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Abstract

Transcranial direct current stimulation (tDCS) is a form of non-invasive brain stimulation that

safely modulates brain excitability and has therapeutic potential for many conditions. Sev-

eral studies have shown that anodal tDCS of the primary motor cortex (M1) facilitates motor

learning and plasticity, but there is little information about the underlying mechanisms.

Using magnetic resonance spectroscopy (MRS), it has been shown that tDCS can affect

local levels of γ-aminobutyric acid (GABA) and Glx (a measure of glutamate and glutamine

combined) in adults, both of which are known to be associated with skill acquisition and plas-

ticity; however this has yet to be studied in children and adolescents. This study examined

GABA and Glx in response to conventional anodal tDCS (a-tDCS) and high definition tDCS

(HD-tDCS) targeting the M1 in a pediatric population. Twenty-four typically developing,

right-handed children ages 12–18 years participated in five consecutive days of tDCS inter-

vention (sham, a-tDCS or HD-tDCS) targeting the right M1 while training in a fine motor task

(Purdue Pegboard Task) with their left hand. Glx and GABA were measured before and

after the protocol (at day 5 and 6 weeks) using a PRESS and GABA-edited MEGA-PRESS

MRS sequence in the sensorimotor cortices. Glx measured in the left sensorimotor cortex

was higher in the HD-tDCS group compared to a-tDCS and sham at 6 weeks (p = 0.001). No

changes in GABA were observed in either sensorimotor cortex at any time. These results

suggest that neither a-tDCS or HD-tDCS locally affect GABA and Glx in the developing

brain and therefore it may demonstrate different responses in adults.

Introduction

Transcranial direct current stimulation (tDCS) is a form of non-invasive brain stimulation in

which a weak electrical current is passed between two electrodes placed on the scalp. Using

PLOS ONE | https://doi.org/10.1371/journal.pone.0222620 January 7, 2020 1 / 18

a1111111111

a1111111111

a1111111111

a1111111111

a1111111111

OPEN ACCESS

Citation: Nwaroh C, Giuffre A, Cole L, Bell T,

Carlson HL, MacMaster FP, et al. (2020) Effects of

Transcranial Direct Current Stimulation on GABA

and Glx in Children: A pilot study. PLoS ONE 15(1):

e0222620. https://doi.org/10.1371/journal.

pone.0222620

Editor: Benjamin Thompson, University of

Waterloo, CANADA

Received: August 28, 2019

Accepted: December 11, 2019

Published: January 7, 2020

Copyright: © 2020 Nwaroh et al. This is an open

access article distributed under the terms of the

Creative Commons Attribution License, which

permits unrestricted use, distribution, and

reproduction in any medium, provided the original

author and source are credited.

Data Availability Statement: Data may be available

upon request due to ethical restrictions imposed by

the Conjoint Health Research Ethics Board

(CHREB) at the University of Calgary in compliance

with the Tri-Council Policy Statement: Ethical

Conduce for Research Involving Humans. Ethics

ID: REB16-2474_REN2. Data access requests may

be made to Mehak Sandhu at sandhm@ucalgary.

ca

Funding: Funding for this project was received

from the Behaviour and the Developing Brain

http://orcid.org/0000-0001-6791-5334
https://doi.org/10.1371/journal.pone.0222620
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0222620&domain=pdf&date_stamp=2020-01-07
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0222620&domain=pdf&date_stamp=2020-01-07
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0222620&domain=pdf&date_stamp=2020-01-07
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0222620&domain=pdf&date_stamp=2020-01-07
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0222620&domain=pdf&date_stamp=2020-01-07
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0222620&domain=pdf&date_stamp=2020-01-07
https://doi.org/10.1371/journal.pone.0222620
https://doi.org/10.1371/journal.pone.0222620
http://creativecommons.org/licenses/by/4.0/
mailto:sandhm@ucalgary.ca
mailto:sandhm@ucalgary.ca


various tDCS montages, cortical excitability can shift to a state of excitation (anodal tDCS) or

inhibitory (cathodal tDCS). Placing the anode electrode over M1 for instance typically

increases cortical excitability in M1 [1–3]. Previous research suggests that changes in excitabil-

ity outlasts the stimulation session by up to 90 minutes [2,4]. The prolonged and promising

changes in both cortical excitability and promising changes in behavioral outcomes combined

with its simple application and low cost makes tDCS an attractive as a possible therapeutic tool

for a range of clinical conditions [5]. For example, tDCS has been suggested to improve symp-

toms and/or assist in rehabilitation for many neurological disorders with minimal side effects

[6], including migraine [7], stroke [8], Parkinson’s disease [9], pain disorders [10] and neuro-

degenerative disorders [11], as well as psychiatric disorders including depression [12].

High definition tDCS (HD-tDCS) is a newer, more focal form in tDCS that uses arrays of

smaller electrodes to improve stimulation localization [13]. Most typically used is the 4 x 1

configuration where a central electrode, which determines montage polarity, is placed over the

target cortical region, and four outer electrodes (arranged as a ring), act as the reference elec-

trodes. The radii of the surrounding reference electrodes define the region undergoing modu-

lation [14]. This configuration has been shown to modulate excitability in a smaller, more

specific region compared to conventional tDCS [14,15]. In addition to a more focussed cur-

rent, its effects on patterns of cortical excitability in the M1 outlast those induced by conven-

tional tDCS, as quantified by motor evoked potentials in response to stimulation [16]. Studies

support its tolerability in both healthy subjects and patients at intensities up to 2 mA for up to

20 minutes [15–17].

When considering safety of both tDCS and HD-tDCS, in paediatric and adolescent popula-

tions, both tDCS and HD-tDCS have been reported as being well tolerated with tingling and

itching comparable across all intervention groups including placebo [18]. Applicable adult

guidelines are available for tDCS [19,20] and pediatric guidelines to address issues specific to

children suggest more moderate dosing is appropriate [21,22]. Our procedures, specifically

using 1 mA stimulation, fall well within these guidelines. However, there is known variability

between individuals (including differences between sexes) based on cortical folding and skull

thickness which has been acknowledged as a limitation of non-invasive brain stimulation [23].

Longitudinal studies investigating the long-term effects of non-invasive brain stimulation are

important in building our understanding of tDCS and similar modalities.

Few studies have investigated tDCS in children, despite its potential [20,21,24,25]. tDCS

administered in a multiday paradigm to the M1 of healthy children while performing a motor

task demonstrated greater increases in motor skill compared to sham and improvements are

retained 6 weeks later [18,26]. These findings suggest the potential utility of tDCS as a thera-

peutic tool in children with motor impairments but the biological mechanisms behind these

effects remain unknown [27].

Adult studies using magnetic resonance spectroscopy (MRS) to measure regional brain

metabolites typically show a decrease in GABA [4,28,29] and an increase in Glx (glutamate

and glutamine in combination) [4,29,30] in the sensorimotor cortex following M1 anodal

stimulation. Both GABA, a major inhibitory neurotransmitter, and glutamate, a major excit-

atory neurotransmitter, are mediators in long-term potentiation [31,32] and have been associ-

ated with behavioral changes following anodal tDCS, quantified as changes in task

performance [4,28,33]. However, it is unknown if these finding translate to a pediatric popula-

tion and how long these changes in metabolites persist.

Point RESolved Spectroscopy (PRESS) at 3T measures glutamate, N-Acetyl Aspartate

(NAA), creatine (Cr) and choline (Cho). Glutamate it is often reported as Glx, representing

the combination of glutamate and glutamine as their spectra are highly overlapped, making it

difficult to reliably resolve these two signals. GABA, on the other hand, is at low concentration
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and its signal is overlapped by more abundant metabolites and therefore requires editing for

accurate measurement [34]. GABA-edited MEGA-PRESS, selectively manipulates the GABA

signal at 3 ppm by applying an editing pulse to the coupled GABA signal at 1.9 ppm in half of

the averages (ON), which are interleaved with averages in which the editing pulse is applied

elsewhere not coupled to GABA (OFF). The difference spectrum is acquired by subtracting the

ON from the OFF, which removes all peaks not affected by the 1.9 ppm editing pulse (specifi-

cally the 3 ppm creatine peak), revealing the GABA signal at 3 ppm. While information on

Glx, NAA, Cr and Cho are available in the GABA-edited MEGA-PRESS data, there is not

much data available validating these measures. The editing pulse in GABA-edited MEGA--

PRESS does not directly target the peak at 2.1 ppm so the co-edited glutamate and glutamine

peaks are only partially refocused resulting in a fraction of the possible signal present in the dif-

ference spectra [34,35]. The OFF sub-spectrum is an alternative but the longer TE in the

MEGA-PRESS sequence results in greater signal decay compared to the short-echo PRESS.

In this study, GABA-edited MEGA-PRESS and PRESS MRS sequences were used to investi-

gate changes in GABA and Glx in response to anodal tDCS (a-tDCS) and anodal high defini-

tion tDCS (HD-tDCS) in a pediatric population with the tDCS anode targeting the motor

cortex and participants performing a simple motor task to assess learning. By observing

metabolite changes in the targeted right sensorimotor cortex and the contralateral left sensori-

motor cortex, we aimed to gain insight into the metabolite changes induced by tDCS both

after stimulation has concluded and at 6 weeks follow up, with the overall goal of better under-

standing the mechanism by which tDCS modulates motor learning in the developing brain.

Based on the adult literature, we expected GABA to decrease following tDCS and at 6-weeks

follow up we expect metabolites to return towards baseline with similar results observed for

both anodal and high definition tDCS groups.

Materials and methods

This study was a component of the Accelerated Motor Learning in Pediatrics (AMPED) study,

a randomized, double-blind, single-center, sham-controlled intervention trial registered at

clinicaltrials.gov (NCT03193580) with ethics approval from the University of Calgary Research

Ethics Board (REB16-2474) to be performed at the Alberta Children’s Hospital. The results

described here are from the registered secondary outcome measure #1. Upon enrolment, par-

ticipants and guardians provided written, informed consent or assent and were screened

to ensure they met safety criteria for non-invasive brain stimulation and MRI scanning. Par-

ticipants were blinded to the experimental group to which they were assigned and only the

investigator administering stimulation was aware of the group until all data was collected.

Experimental groups were assigned using an automated number generator. Group assignment

was only revealed to those assessing outcomes for data analysis after the study was completed.

Additional details regarding the parent study design, recruitment and primary motor learning

outcomes can be found in Cole and Giuffre et al [18].

Experimental design

Twenty-four typically developing right-handed participants ages 12 to 18 were recruited through

the Healthy Infants and Children Clinical Research (HICCUP) Database. The Edinburgh Hand-

edness Inventory, a measurement used to asses and individuals hand dominance in everyday

activities [36], was used to confirm right hand dominance (a laterality index� -28). The Edin-

burgh Handedness Inventory ranges from -100 for completely left hand dominant to +100 for

completely right hand dominant, thus a threshold of� -28 ensures right-handedness. We chose

to recruit right-handed individuals and target the right motor cortex and measure motor
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performance in the left, non-dominant hand. This ensures that plasticity was being modulated in

the non-dominant cortex. Participants were excluded for MRI contraindications, neuropsychiat-

ric or developmental disorder diagnoses, medications or pregnancy. All participants received a

baseline MR scan and motor assessments prior to tDCS. Participants were then computer ran-

domized to a single tDCS condition (n = 8 for each intervention group) with the anode targeting

right M1: a-tDCS (1mA conventional anodal tDCS), HD-tDCS (1mA high definition anodal

tDCS) and sham tDCS. Participants took part in a 5-day protocol in which they received stimula-

tion each day whilst training in the Purdue Pegboard Task (PPT) using their non-dominant left

hand. Participants repeated the PPT task 3 times during the stimulation period and the average

score was taken. Immediately following stimulation, participants completed the PPT for a final

time and PPT task performance was quantified based on this final PPT performance. After stimu-

lation had concluded on Day 5, they received a post-simulation MR scan and completed all motor

assessments. Participants returned 6 weeks (± 1 week) later for a follow-up MR scan and motor

assessments. The experimental design for this study is shown in Fig 1A.

Transcranial direct current stimulation

Participants received 20 minutes of 1mA anodal tDCS in a montage dependent on the assigned

stimulation condition. tDCS was administered using a conventional 1 x 1 tDCS or a 4 x 1 HD-

Fig 1. Layout of experimental procedure. a) On Day 1, spectroscopy measurements were collected followed by the Purdue Pegboard Task. Participants then underwent

five consecutive days of right M1 targeted anodal tDCS paired with left hand motor training. Participants repeated Day 1 assessments after intervention on Day 5 and at

6 week follow up. b) Anodal tDCS electrode montages shown for a-tDCS (left) and HD-tDCS (right) intervention groups where the anode is red, the cathode is blue and

current flow is illustrated with black arrows. MRS, magnetic resonance spectroscopy; PPT, Purdue pegboard task, tDCS, transcranial direct current stimulation; HD-

tDCS, high definition tDCS.

https://doi.org/10.1371/journal.pone.0222620.g001
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tDCS system (Soterix Medical Inc., New York, USA) (Fig 1B). For participants in the a-tDCS

or sham group, two 25 cm2 saline-soaked sponge electrodes were held on the scalp using a

light plastic headband (SNAPstrap, Soterix Medical Inc., New York, USA). The active (anodal)

electrode was centred on the right M1 (identified using robotic single pulse transcranial mag-

netic stimulation; TMS) and the cathodal electrode was placed on the contralateral supraor-

bital notch, an inert location. The electrodes were connected to a 1 x 1 DC SMARTscan

Stimulator (Soterix). This montage demonstrated in Fig 1B has been used extensively in tDCS

studies for motor training in the non-dominant left hand [4,18,25,28,37,38].

For the HD-tDCS group, a 10:20 EEG cap was used to center the anodal electrode on the

right M1, after identifying the location with single pulse TMS as above. The four cathodes

were placed ~5 cm away in a 4 x 1 configuration (Fig 1B) using a 4 x 1 HD-tDCS Adaptor and

a SMARTscan Stimulator (Soterix) as described previously [15,39,40]. 1mA is the standard for

anodal tDCS in children at our institution and has been shown to elicit improvements in

motor learning and chances in spectroscopic biomarkers [18,26,33]. While many use 2 mA

stimulation parameters, 1 mA is also commonly used [4,24,38,40,41]. Additionally, current

modeling investigations report variations in electric fields between adults and adolescents

associated with developmental differences in skull thickness and grey and white matter, sug-

gesting 1mA is more appropriate for children [42].

For the active stimulation conditions (a-tDCS and HD-tDCS), current was ramped up to 1

mA over 30 seconds and remained at 1mA for 20 minutes. The current was then ramped back

down to 0 mA over 30 seconds. For the sham stimulation condition, current was ramped up to

1 mA over 30 seconds and then immediately ramped back down to 0 mA over 30 seconds.

After 20 minutes, current was ramped up to 1 mA and then back down to 0 mA over 30 sec-

onds. This procedure is used to mimic the sensations associated with active stimulation and

has been previously validated [43]. During the 20 mins of stimulation (or sham) participants

performed the Purdue Pegboard Task with their left hand (PPTL) three every 5 minutes.

The operator applying the stimulation was the only person aware of the type of stimulation

that was being applied. Participants were naive to tDCS and unaware that a sham or HD-tDCS

intervention group existed, though we acknowledge that participants may be able to differenti-

ate HD-tDCS due to the difference in electrode configuration. As reported Cole and Giuffre

et al., participants were not able to successfully guess their treatment group supporting effec-

tive blinding [18].

Motor assessments

The motor assessment was the Purdue Pegboard Task (PPT) [44]. This test uses a rectangular

board with two sets of 25 holes running vertically down the board and four concave cups at

the top of the board that contain small metal pegs. Subjects are asked to remove pegs from the

cups and place them in the holes one-at-a-time, as quickly as possible. This task challenges

hand dexterity and coordination. A score is given as the number of pegs successfully placed in

the holes in 30 seconds with the left hand (PPTL). Secondary assessments were the perfor-

mance of this task with the right hand (PPTR) or bimanually (PPTLR). Changes in score is

reported as ΔPPT.

MRS acquisition

Spectroscopy data was collected before the tDCS intervention (baseline), after 5 days of tDCS

paired with motor training, and at 6-weeks after tDCS in all 24 subjects on a 3T GE MRI scan-

ner equipped with a 32-channel head coil. Axial T1-weighted fast spoiled gradient recalled

echo (FSPGR) brain volume images (BRAVO) were acquired (TR = 7.4 ms, TE = 2.8 ms with 1
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mm3 voxels) for voxel placement and tissue segmentation. Metabolites were measured in

30×30×30 mm3 voxels located on the right and left sensorimotor cortices. The sensorimotor

cortex was identified by Yousry’s hand-knob [45] and the voxel was rotated to align with the

cortical surface (Fig 2). GABA data were acquired using a GABA-edited MEGA-PRESS

sequence with the following parameters: TR/TE = 1800/68 ms, 256 averages; 14 ms editing

Fig 2. Voxel placement and data quality. Example of voxel placement in the sensorimotor cortex on a participant T1-weighted image. b) GABA-edited MEGA-PRESS

spectra acquired in each location. The black line depicts the average fit line and the grey area shows ±1 standard deviation in the right and left sensorimotor cortex.

https://doi.org/10.1371/journal.pone.0222620.g002
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pulses applied at 1.9 ppm and 7.46 ppm alternating every two averages, and 16 unsuppressed

water scans. A PRESS sequence was used to acquire MRS data to quantify Glx, Cr, Cho and

NAA with the following parameters: TR/TE = 1800/35 ms, 64 averages and 8 unsuppressed

water scans. In order to perform symmetrical assessment of the left and right sensorimotor

cortices, the water-fat shift directions were mirrored for the sensorimotor voxels for both the

GABA-edited MEGA-PRESS and the PRESS acquisitions.

MRS data analysis

GABA data were analyzed using GANNET 3.0 [46] software in MATLAB R2014a (The Math-

works, Natick, MA, USA), including retrospective frequency and phase correction and correc-

tion for voxel tissue content for each voxel, including the assumption that the concentration of

GABA in grey matter is twice that of white matter (i.e., α = 0.5 as per literature) [47]. This cor-

rection accounts for individual voxel composition as well as accounting for differences in

GABA concentrations between cerebrospinal fluid, white matter and grey matter and reduces

inter-subject variance in concentration that is driven by voxel-tissue compositions [35,48]. In

this experiment, after tissue correction, we normalized the sensorimotor voxel data to repre-

sent voxels that were composed of 40% grey matter and 60% white matter such that the right

and left data could be directly compared [49]. PRESS data was corrected for frequency and

phase drift using the FID-A toolkit [50] and then analyzed using LCModel [51] with basis sets

developed from LCModel. Metabolite levels from LCModel were tissue-corrected using the

Gasparovic approach [48] using tissue segmentation from GANNET and the CSF voxel frac-

tion, accounting for the negligible metabolites present in CSF. As a confirmatory analysis,

metabolite levels referenced to creatine were also examined.

Statistical analysis

All statistical analyses were performed using SPSS Statistics 25 (IBM, Armonk, NY, USA).

Demographic data of the three groups (a-tDCS, HD-tDCS and sham) were compared with an

ANOVA model and Chi-squared for sex data. Changes in GABA and Glx between tDCS con-

ditions and over time were assessed using a linear mixed model analysis with fixed effects for

intervention and experimental day, the interaction of intervention and experimental day, and

covariates for age and sex for each voxel. Post-hoc pair-wise analyses with Bonferroni correc-

tion for multiple comparisons were performed to specifically examine effects of intervention

and experimental day.

Partial correlations controlling for intervention were used to examine the relationship

between changes in metabolites and changes in motor assessment performance before and

after stimulation, and 6 weeks after stimulation had concluded. Initially these correlations

were pooled across all groups and follow-up analyses were performed in each group as

appropriate.

Results

Population characteristics

Twenty-four typically developing children (mean 15.5 ± 1.7 years, 13 females and 11 males)

completed all phases of the study with no dropouts. No adverse events were reported during

this investigation. Due to technical difficulties, one participant did not have GABA or Glx data

available in both sensorimotor cortices in the post intervention timepoint. Population demo-

graphics are shown in Table 1. Age was not controlled within each experimental group how-

ever age and laterality index did not differ significantly between groups. While there is a noted
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difference between gender between group, our statistical model controlled for gender. How-

ever, we acknowledge that the variation in gender between groups has the potential to affect

results.

Data quality

The GABA-edited MEGA-PRESS spectra from the right and left sensorimotor cortices from

all time points are show in Fig 2B; the grey area shows a single standard deviation range across

all data and the black line is the average of all data. All data, both GABA-edited MEGA-PRESS

and PRESS, were assessed for quality by visual inspection as well as a CRLB threshold of 20%.

One PRESS dataset was excluded due to poor data quality, the remaining spectra were of high

quality with a mean SNR of 41.4±6.3, all FWHM water <15 Hz, mean FWHM water 6.01

±1.92 Hz. MEGA-PRESS GABA data was also of high quality across all data sets: all fit

errors < 10%, mean fit error 4.59±1.21, all FWHM Cr<10%, mean FWHM Cr: 9.57±0.92 Hz.

Generally, spectra with fit errors below 12% are deemed to be of sufficient quality [46].

Metabolite group changes

Linear mixed model analyses showed a significant fixed effect of tDCS intervention over time

on Glx levels in the left sensorimotor cortex (effect size estimate = 10.38, df = 61.00, p = 0.010).

Post-hoc Bonferroni corrected pairwise analyses showed at the 6 week follow up, Glx was sig-

nificantly higher in the HD-tDCS group compared to the sham group (p = 0.001; Fig 3). In the

HD-tDCS group, Glx in the left sensorimotor cortex increased between post-intervention and

the 6 week follow up time points (p = 0.042), however, this did not withstand correction for

multiple comparisons (Fig 3). No significant fixed effect of tDCS intervention over time for

Glx was detected in the right sensorimotor cortex (effect size estimate = 2.31, df = 57.04,

p = 0.221). No significant fixed effect was observed in the left sensorimotor cortex for GABA

(effect size estimate = 3.91, df = 53.71, p = 0.248), creatine (effect size estimate = 0.0172,

df = 54.20, p = 0.425), choline (effect size estimate = 0.0631, df = 51.47, p = 0.572) or NAA

(effect size estimate = 0.0377, df = 49.81, p = 0.177). The same was true in the right sensorimo-

tor cortex for GABA (effect size estimate = 4.71, df = 55.95, p = 0.724), creatine (effect size esti-

mate = 0.0389, df = 61.30, p = 0.246), choline (effect size estimate = 0.0556, df = 48.77,

p = 0.483) or NAA (effect size estimate = 0.0419, df = 52.73, p = 0.458). Metabolite data refer-

enced to creatine showed the same results. No significant metabolite change difference were

detected between that a-tDCS and sham groups in both left and right sensorimotor cortices.

Relationship between metabolite changes and motor performance

Partial correlation analysis comparing changes in GABA and Glx, pooled across the three

intervention groups, showed a significant positive relationship between the change in left sen-

sorimotor GABA (%GABA) and change in PPTL score (ΔPPTL) (r = 0.538, p = 0.018; Fig 4C),

participants with a greater positive change in GABA showed a greater improvement in PPT.

Post-hoc assessments by intervention groups showed this relationship was maintained in the

anodal tDCS group only (r = 0.864, p = 0.006; Fig 4C).

Table 1. Mean participant demographics ± 1 standard deviation for all stimulation intervention groups. No significant difference between groups was identified.

SHAM (±SD) a-tDCS (± SD) HD-tDCS (± SD) MEAN (± SD)

AGE 15.81 (±1.3) 15.94 (± 1.5) 14.77 (± 2.0) 15.51 (± 1.7)

LATERALITY INDEX 81.9 (± 22.8) 82.5 (± 13.1) 81.3 (± 14.7) 81.9 (± 16.6)

SEX (M:F) 2:6 5:3 4:4 11:13

https://doi.org/10.1371/journal.pone.0222620.t001
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No significant relationship was observed between ΔPPTL and changes in GABA in the right

sensorimotor cortex (r = -0.076, p = 0.757; Fig 4D). Additionally, no significant relationship

was seen between changes in PPT score and changes in Glx in the left (Fig 4A) (p = 0.581) or

right (Fig 4B) sensorimotor cortex (p = 0.492).

Fig 3. Metabolite changes over time. Pairwise comparison for changes in metabolite levels for all intervention groups

(sham in black, tDCS in red and HD-tDCS in blue) over the duration of the experiment given as a percentage change from

baseline values (mean ± 1 SD). � p< 0.05, those in bold withstand Bonferroni correction for multiple comparisons while

those that are transparent lose significance following multiple comparisons correction. # p< 0.05 when compared to

baseline. Cr: Creatine, Cho: Choline, NAA: N-Actylaspartic Acid.

https://doi.org/10.1371/journal.pone.0222620.g003

Fig 4. Relationship between changes in metabolite concentration and motor performance. Correlationn between change in metabolite concentration (% Glx and %

GABA) and change in Purdue Pegboard Task post intervention (ΔPPTL) controlling for intervention group and age. Left sensorimotor cortex GABA is significantly

correlated with PPTL for the pooled intervention groups (grey line). This relationship is also observed in the anodal tDCS intervention group (red).

https://doi.org/10.1371/journal.pone.0222620.g004
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Discussion

Several adult studies have shown that single [52,53] or multiple session [37,54] tDCS paired

with training in a motor task is associated with improvements in said task and improvements

in performance are greater than motor training alone (i.e., sham-tDCS). The same is observed

in pediatric studies [18,26], however results may differ slightly in terms of the phase of learning

affected by stimulation. Results in children suggest that tDCS facilitates online learning [26]

while in adults evidence suggests tDCS enhances learning primarily through offline effects

[37]. GABA and glutamate are involved in learning [28,32,55] and have both been observed to

change in response to anodal tDCS in adults [4,28–30,55,56]. This study examined changes in

GABA and Glx in response to right M1 anodal tDCS and HD-tDCS in a pediatric population.

Metabolites were measured at baseline, after a 5-day tDCS and motor learning intervention

(post-intervention) and at 6 weeks follow-up.

To our knowledge, this is the first investigation of metabolite changes in response to tDCS

in a typically developing pediatric population. Additionally, this is the first-time metabolites

have been measured in a control population after a multiday protocol with a follow-up assess-

ment. Previous studies in adults have illustrated that GABA decreases [38,55] and glutamate

increases [57], with skill acquisition and improved function in the region responsible for the

skill execution, the M1. It has been suggested that tDCS facilitates changes in GABA and gluta-

mate to augment learning. Studies conducted in adults have shown anodal tDCS increases sen-

sorimotor glutamate [4,29,30] and decreases GABA [4,28,29,58]; however, others have failed

to replicate these findings. Similarly, we did not see decreased GABA and increased Glx at the

site of stimulation, though we did see contralateral changes. Our results potentially indicate

the developing brain responds differently to tDCS compared to the adult brain.

Post-intervention changes in GABA and Glx

Following five days of tDCS and motor training there were no significant changes in metabo-

lite levels in either the right or left sensorimotor cortex, though trends toward decreased left

sensorimotor GABA (contralateral to the tDCS target) in the a-tDCS group were seen. Adult

literature using healthy controls suggests acute decrease in GABA local to the tDCS target

[4,28,29,58]. Similarly, participants with a neurodegenerative condition who followed a proto-

col of 15 a-tDCS sessions also showed decreased GABA in the tissue targeted with a-tDCS

[11]. Given the contrast of our results and those in the literature, we suggest that the pediatric

brain responds differently to tDCS. However, due to our limited sample size this interpretation

is not concrete.

In healthy adults, GABA and glutamate in the motor cortex work together to maintain an

excitation-inhibition balance that is crucial for plasticity [59]. It has been suggested that this

balance of GABA and glutamate can be shifted to a relative optimum level that is thought to

mediate behavioral outcomes [60]. It is possible that in the developing brain, this excitation/

inhibition balance is more dynamic while in the adult brain it is relatively static. When an

external stimulus is introduced, like tDCS or a foreign motor task, the adult brain shows a shift

to facilitate plasticity while the pediatric brain was already in its “plastic state”. There is also

evidence describing the pediatric brain as being hyperexcitable with dynamic changes in gluta-

matergic excitatory and GABAergic inhibitory mechanisms during development [24], and

therefore less dynamic range to reduce GABA compared to the adult brain where increased

GABAergic inhibition is necessary to refine already acquired skills. However, there is literature

demonstrating widespread grey and white matter maturation throughout adolescence into

adulthood that is thought to be associated with neural development [61] so it is likely that
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there is no clear transition point where the pediatric brain loses its plasticity and settles into a

more static adult state.

Secondly, transcallosal inhibitory processes [62] may have a more pronounced effect in the

pediatric brain. Here we show trends towards decreased GABA in the left sensorimotor cortex,

contralateral to the site of stimulation, as opposed to changes in the site of stimulation (right

cortex). This suggests lateralization of motor learning in the left dominant cortex as previously

described by Schambra et al [63]. The impact of transcallosal inhibition is also seen in pediatric

studies applying tDCS contralateral to stroke lesions in an effort to augment motor learning of

the affected hemisphere [42,64]. According to pediatric models of anodal tDCS, the current

appears to travel through the motor fibers of the corpus callosum into the contralateral hemi-

sphere [42]. However, the same mechanism is not expected to be true for HD-tDCS which has

a more focal current.

Finally, as mentioned above, tDCS may act on different phases of learning in children com-

pared to adults, therefore the paradigm in which we expect GABA and glutamate changes to

appear shortly after stimulation is not the appropriate time window to detect changes. Simi-

larly, it is possible that the metabolic response to stimulation changes with applications over

consecutive days. In this study, we suspect participants may have transitioned into a phase of

learning that requires less plasticity and the cortex is no longer responding to tDCS with the

predicted GABA and Glx changes at five days when our measures were taken. Adult literature

suggests the changes in GABA and glutamate measured by MRS in response to learning vary

with time [55,65] and it is possible that a ceiling of PPT skill, and also of metabolite change,

was reached before our MRS measurements were taken.

Although no significant changes in GABA concentration were detected between MRS mea-

surements, this does not conclusively rule out GABAergic changes in response to motor learn-

ing. It is possible that subtle biphasic changes in GABA are taking place during motor learning

that we are unable to detect. While this cannot be confirmed in our investigation, there is liter-

ature suggesting changes in GABA concentration are time sensitive with fluctuation in GABA

concentration occurring in the 90 minute window following stimulation [4,55,65]. The time

sensitivity of metabolite measurements is further supported by seemingly discrepant findings

in the literature in which GABA and Glx changes are not seen during tDCS [66–68].

Changes in Glx in response to stimulation in the literature are inconsistent. Clark et al.

reports Glx increases after anodal tDCS and suggest that tDCS may involve the NMDA path-

way [30]. Stagg et al. also reports changes in Glx in response to cathodal tDCS, but not anodal

tDCS [4]. They propose MRS measures of Glx lack sensitivity to consistently detect Glx

changes following tDCS [4,28]. Several other studies report an absence of significant changes

in Glx in response to a-tDCS at the site of stimulation with little speculation as to why

[4,29,66,67,69]. It may be that tDCS influences Glx in a complex way that is network depen-

dent. The results of the current study shows Glx changes in the sensorimotor cortex contralat-

eral to the site of stimulation could be consistent with observations of others who have also

seen changes in Glx remote from the site of the tDCS [66,70].

6 week follow up in GABA and Glx

At 6 weeks follow up, it was expected that metabolites would return to baseline to maintain

homeostatic balance in the brain after the initial phases of skill acquisition had concluded,

while retaining motor skill improvements. However, we observed a significant increase in the

left sensorimotor Glx at 6 weeks follow up in the HD-tDCS group compared to the sham

group (p = 0.001) and compared to HD-tDCS baseline level. We also see a trend of increased

Glx in the HD-tDCS group between post intervention and 6-week follow up in the left
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sensorimotor cortex [18]. These observed trends must be interpreted cautiously as the sample

size is small. If this result is replicated, it suggests that in the hemisphere contralateral to stimu-

lation, HD-tDCS has a longer-term modulation of glutamatergic pathways. When examined

in conjunction with the secondary motor data collected, the change in left sensorimotor Glx in

the HD-tDCS group is accompanied by an improvement in the right hand PPT at 6 weeks fol-

low up. A potential explanation is motor overflow, a phenomena that typically disappears in

late childhood and describes unintentional movement that mirror voluntary movements typi-

cally in homologous muscle on the opposite side of the body [71]. Similarly, the decrease in

GABA in the left sensorimotor cortex in the a-tDCS group persisted. Persistent decreases in

GABA several weeks after tDCS intervention have been seen in primary progressive aphasia

[11]; though those changes were seen at the site of stimulation. Several studies have shown

improvement in motor learning in the contralateral hand following tDCS of either the right or

left M1 [52,72,73]. The “callosal access” hypothesis suggests that performance can be facilitated

in the untrained limb due to motor engrams developed in the dominant hemisphere. These

engrams underlie performance of the trained hand located in homologous regions that the

opposite motor cortex can access via the corpus callosum [64,74,75].

Relationship between changes in metabolites and changes in motor

performance

We found a significant, positive relationship between change in left sensorimotor GABA (cor-

tex contralateral to stimulation) and improvement in the task performance by the left hand

post tDCS intervention and training, further supporting the above mentioned callosal hypoth-

esis. Those participants who experience a greater positive change in GABA concentration in

the hemisphere contralateral to stimulation (left motor cortex) present a greater improvement

in PPT score over the 5-day stimulation and training period. This relationship is specifically

seen in the a-tDCS group only, suggesting that anodal stimulation induces a contralateral inhi-

bition that does not occur with HD-tDCS or in normal (sham group) learning, driving an

enhanced improvement in PPT score.

No relationship between changes in Glx and task performance post-intervention nor

between GABA or Glx and change in PPT score 6 weeks after stimulation and training was

observed. These results are in accordance with adult studies that report no significant relation-

ship between change in motor skill and concentration of Glx in the motor cortex contralateral

to the hand executing the task [38]. However, adult studies have reported a relationship

between task improvement and GABA changes in the tDCS targeted cortex (i.e. right sensori-

motor GABA changes and left hand training and task performance) [28,38]. This dissimilarity

suggests that neurochemistry in the pediatric and adult brain respond in different ways during

motor learning, warranting further investigation.

Conclusions

Non-invasive brain stimulation is an expanding area of research with investigations into the

use of modalities similar to tDCS being investigated as a therapy for a range of disorders

including migraine, pain and stroke [6–8,10,12,20,41]. While these studies have suggested that

non-invasive brain stimulation can improve outcomes, the underlying physiological changes

behind these responses are not well understood, particularly in the developing brain. Using a

control population, this study aimed to better understand the metabolite changes induced by

M1 anodal tDCS in conjunction with a motor training paradigm in the developing brain.

We investigated changes, in GABA and Glx concentrations following 5 consecutive days of

tDCS comparing conventional anodal tDCS, HD-tDCS and sham. Unexpectedly, transcranial
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direct current stimulation (tDCS) did not produces localized and specific alterations in neuro-

chemistry at the site of stimulation post 5-day tDCS intervention or 6 weeks after the interven-

tion. It is possible that changes in metabolites occur immediately after stimulation and

learning and this effect is diminished over the 5 days stimulation as skill level improves. How-

ever, we suggest the pediatric brain responds differently to tDCS compared to adults. In partic-

ular, we suggest contralateral modulation of learning and metabolites has a greater role in the

pediatric brain, highlighting the need for further study of the effects of non-invasive stimula-

tion on the pediatric brain specifically. Furthermore, we also show the response to HD-tDCS is

different compared to a-tDCS based on the observation of increased Glx in the left sensorimo-

tor cortex 6 weeks after stimulation specifically in response to HD-tDCS. Further investigation

into the effects of HD-tDCS is needed to determine its efficacy on motor learning.
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