recombinant fusion protein by indirect ELISA to ensure
its reactivity (32). Sera from all the groups of chickens were
collected at days 0, 3, 7, 14, 28, and 42 and evaluated by
ELISA usingM2e synthetic peptide andM2e–HA2 fusion protein
separately. Briefly, ELISA plates were directly coated with 50
µl of M2e synthetic peptide or HA stalk protein or M2e–
HA2 recombinant protein (1.25µg/ml) in carbonate bicarbonate
coating buffer overnight at 4◦C. Next day, plates were washed
with PBS containing 0.05% Tween 20 (PBST) and blocked with
5% non-fat drymilk powder (5%NFDM in PBST) for 1 h at 37◦C.
Then, the antigen-coated plates were washed thrice with PBST
and incubated with 50 µl of 1:50 diluted (1% NFDM in PBST)
serum samples for 1 h at 37◦C. After washing with PBST thrice,
plates were incubated with 50 µl of 1:25,000 diluted anti-chicken
immunoglobulin HRPO conjugates (Sigma-Aldrich, USA) for
1 h at 37◦C. The substrate reaction was developed by adding
50 µl of 3,3′,5,5′-tetramethylbenzidine (TMB; Sigma, USA) to
each well, and the reaction was stopped after 10min with 0.4M
H2SO4. The optical density (OD) of each well was read at
450 nm in a TriStar2S LB 942 multimode reader (BERTHOLD
Technologies, Germany).

Challenge Study
Challenge experiment was carried out in the Class III Biosafety
cabinets (Isolators) inside the BSL3 animal bio-containment
facility of ICAR- NIHSAD, India. The immunized chickens of
groups A, B, and C (except non-vaccinated and non-infected
control birds) were transferred to respective isolators A, B, and
C, and all were challenged intranasally with 108.0 EID50/0.1ml
of clade 2.3.2.1 H5N1 [A/chicken/India/CA0302/2011 (H5N1)]
virus and monitored continuously. Peripheral blood, oral
swabs, and cloacal swabs were collected after 24 h of virus
infection. PBMCs were separated from the whole blood and
processed for RNA extraction. All the swabs were processed
immediately and stored at −80◦C until use. All the samples
of challenged birds were processed following strict biosafety
norms of ICAR-NIHSAD.

Post-challenge Inflammatory Cytokine
mRNA Expression Analysis
Approximately 5 × 106 cells pelleted after centrifuging at
250 × g for 10min were used for RNA extraction using an
RNeasy Mini kit (Qiagen, Hilden, Germany) according to the

manufacturer’s protocol. The RNA was quantified using a Qubit
fluorometer (Invitrogen, USA), and cDNA synthesis was carried
out in a 20-µl volume using a First Strand cDNA Synthesis Kit
(Fermentas, USA) with random hexamer primers from 1 µg
of RNA according to the manufacturer’s guidelines.The post-
challenge mRNA expressions of chicken inflammatory cytokines
(TGF-β, TNF-α, IFN-α, IFN-β, IFN-γ, IL-1β, IL-6, IL-4, and IL-
10) and TLRs (1, 2, 3, 4, 5, 7, 15, and 21) were quantified similar
to pre-challenge study.

Quantification of Viral Load
Challenge virus shedding via oropharyngeal and cloacal route
was measured by quantitative Real-Time RT-qPCR targeting
Matrix (M) gene of AIV using M gene-specific primers, [(F) 5′-
TGA TCT TCTTGA AAA TTT GCA G-3′; (R) 5′-CCG TAG
MAG GCC CTC TTT TCA-3′] and probe (TTG TGG ATT CTT
GAT GC) (33). Viral RNA was extracted from the swabs using
QIAmp viral RNA mini kit (Qiagen) as per the manufacturer’s
protocol, and RT-qPCR was performed using SuperScript One-
Step RT-qPCR kit (Invitrogen) using Roche 480 (Roche, USA)
real-time cycler. The assay was performed in a total volume of 25
µl containing 12.5 µl of 2× master mix, 0.5 µl of Rox dye, 0.5
µl of Taq mix, 0.5 µl of forward and reverse primers (20 pmol),
0.5 µl of probe (10 pmol), 2.0 µl template RNA, and 8.5 µl of
nuclease-free water to make a final volume of 25 µl. Positive
and negative controls, no probe control were included in each
assay. The cycling condition was as follows: one cycle of 50◦C for
45min and 95◦C for 10min, followed by 40 cycles at 95◦C for
15 s and 60◦C for 60 s with fluorescence acquisition. The results
were determined based on the Ct values, and the copy number
was calculated using standard curve for influenza M gene.

Statistical Analysis
One-way ANOVA followed by Tukey’s post-hoc analysis was used
to compare multiple groups using SPSS 16.0 software. A p-value
of <0.05 was considered to indicate a statistically significant
difference between groups.

RESULTS

Identification of M2e and HA2 Conserved
Region of Indian Avian Influenza H5N1
Viruses and Synthesis of Fusion Chimeric
Protein
Based on the analysis of Indian H5N1 sequences and published
data, the identified M2e region was conserved between all the
clades of Indian AIV isolates except at amino acid positions
10, 11, 16, and 20. The identified M2e peptide was synthesized
commercially (Genscript, NJ, USA) using Fmoc chemistry of
solid phase method. The purity of the peptides was ensured by its
high-performance liquid chromatography (HPLC) purification
report and dissolved in water (14 mg/ml). Similarly, we have
analyzed the HA2 region of different clades of Indian H5N1 virus
and selected two conserved regions, namely, N-terminal HA2 (1–
38) and LAH (long α-helix) HA2 (76–130) in which earlier was
conserved 100% and later was conserved 95% except at amino
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FIGURE 2 | Kinetics of immune cells (CD4+ and CD8+) proportion (mean ± SE) following immunization with M2e, M2e–HA2, and control groups quantified by flow

cytometry at different day intervals (A,B). CD4+ population in the M2e–HA2 group was higher than that in the control as well as M2e group during the study period

and maximum on 3DPV. Data are represented as mean ± SD (n = 6) and analyzed by ANOVA, and no significant difference was observed between groups at the

same interval.

acid positions 116, 126, and 127, respectively. Synthetic gene
construct in pET32b(+) coding for M2e-HA2 was transformed
into the host, E. coli Rosetta Blue (DE3)pLysS. The addition
of IPTG induced the overexpression of ∼38-kDa molecular
weight recombinant protein, which was confirmed by Western
blotting with anti-His and anti-AIV antibody (Figure 1). The
expressed protein was purified by affinity chromatography using
His-Bind purification kit and quantified by Qubit R© fluorometer
(Invitrogen, USA). The purified, pooled protein concentration
was found to be 5 mg/ml and stored at −80◦C. ELISA with
known positive and negative AIV serum revealed that M2e–HA2
recombinant protein was highly reactive with positive serum
(OD@450 nm >0.50) and failed to react with negative control
(SPF chicken) serum (OD@450 nm <0.20) (Figure 1D).

Kinetics of CD4+and CD8+ Population
CD4+ population in M2e–HA2 was higher than that in control
as well as M2e group at all-time interval, and the maximum
elevation was at 3 days post-immunization (not significant).
However, M2e group showed the declining of CD8+ population
from day 14 and was lower than that even in the control group.
The percentage of CD8+ population in the M2e–HA2 group was
gradually decreased from day 0, whereas there was no significant
difference observed between control and M2e group (Figure 2).

M2e–HA2 Recombinant Fusion Protein
Induced Lymphocyte Proliferation
Following Immunization
Lymphocyte proliferation assay revealed that SI was increased
gradually from day 0 to day 14 in the immunized group
(Figure 3). However, the maximum fold increases in M2e and
M2e–HA2 groups were 1.36 and 1.48 with their concerned
antigen, respectively. At the same time, SI by LPS with all the

groups was maximum and higher than that by ConA from day 14
and reached peak at day 21.Maximum SI by LPSwas noticed with
the M2e–HA2 group (2.61 ± 0.28-fold) followed by M2e (1.91
± 0.38-fold), which was higher than that of the control group
(1.26± 0.07-fold). ConA- and LPS-mediated SIs (1.04–1.26) were
almost equal in the control group. Day-wise comparison revealed
that SI was significantly increased from day 0 to day 14 in all
immunized groups (p < 0.05).

Elevated Level of Pro-inflammatory
Cytokine and Toll-Like Receptor mRNA
Expression
Analysis of pro-inflammatory cytokines revealed that IL-1β
mRNA expression was higher in the initial period (p < 0.05)
followed by a gradual decrease in all the groups including control
(Figure 4). Expression of IL-6 mRNA was not different in M2e
and control, whereas it was gradually increased from day 0 to day
7 (eight-fold) in the M2e–HA2 group (p < 0.01) and then started
to decline. TNF- α (LITAF) mRNA expression was maximum at
day 7 of the M2e–HA2 group (18-fold) (p < 0.01), which was
all time point higher than that of the other groups. Analysis of
anti-inflammatory cytokine IL-10 and TGF-β revealed that there
was no difference in the expression of TGF-βmRNA, whereas IL-
10 mRNA expression was maximum (six- and eight-fold) in the
M2e–HA2 group at days 3 and 7 (p < 0.01), followed by that in
the M2e group. Analysis of IFN mRNA revealed that IFN-α was
maximum (eight-fold) at day 7 of the M2e–HA2 group followed
by day 14 ofM2e. Regarding IFN-β and IFN-γmRNA expression,
they were maximum (18-fold and 13-fold) at the seventh day
followed by the third day (4.8- and 5.3-fold), respectively, in the
M2e–HA2 group (p < 0.01), then by that in the M2e group.
Overall, all the three IFN mRNAs were expressed higher in the
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FIGURE 3 | Lymphocyte proliferation assay of M2e- and M2e–HA2-immunized and non-immunized control chickens. Stimulation index (SI) was increased gradually

from day 0 to day 14 in the M2e and M2e–HA2 groups. SI by lipopolysaccharide (LPS) with all the groups was maximum and higher than concanavalin A (ConA) from

day 14 and reached the peak at day 21 DPV. Data are means ± SD (n = 6), statistical significance (*p ≤ 0.05, **0.01) vs. non-immunized control groups in the same

time interval. The control mentioned within group is the unstimulated lymphocytes of the same group.

M2e-HA2 group followed by that of the M2e group then that of
the control group at days 3 and 7 (p < 0.05).

All the chicken TLR mRNA expressions were analyzed by RT-
qPCR. Expression of TLR1, TLR2, TLR3, TLR4, TLR5, TLR7,
and TLR21 mRNA was maximum at days 3 (p < 0.05) and
7 (p < 0.01) of post-immunization in the M2e–HA2 group
followed by day 14 of the M2e group (Figure 5). However, TLR
15 mRNA expression was maximum in day 7 of M2e–HA2 (12-
fold) (p < 0.01) followed by day 14 of the M2e group (3.5-
fold). No change in TLR mRNA expression was observed in the
control group.

Detection of M2e and HA2-Specific
Antibody by ELISA
Clades 2.2 and 2.3.2.1 of AIV hyper immune chicken sera
were reacted well with M2e–HA2 recombinant protein and less
efficiently with M2e synthetic peptide in indirect ELISA, with
an average OD450 value up to 2.5 and 0.5, respectively, at 1:200
dilutions of serum. ELISA using M2e–HA2 recombinant protein
as coating antigen revealed that the M2e–HA2 recombinant
fusion protein has induced M2e–HA2-specific antibody from
7 days post-primary immunization (Figure 6) and then the
titer gradually increased after the booster dose. At the same
time, M2e peptide ELISA was also carried out with the same
serum to differentiate M2e-specific antibody. M2e peptide ELISA
revealed that M2e-specific antibody elicitation started from day

14 and gradually increased further after the booster. M2e-
specific differential ELISA revealed that the production of HA2-
specific antibody was earlier (at day 7) than M2e-specific
antibody (day 14). The early elicitation of HA2-specific antibody
was also confirmed by recombinant HA stalk protein-based
indirect ELISA (Figure 6C). In contrast, only background level of
antibody responses was detected in the chicken immunized with
synthetic peptides M2e or control group in both the ELISA.

Drastic Reduction of Pro-inflammatory
Cytokine Genes in Avian Influenza
Virus-Challenged Chickens by M2e–HA2
Pro-inflammatory cytokine genes (IL-1β, IL-6, andCXCLi2) were
highly upregulated in the H5N1 HPAI-infected control group,
whereas the same were drastically reduced in the M2e–HA2-
immunized group [p ≤ 0.01 for IL-16 (900-fold); p ≤ 0.05
for IL-1β (30-fold) and CXCLi2 (130-fold)]. Reduction of IL-
6 and CXCLi2 was noticed in the M2e group also with lesser
percentage than that in the M2e–HA2 group. At the same time,
TNF-α (LITAF), IL-4, and IL-10 were slightly downregulated in
the infected control group, whereas significant upregulation was
noticed in the M2e–HA2 group (Figure 7).

Induction of CD4+ and CD8+ Population
Depletion by Avian Influenza Virus
FACS analysis of CD3+CD4+ and CD3+CD8+ cell population
after 24 h of virus infection revealed that H5N1HPAI induced the

Frontiers in Veterinary Science | www.frontiersin.org 7 February 2021 | Volume 7 | Article 571999

https://www.frontiersin.org/journals/veterinary-science
https://www.frontiersin.org
https://www.frontiersin.org/journals/veterinary-science#articles


Kalaiyarasu et al. M2e and HA2 Specific Immunity

FIGURE 4 | Comparison of relative inflammatory cytokine mRNA expressions in M2e, M2e–HA2, and control chicken peripheral blood mononuclear cells (PBMCs).

M2e–HA2-immunized chickens showed upregulation of interleukin (IL)-6, tumor necrosis factor (TNF)-α, chemokine CXCLi2, interferons (IFNs) (α, β, and γ) on 3 and 7

days post-primary immunization than M2e and control group. Data are means ± SD (n = 6), statistical significance (*p ≤ 0.05, **0.01) vs. control non-immunized

groups in the same time interval.

depletion of both populations (Figure 8). The M2e–HA2 group
showed slight inhibition of depletion of both populations but
not up to the level of the uninfected control group. However,
inhibition of depletion by M2e–HA2 was comparatively higher
than that in the M2e peptide group.

Upregulation of Toll-Like Receptor Gene
Expression
Most of the TLR genes were downregulated in H5N1 HPAI-
infected control group at 24 h of infection (Figure 9). At the
same time, all showed significant upregulation (2–4-fold) in the
M2e–HA2 group (p < 0.01).

Viral Shedding in Oropharyngeal and
Cloacal Swabs
Viral RNA shedding analysis by RT-qPCR at 24 h of infection
revealed that the control-infected birds shed more virus in their
oropharyngeal swabs followed by M2e and M2e–HA2 groups in
descending order (Figure 10). At the same time, the M2e–HA2

group showedmore viral RNA in their cloacal swab than control-
infected and M2e groups. However, all the birds including M2e–
HA2-immunized and -challenged died at 48 h of virus infection
with typical clinical signs of AIV infection.

DISCUSSION

The extracellular domain of influenza M2 protein (M2e) is
highly conserved among influenza A viruses and considered an
appropriate target for the development of universal influenza
vaccine with broad-spectrum protection (23). Analysis of
representative Indian H5N1 sequences of 2006-15 revealed the
high conservation between them except at amino acid positions
10, 11, 16, and 20 of M2e. Earlier reports also reveal that M2e
residues are variable between 10 and 24 but showed conservation
of Arg12, Trp15, Cys17, Cys19, and Ser22, suggesting that these
residues in M2e are functionally important (34), and the same
conservation is noticed in Indian isolates. In earlier studies,
protective M2e antibodies had been induced in a variety of
ways including full-length protein with adjuvant (35), DNA
administration (36), fusion to hepatitis B core protein (37, 38),
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FIGURE 5 | Comparison of relative expression of Toll-like receptor (TLR) mRNAs in M2e- and M2e–HA2-immunized and non-immunized control chicken peripheral

blood mononuclear cells (PBMCs). M2e–HA2-immunized chickens showed upregulation of all the TLR mRNAs than M2e and control on 3 and 7 days

post-immunization. Data are means ± SD (n = 6), statistical significance (*p ≤ 0.05, **0.01) vs. control non-immunized groups in the same time interval.

FIGURE 6 | M2e synthetic peptide, recombinant M2e–HA2 protein, and recombinant HA stalk protein-based indirect ELISA of M2e- and M2e–HA2-immunized

chicken sera of different day intervals along with control group. Data are means ± SD (n = 6).

keyhole limpet hemocyanin (39, 40), flagellin (41), as liposomes
(42), using viral vectors (43–47), tandem repeat formats (M2e–
MAP) (48, 49), VLPs (23, 50), recombinant expression with
CD154 epitopes (51), and chitosan nanoparticle encapsulation
(52). The HA2 subunit (221 amino acids) structure is composed
of two anti-parallel α-helixes and is more conserved than
HA1 (53). Analysis of HA2 sequences revealed that the N-
terminal region 1–38 is completely conserved among all isolates

and reported to provide intra-subtype cross-protection in mice
(54). Similarly, analysis of LAH (76–130 AA) revealed 95% of
conservation between the Indian sequences and also reported to
elicit neutralizing antibodies and efficacious protection against
H3 and moderate protection against other subtypes H5, H7, H2,
and H1 in mice (55).

In this study, a novel approach was attempted by making
a synthetic construct to link M2e with another conserved
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FIGURE 7 | Comparison of relative expression of inflammatory cytokines mRNA in M2e, M2e–HA2, and control chicken peripheral blood mononuclear cells (PBMCs)

followed by challenge with clade 2.3.2.1 H5N1. M2e–HA2-immunized chickens showed drastic reduction of interleukin (IL)-1β and IL-6 than M2e and control. Data

are means ± SD (n = 6), statistical significance (*p ≤ 0.05, **0.01) vs. control-infected groups in the same time interval.

FIGURE 8 | Comparison of CD4+ and CD8+population in M2e- and M2e–HA2-immunized and control chickens followed by challenge with clade 2.3.2.1 H5N1. Data

are means ± SD (n = 6), statistical significance (*p ≤ 0.05, **0.01) vs. control non-infected group.
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FIGURE 9 | Comparison of Toll-like receptor (TLR) mRNA expressions in M2e- and M2e–HA2-immunized and control chicken peripheral blood mononuclear cells

(PBMCs) followed by challenge with clade 2.3.2.1 H5N1. M2e–HA2-immunized chickens showed upregulation of all the TLR mRNAs than M2e and control-infected.

Data are means ± SD (n = 6), statistical significance (*p ≤ 0.05, **0.01) vs. control-infected groups in the same time interval.

FIGURE 10 | Viral shedding detected by qRT-PCR in cloacal and oropharyngeal swabs of specific pathogen-free chickens challenged with 108.0 EID50/0.1ml of clade

2.3.2.1 H5N1. Control-infected birds shed more virus in their oropharyngeal swabs followed by M2e and M2e–HA2 groups after 24 h. Data are means ± SD,

statistical significance (*p ≤ 0.05, **0.01) vs. control-infected group.

region of AIV, HA2 to facilitate the formation and maintenance
of the larger immunogenic molecule for improving the
immunogenicity of M2e (56). Combining of HA and M2e is
an attractive approach for the development of broad-spectrum
universal influenza vaccines, and the same had been reported
by earlier workers (34, 52). Instead of selecting whole HA
region, here, we have selected two immunogenic subtypic

cross-protective regions, namely, HA2 (1–38) and LAH HA2
(76–130) as reported earlier (54, 55). It is expected that insertion
of few conserved epitopes into recombinant proteins in any
universal vaccine will lead to enhanced protective efficacy (57),
hence the second subunit (HA2) of the conserved antigen
was selected. In previous reports, it has been shown that
HA2 (aa76–130)-based synthetic peptide vaccine using HA
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from A/Hong Kong/1/1968 (H3N2) provides protection in
mice against divergent subtypes H3N2, H1N1, and H5N1 (58).
Therefore, we used a conserved fragment of HA2 (76–130)
along with HA2 fusion peptide (1–38AA) as a second target
antigen for the design of recombinant protein with broad-
spectrum protection. Thus, the gene construct was designed to
produce M2e–HA2 fusion recombinant protein with linkers in
between them.

Cellular immune response was monitored after immunization
by lymphocyte proliferation assay, flow cytometry, and cytokine
mRNA analysis. Lymphocyte proliferation assay revealed that SI
was increased gradually from day 0 to day 14 in the immunized
group with their concerned antigen and up to 21 days with
LPS than in the control group. Maximum SI with LPS at 14
and 21 days ensures the stimulation of B cells in immunized
groups, which also supported by non-stimulant response of
the control group. Upregulated expression of IL-10 and TNF-
α mRNA expression in M2e-HA2 from 7 days onward also
support the induction of humoral immunity because IL-10 and
TNF-α are the important cytokines for immunoglobulin class
switching, an important phenomenon in humoral immunity (59–
61). Increased level of IL-4 mRNA from day 7 of the M2e–HA2
group also suggests the conversion of Th2-mediated humoral
immunity (62, 63). Increased percentage of CD4+ cells in the
M2e-HA2 group than control and M2e indicated the enhanced
cellular immune response (64).

In chickens, the currently known TLRs are TLR-1 LA, TLR-
1 LB, TLR-2, TLR-3, TLR-4, TLR-5, TLR-7, TLR-15, and TLR-
21. TLR-3 and TLR-7 recognize dsRNA and ssRNA molecules,
respectively, in the host cells (65, 66). The chicken TLR-21
is a functional homolog of mammalian TLR-9, which induces
NFκ-B production after stimulation with deoxyoligonucleotides
containing CpG motifs (67). All the TLRs have been upregulated
in the M2e–HA2 group at day 3 and day 7 to maximum
level than those in the M2e and control groups, and the
same were maximum in the M2e group on the 14th day than
those in the M2e-HA2 and control groups. The results of
our study indicate that conjugating M2e with HA2 effectively
mediates early upregulation of TLRs than M2e alone, thereby
enhancing the innate and adaptive immunity because the TLRs
after stimulation by their ligands follow the cascade events
of pro-inflammatory cytokine production and upregulation
of co-stimulatory molecule expression, subsequently initiating
adaptive immunity (68).

AlthoughM2e-mediated humoral immunity against influenza
virus has been reported in earlier studies (34, 69), most of
these vaccine studies on M2 were performed in mice, while
few experiments had been described for chicken with variable
outcome (51, 52, 57, 70). M2e is generally a weak antigen (71)—a
fact thought to be largely due to its low abundance compared with
other proteins. Thus, it was hypothesized that a robust humoral
immune response would be induced against M2e by linking with
another conserved region of AIV, HA2, so that we could elicit
immune response to two conserved regions of AIV at a time for
effective response.

In this study, we also evaluated the humoral immune response
of M2e–HA2 fusion recombinant protein and M2e synthetic

peptide in chicken. Sera obtained from immunized chicken of
all groups were found to be HI negative. Then, all the sera
were tested by M2e peptide ELISA and found that the group
vaccinated with M2e–HA2 fusion protein showed a positive
reaction, whereas M2e alone and control group failed to produce
antibody against M2e. Same types of approach were followed
by earlier workers (53). The OD450 value of hyper immune
sera against M2e–HA2 was comparatively higher than that of
M2e peptide alone, indicating the abundance of HA2 antibody
in natural infection than M2e. Also, we have noticed that
immunization with M2e–HA2 fusion recombinant protein has
induced M2e-specific antibody from day 14 of immunization
whereas HA2-specific antibody was detected from day 7 of
immunization and were detected by M2e peptide and M2e–
HA2 recombinant protein ELISA, respectively. This observation
suggests that the M2e–HA2 recombinant fusion protein elicited
HA2-specific humoral immunity earlier than M2e, but at the
same time, M2e-specific antibody also elicited in good amount
but not earlier than HA2, and this may be due to high
immunogenicity and larger molecule nature of HA2. At the
same time, M2e peptide monomer was inefficient to produce an
antibody response, and the same type of observation has been
reported by Swinkels et al. (72), whereas immunization with
M2e peptide tetrameric construct showed a significant antibody
response after the booster. To the best of our knowledge, this is
the first attempt to construct a fusion protein with two truncated,
conserved immunogenic subunits of HA2 along with M2e to
elicit a broad immune response in chicken against M2e and HA2
regions of AIV.

Recent study suggests that the host pro-inflammatory
responses are one of the major contributing factors in the
pathogenesis of H5N1 HPAI virus infection in chicken, and the
fatal outcome could be mediated by a cytokine storm or hyper-
acute dysregulation of pro-inflammatory cytokines similar to
human H5N1 HPAI virus infection (73). Similar hyper-acute
dysregulation of pro-inflammatory cytokines has been observed
in our study also in control-infected group, whereas the cytokine
response was drastically reduced in the M2e–HA2 group as
a protective response. Although the cross-protective properties
of M2e-based vaccines and the role of anti-M2e antibodies in
cross-protection against influenza A viruses have been shown
by a number of studies (41, 74–77), this M2e–HA2 fusion
protein has failed to protect the chicken from a high dose (108.0

EID50/0.1ml) of H5N1 HPAI challenge after 48 h even after
eliciting the antibodies to its conserved antigens (M2e and HA2)
and inhibited the depletion of CD4+ and CD8+ cells to a certain
extent, which is an essentiality for the novel vaccines (78–80).

In this study, we have observed that the M2e alone as a
synthetic peptide was not able to induce an antibody response,
whereas M2e–HA2 recombinant protein has induced antibody
against both M2e as well as HA2. M2e-HA2 recombinant protein
has drastically reduced the pro-inflammatory cytokines and
upregulated innate immune system of chicken but failed to
protect from a higher dose of HPAIV H5N1 challenge. Findings
of this study indicate that despite the conservation, merely M2e
and HA2-mediated immune response alone may be insufficient
to protect chicken from HPAI H5N1 virus challenge, and this
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will be very useful in future development of universal influenza
vaccine targeting M2e and HA2 especially for chicken.
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