
Durston et al. EURASIP Journal on Bioinformatics and Systems Biology 2012, 2012:8
http://bsb.eurasipjournals.com/content/2012/1/8
RESEARCH Open Access
Statistical discovery of site inter-dependencies in
sub-molecular hierarchical protein structuring
Kirk K Durston1*, David KY Chiu1, Andrew KC Wong2 and Gary CL Li2
Abstract

Background: Much progress has been made in understanding the 3D structure of proteins using methods such as
NMR and X-ray crystallography. The resulting 3D structures are extremely informative, but do not always reveal
which sites and residues within the structure are of special importance. Recently, there are indications that multiple-
residue, sub-domain structural relationships within the larger 3D consensus structure of a protein can be inferred
from the analysis of the multiple sequence alignment data of a protein family. These intra-dependent clusters of
associated sites are used to indicate hierarchical inter-residue relationships within the 3D structure. To reveal the
patterns of associations among individual amino acids or sub-domain components within the structure, we apply a
k-modes attribute (aligned site) clustering algorithm to the ubiquitin and transthyretin families in order to discover
associations among groups of sites within the multiple sequence alignment. We then observe what these
associations imply within the 3D structure of these two protein families.

Results: The k-modes site clustering algorithm we developed maximizes the intra-group interdependencies based
on a normalized mutual information measure. The clusters formed correspond to sub-structural components or
binding and interface locations. Applying this data-directed method to the ubiquitin and transthyretin protein family
multiple sequence alignments as a test bed, we located numerous interesting associations of interdependent sites.
These clusters were then arranged into cluster tree diagrams which revealed four structural sub-domains within the
single domain structure of ubiquitin and a single large sub-domain within transthyretin associated with the interface
among transthyretin monomers. In addition, several clusters of mutually interdependent sites were discovered for
each protein family, each of which appear to play an important role in the molecular structure and/or function.

Conclusions: Our results demonstrate that the method we present here using a k-modes site clustering algorithm
based on interdependency evaluation among sites obtained from a sequence alignment of homologous proteins
can provide significant insights into the complex, hierarchical inter-residue structural relationships within the 3D
structure of a protein family.

Keywords: k-modes algorithm, Site cluster, Associations, Ubiquitin, Transthyretin, Pattern discovery, Cluster tree,
Attribute clustering, Protein structural sub-domains
Introduction
The determination of protein 3D structure using meth-
ods such as NMR and X-ray crystallography has made
tremendous progress. Although the 3D structure of many
proteins has been solved, there still remains the problem
of understanding the internal relationships within the
structure. Certain residues may require specific associa-
tions with other residues within the structure that are
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not necessarily spatially proximal. Certain pairwise,
third-order, fourth-order, and higher-order associations
may be essential for obtaining a stable structure, while
other parts of the structure have a less important role.
The challenge is to be able to identify key structural asso-
ciations within the larger structure, with the objective of
understanding what role they play within the larger
structure or global function of the protein.
Granular computing is emerging as a computing

paradigm of information processing based on the ab-
straction of information entities called information
granules [1-3], which we define here as related entities
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that are abstracted from the protein family multiple se-
quence alignment data based on a possible shared
function. Functional bioinformatics is a sub-discipline
of bioinformatics that incorporates functionality into
the analysis of biopolymers [4-6]. Within a multiple se-
quence alignment, each column represents an aligned
site, where a site refers to a location within an amino
acid sequence. For example, a set of aligned sequences
for a protein family that, on average, consists of 150
amino acid positions (with inserted gaps), would have
150 sites in its sequence. It is useful for estimating the
functionality characteristics of sequence segments and/
or functional sites, which can add enormous insights
into understanding the characteristics of biopolymers.
The importance of patterns of associated sites within

protein sequences has long been recognized. Structural
and functional characteristics of a protein family may
often be dependent upon two or more sites that main-
tain the stability of the molecule [7,8], such as in the
situation of compensatory substitutions. In the late
1970s, based on statistics and information theory, Wong
et al. [9] proposed a statistical analysis of site variability
and interdependence in a protein family relating to the
structural and functional relationships of sites in cyto-
chrome c. Smith and Smith [10] developed a computer
algorithm for detecting relationships among different
sites in an amino acid sequence. Lichtarge et al. [11,12]
have developed an evolutionary trace method (ETM) to
identify clusters of sites associated with function, by
mapping sites with a high degree of conservation onto
the surface of the solved structure. Liu and Califano [13]
have suggested a method for the functional classification
of proteins through pattern discovery. Further work
extended to data from aligned sequences has been con-
ducted by Wong et al. [9,14,15] and Chiu et al. [16-18]
in the developing of pattern discovery and analysis. An
important goal of our proposed work is to extend our
understanding of sub-molecular, internal relationships
within the 3D structure of proteins by analyzing their
multiple sequence alignments. In this article, we intro-
duce a powerful new form of analysis based on the con-
cept of granular computing and the k-modes attribute
clustering algorithm (k-modes algorithm for abbrevi-
ation) to reveal statistical associations among multiple
amino acids, using the aligned sequence data of both
the ubiquitin and transthyretin protein families as
the test bed. We make several discoveries, including
three types of multiple amino acid associations as
well as the observation that some of them form
nested hierarchical branches and modules within the
larger structure, indicating that our proposed granu-
lar computing method is conceptually sound and
renders new understanding of internal relationships
within the 3D structure of globular proteins.
Application of the k-modes algorithm to multiple
sequence alignments
Consider a given alignment of multiple sequences, pos-
sibly representing the different members of a protein or
gene family. A multiple sequence alignment is defined
formally as follows.

Definition 1: (Multiple sequence alignment)
Consider that a family of molecular sequences is prop-
erly aligned. Let the aligned sites be represented as
X= (X1, X2, . . ., XN) where N is the number of columns
(aligned sites) in the multiple sequence alignment. Each
aligned site is considered as an attribute. A realization of
X is a particular sequence within the alignment and can
be denoted as xi= (xi1, xi2,. . ., xiN) where i is the row
number within the alignment and xij may assume any
value in its alphabet set G. For proteins, G consists of
the 20 amino acids and for DNA or RNA, G consists of
the 4 nucleotides. We refer to an ensemble of outcomes
of X as a Multiple Sequence Alignment
To clarify, a multiple sequence alignment consisting of

M sequences and N columns (aligned sites or attributes)
is shown below.

X1;X2;X3; . . . ;XN

x11; x12; x13; . . . x1N
x21; x22; x23; . . . x2N
:
:
:
xM1; xM2; xM3; . . . xMN

where Xn represents the column/aligned site/attribute
number and xij represents the particular amino acid or
nucleotide found in row i and column j. For a protein
family, the data for the two-dimensional array is the
multiple sequence alignment for the family contained in
databases such as Pfam [19,20].

Evaluating interdependency between attributes
For aligned protein sequences, an aligned site is consid-
ered as an attribute. To evaluate the interdependency
between two aligned sites, we use the method proposed
by Wong et al. [9,21] where the interdependency redun-
dancy measure between two attributes Xi and Xi' is given
by the normalized mutual information

Rii′ ¼
I Xi;Xi′ð Þ
H Xi;Xi′ð Þ ð1Þ

where

I Xi;Xi′ð Þ ¼
X
x2Xi

X
y2Xi′

p x; yð Þlog p x; yð Þ
p xð Þp yð Þ

� �
ð2Þ
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is the mutual information between Xi and Xi' (a measure
of the average decrease in uncertainty about Xi that
results from learning the value of Xi') and

H Xi;Xi′ð Þ ¼ �
X
x2Xi

X
y2Xi′

p x; yð Þlog p x; yð Þ ð3Þ

is the joint entropy between Xi and Xi'. Since I(Xi, Xi')
increases with the number of possible attribute values,
Rii' must be normalized. This avoids biasing the search
for associations among sites toward larger clusters,
which may actually have a low level of internal inter-
dependency. The function p refers to the estimated
probability from the sample data.
One should note that the stronger the interdependency

between Xi and Xi', the higher the I(Xi, Xi') value. As indi-
cated by Equation (2), from the statistics standpoint, the
normalized Rii' also accounts for the amount of deviation
from the independence hypothesis between Xi and Xi'. Rii'=1
if Xi and Xi' are perfectly dependent and Rii'=0 if they are
completely independent. Since Rii' is a normalized inter-
dependency measure, the interdependence relationship is
not affected by the number of attribute values. If there is an
interdependency between two attributes, there is a greater
degree of correlation between them than when compared
to two attributes that are less interdependent or independ-
ent. For this reason, Rii' is able to measure the interdepend-
ence or correlation between attributes [9,15]. If Rii'>Rih,
h 2 1; . . . ;Nf g, h 6¼ i 6¼ i′, the dependency between Xi and
Xi' is greater than that between Xi and Xh. In searching for
higher-order relations between attributes in a sequence
alignment, we use Rii' to measure the interdependence be-
tween attributes Xi and Xi'. On the basis of Rii', a statistical
test is introduced to test whether or not two attributes are
interdependent (or are deviating from independence) [22].
Recall that 0≤Rii'≤1, and Rii'=0 if Xi and Xi' are totally in-
dependent, and Rii'=1 if totally dependent. The test, in
terms of Rii', then becomes as follows.
Two attributes Xi and Xi' are dependent if Rii'≥ c
2

(Gi–1)

(Gi'–1)/2n H(Xi, Xi') and false otherwise, where c2(Gi–1)(Gi'–1)
represents a chi-square distribution with (Gi–1)(Gi'–1)
degrees of freedom (recall that for proteins G represents
the alphabet set of 20 amino acids) and n represents the
number of specimens in the cluster.
For sequences that presume to encode embedded func-

tionality such as DNA, RNA, or proteins, I(Xi, Xi') can be
considered to reflect the mutual functional information
governed by known (or predicted) functionality of a pair of
sites. A measure of functional complexity (FC) was pro-
posed by Durston et al. [6] for the case where the
sequences are specified by a defined input class. Here, how-
ever, we are measuring the FC of the relationships between
aligned sites, as specified by the attribute cluster.
To estimate the overall significant dependence of an
attribute Xi with other attributes in a cluster of sites, the
sum of normalized interdependency redundancy SR(i) of
Xi with other attributes in the data array is calculated,
where

SR ið Þ ¼
X

ði;i′Þ2N�
Ri;i′ ð4Þ

and N* is the set of (i,i') attribute pairs [9,15,17,21].

Definition 2: (Mode of a set of attributes)
Within a cluster of attributes, we define the mode as the at-
tribute with the highest normalized interdependency redun-
dancy (SR) value. Formally, Xi is the mode of cluster X if
SR(i) ≥ SR(i') for all attributes Xi' in X.

For the purpose of this article, and to compare clusters
of different numbers of attributes, the highest normalized
interdependency redundancy (SR(i)) divided by the num-
ber of attribute pairs N* in the cluster (i.e., SR(i)/N*) will
be designated as SR(mode). The SR(mode), therefore, in
quantifying the interdependency between the mode and
the other attributes within the cluster, provides one
method to quantify the average degree of interdependency
within the cluster, as well as an objective method to rank
different attribute clusters in terms of their internal
interdependency.
Often, within a sequence alignment, it may be that

two or more sites are closely associated by their amino
acid composition, possibly due to residue–residue con-
tacts [7]. It has been found that such amino acid associa-
tions could form compensatory relationships in certain
mutational events [7]. As a result, amino acids at one
site could have a functional relationship with particular
amino acids at the other sites within the associated sites.
We define these amino acid associations as patterns if
the association is statistically significant.

Definition 3: (pattern)
An event is an observation of an instance in a given data
ensemble, either involving a single value or multiple
jointly observed values. A single-valued event is referred
to as a primary event and is a realization of Xi that takes
on a value from αi , where α represents a symbol from
the alphabet set G. For a primary event, only one out-
come of a variable in X is involved. A multiple valued
event is referred to as a compound event. A pattern is a
compound event (an observation from a subset of n dif-
ferent variables of the N-tuple X) which is statistically
significant as reflected by its frequency of occurrences
[23,24]. A pattern is denoted as λ ¼ αpi ; α

q
i′ ; . . . ; α

r
n

� �
where (i, i', i'', . . ., n) is a set of aligned site indices (e.g.,
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sites 2, 15, and 19), within the multiple sequence align-
ment. It represents the joint outcomes of Xi ¼ αpi , Xi′ ¼
αqi′ , . . ., Xn ¼ αrn and that such association is statistically
significant in the sense that the frequency of their occur-
rences deviate significantly from the default expected
frequency if they are just a random occurrence or if they
are a completely independent set.
For example, cluster (11) in Table 1 has two third-

order patterns (sites 60, 63–64), where λ1 = amino acid
pattern NKE, and λ2 = amino acid pattern GDG, in the
corresponding sites in the alignment. Here, both pat-
terns on these three sites are statistically significant
according to their frequency of occurrences as observed
in the sub-array of the aligned protein data.

Attribute clustering
In traditional pattern recognition, clustering is a process
that groups similar samples together, maximizing the
intra-group similarity and inter-group dissimilarity based
on certain similarity or distance measures. An example is
the method proposed by Li and Scheraga [25] for group-
ing similar sequences on the basis of their information dis-
tance, the length of the smallest binary computer program
that will convert two sequences to each other. Clustering
algorithms that group according to similarity between
attributes are not appropriate for clustering in terms of
interdependency, since dissimilar attributes may be inter-
dependent. (For example, two aligned sites may be com-
posed of dissimilar amino acids, yet be interdependent.)
If we analyze the relationship among attributes with

the objective of clustering them into groups, we consider
their interdependence instead. Using a sample clustering
analogy in clustering attributes, we should maximize the
intra-group interdependence (correlation) and inter-
group independence. Hence, the attribute clusters within
the sequence alignment could be obtained by using attri-
bute interdependence values for associations.
There is a subtle difference between attribute inter-

dependence and statistically significant patterns. The
former describes dependence between attributes such as
sites within an amino acid sequence, while the latter
relates an associated set of amino acids at a respective
set of sites in a sequence as joint events based on their
statistically significant association. (To clarify, taking the
same example 11 in Table 1, we observe that three attri-
butes are mutually dependent. Yet, within these three
sites we observe two third-order events λ1 =NKE and
Table 1 Attribute clusters with two high residual patterns

Cluster Sites k λ1 amino acids λ1-ad

10 54–59 6 RTLSDY

11 60,63–64 3 NKE

3 18–19,21 3 ESD
λ2 =GDG which are statistically interdependent.) Hence,
one third-order cluster of aligned sites can contain two
or more third-order patterns of amino acids within those
sites. We could anticipate that attribute clusters usually
contain statistically significant patterns among the amino
acids in the clusters. Before we define attribute clusters,
we first introduce the algorithm by which attribute clus-
ters could be found.

Attribute clustering algorithm
For sample clustering, a well-known process is the k-
medoids algorithm [26]. To cluster samples into k
groups, it first selects a random sample to represent
each group and considers it as the center or medoid for
that group. Thus, it selects k samples around which to
build k groups. That is why the algorithm is referred to
as the k-medoids algorithm. Using a distance measure, it
clusters each of the remaining samples into the group
for which the sample is closest to the medoid. After the
first round, it updates a sample as the medoid of a group
if the sum of distances of that sample to all other sam-
ples in that group is minimal. Based on their closest dis-
tance to these new medoids, all samples are then
regrouped. The process is repeated until there is no
more shift of samples between clusters. This method can
work well for similarity-based clustering, but as pointed
out earlier, interdependency might not be a function of
similarity; two very dissimilar attributes may actually be
interdependent. That is, different amino acids at distant
sites could still be inter-associated if their occurrences
are observed together.
The ETM, mentioned earlier, forms clusters of highly

conserved sites that, when mapped to a 3D model, are cor-
related with a function such as binding. In this approach,
an interdependency measure is not used. Instead, inter-
dependency is inferred. Also, the interdependency that is
inferred is between the function and the cluster of highly
conserved sites. The sites (or attributes) may not necessarily
all be interdependent between themselves. Furthermore,
the ETM can be used only in proteins that have a known
structure and are relatively free of noise.
A concept similar to the k-medoids algorithm was devel-

oped by Wong and Wang [27] and adopted to cluster genes
from micro-array gene expression data [15]. It is known as
a k-modes attribute clustering algorithm. In the k-modes al-
gorithm, we replace the medoid, representing the center of
a cluster of samples in the k-medoids algorithm, with the
justed residual λ2 amino acids λ2-adjusted residual

31.0 RTLADY 30.5

29.9 GDG 14.3

13.4 EPD 9.6



Durston et al. EURASIP Journal on Bioinformatics and Systems Biology 2012, 2012:8 Page 5 of 18
http://bsb.eurasipjournals.com/content/2012/1/8
‘mode’ which is the attribute that has the highest SR(i)
within that attribute cluster. The k-modes algorithm uses
the interdependency redundancy measure Rii' between attri-
butes for attribute clustering instead of the similarity meas-
ure used in sample clustering. The k-modes algorithm,
shown in Figure 1, then proceeds as follows.
The first step is initialization where k, the prescribed

number of clusters, is inputted and an attribute is ran-
domly selected for each cluster, representing a candidate
for the mode of that cluster. Step 2 is to calculate the
interdependency redundancy measure Rii' between each
cluster mode and each of the remaining attributes. Each
of these remaining attributes is then assigned to the
cluster for which it has the highest Rii' value. Step 3 is to
compute the updated mode for each of the k clusters
(recalling that the initial mode was only a candidate used
to start the process). In the subsequent iterative step,
once the new mode of each of the k clusters has been
calculated, steps 2 and 3 are repeated until the calcu-
lated mode for each of the k clusters does not change,
that is, there is no exchange of attributes between attri-
bute clusters. The algorithm is terminated at that point
or, alternatively, at a pre-specified number of iterations.
For protein family multiple sequence alignments, all

unassociated insertions and gaps are computationally
removed from the previous procedure. Because it is
Protein family
multiple sequence

alignment

(input)

(output)

value for k 

Randomly select one
attribute for each

cluster to be the mode

Calculate Rij between
each mode and each 
remaining attribute

Assign each attribute 
into cluster for which
it has the highest Rij

Re-calculate mode for
each cluster

has k
changed? 

NoYes attribute clusters

Construct
hierarchical
cluster tree

Search for
high residual

patterns 

Figure 1 Overview of algorithm for attribute clustering and
pattern discovery. The k-modes algorithm is summarized in the
green portion of the flowchart. The algorithm can be run for a
particular value for k or for multiple values. In order to build a
hierarchical cluster tree for a protein family, represented by a
multiple sequence alignment with N aligned sites, the value of k is
increased each time from a starting value of N – 1 down to 2. The
entire set of attribute clusters can then be arranged into a cluster
tree for that protein family, or individual clusters can be
computationally analyzed for patterns.
generally recognized that sequence determines structure
[28], and structure is important for function, it is
assumed that each of the remaining sites within the se-
quence is either directly or indirectly interdependent
with every other site in the sequence. To clarify, one
pairwise interdependency may not be directly related to
another attribute cluster consisting of three interdepend-
ent sites, but both clusters may be nested within larger
clusters that are directly related to form a still larger
cluster. An exception might be a cluster of sites that are
interdependent only due to an external function, such as
a highly conserved binding site. Thus, in order to dis-
cover the full range of the nested clusters, the k-modes
algorithm is run for all values of k from k=N – 1 down
to k= 2. For example, a multiple sequence alignment
with 100 aligned sites would first be run with k set to
N – 1 = 99. This would result in 1 pairwise cluster and
98 single attribute clusters to account for all 100 aligned
sites. The value for k would be reduced by 1 each time
all the way down to 2, which would yield 2 large attri-
bute clusters comprising all 100 aligned sites. It is pos-
sible that the structure of a protein may not actually fit
into two high-order attribute clusters. For example, a
protein family that has a 3D structure composed of three
structural domains may yield valid results for a k as
small as 3 but not for a k as small as 2. If this is the case,
it will become evident when the cluster tree of nested
hierarchical attribute clusters is built, which will be
explained shortly. Because the k-modes algorithm clus-
tering method is data driven, it should yield the same
results for multiple runs of the same k, even though a
random attribute is chosen at the initial step. This was
found to be the case for both protein families analyzed.
Regarding the complexity of the algorithm, the k-

modes algorithm for N attributes and n samples requires
O(nN) operations to assign each attribute to a cluster
(step 2) and O(nN2) operations to compute the mode
Xm for each cluster. If t represents the number of itera-
tions, then the computational complexity of the k-modes
algorithm is

O k nN þ nN2
� �

t
� � ð5Þ

or

O knN2t
� � ð6Þ

This order of computational complexity is manageable
within a reasonable space and time on any recent laptop
computer.
An attribute cluster is formally defined as follows.

Definition 4: (attribute cluster)

For an ensemble of data X= (X1, X2, . . ., XN) with N attri-
butes, if X is partitioned vertically into k sub-arrays by
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the k-modes attribute clustering algorithm, then
each sub-array is defined as an attribute cluster in the
k-cluster configuration of X.
Applying this definition to a protein sequence align-

ment, an attribute cluster is simply a cluster of sites that
are mutually interdependent. For example, several attri-
bute clusters for the ubiquitin family are shown in
Table 2. One such attribute cluster is 11, consisting of
sites 60, 63, and 64 in the aligned sequences.
In this study, we consider only those patterns observed

within an attribute cluster even though some might span
across attribute clusters with weak interdependence. The
set of attributes (as random variables) within an attribute
cluster is then defined as a new pattern subspace as
below.

Definition 5: (A significant pattern subspace)
Consider a subset Y of N* (N≥N*> 1) attributes of X
such that at least one pattern is spanning that subset.
Let Gy ¼ λ1; λ2; . . . λm

� 	
denote the set of m patterns

contained in the subset Y. We refer the vector subspace
Y as a significant pattern subspace containing the m pat-
terns which span that subspace.
For example, in Table 2, cluster 11 forms a trans-

formed attribute, consisting of the attribute set of
aligned sites 60, 63, and 64. The attribute cluster 11 is
not the pattern, rather, it is a result contributed by two
amino acid patterns λ1 =NKE and λ2 =GDG at two dif-
ferent subsequent instances in the significant pattern
Table 2 Representative clusters from each primary branch in

Cluster Sites Highest pattern residual k Structural re

1 7,9–11 25.9 4 Double bond

2 12,14–17,20 57.6 6

3 18–19,21 13.4 3 Double bond

4 23,25–27 6.7 4 Double bond

5 29–31,41 22.6 4 30 in Van de

6 34–36,38 27.9 4 Van der Waa

7 37,39–40,43 20.8 4 37 bonds to

8 44–47 646.1 4 Van der Waa

9 49–50,52 7.5 3

10 54–59 31.0 6 8 internal H-b

11 60,63–64 29.9 3

12 66,68–70 27.8 4

13 43,69,74 13.0 3 43 in tight Va

14 70,72–73 22.6 3
subspace (second row in Table 1). Note that the vari-
ables in a subset of X forming a subset Y in the new sig-
nificant pattern subspace will not be overlapped, as our
attribute clustering algorithm will ensure that they are
disjoint. Later, we will discuss how a hierarchical struc-
ture can be constructed in the form of a cluster tree.

Attribute clusters and information granules
The concept of granular computing allows analysis of
granular units, in terms of modularity and hierarchy as a
web structure of relationships [29-36]. Applying this
concept to proteins entails analyzing them in terms of a
hierarchical assembly of modules, each of which is asso-
ciated with an attribute cluster.
Within a group composed of different types, a granule

was originally conceptualized and served as a focal point
of similar types within the group to study their collective
properties [2]. For our problem of understanding the in-
ternal association relationships of a protein, the clusters
of sites in the alignment can be considered as a set of
granular units (which we called information granules)
such that their information reflects the inferred associa-
tive properties of the protein family under study. A low-
order attribute cluster may represent two or three
residues that are in contact through H-bonds or in van
der Waals interaction distances. The two or three resi-
dues can also be more distant from each other, yet be
mutually associated, possibly through the effects the
members of the cluster have on torsion angles and free
ubiquitin

lationship Functional factors

between 7 and the other sites 11 is a binding site

12 is adjacent to binding site 11

between 18 and 21

between 23 and other sites 27 is a binding site

r Waals contact with 41 29 is a binding site

ls contact 34 & 36 34 is adjacent to binding site 33

40 43 is adjacent to possible external
recognition site 42 and external
contact site 44

ls contact 44 & 47 sites 44 and 47 are external contact
points, 47 is adjacent to major
binding site 48

site 49 is an external contact point

onds

63 is a major binding site

site 70 is an external contact point

n der Waals contact with 69 74 is a possible external recognition
site

70 is an external contact point, 73 is
an external recognition site



Durston et al. EURASIP Journal on Bioinformatics and Systems Biology 2012, 2012:8 Page 7 of 18
http://bsb.eurasipjournals.com/content/2012/1/8
energy during folding. Low-order clusters may be nested
within higher-order clusters, which represent important
sub-domain structural components.
To analyze the nested hierarchical relationships be-

tween the clusters, a cluster tree can be built, as illu-
strated in Figure 2. The cluster tree will also clearly
distinguish between valid and invalid clusters that were
forced by using a k value (the number of clusters) that
was too small. The cluster tree can either be built com-
putationally or manually. The first step is to arrange all
the second order (pairwise, involving two attributes)
clusters from left to right, according to approximately
where the pairwise clusters appear in the sequence. (For
example, a pairwise cluster composed of sites 1 and 3
would be on the left and the highest site number pair-
wise cluster would be on the right, with all others
arranged in between.) Not all aligned sites will necessar-
ily form pairwise clusters. The next step continues with
all the third-order clusters (or clusters composed of
three interdependent sites) and so on. If a second-order
cluster is nested within a third-order cluster, then the
third-order cluster should be placed directly beneath the
second-order cluster to form the beginnings of one
branch of the cluster tree. Most clusters will likely be
nested within larger order clusters, so the lower-to-higher
order nested clusters will form the branches of the cluster
tree. Since some sites may be associated with more than
Figure 2 Cluster tree for ubiquitin. The attribute clusters discovered from
and organized vertically according to their order (the number of interdepe
branches, numbered 1 to 14 across the top of the figure. In each branch, t
SR(mode) value) was chosen as the representative cluster for that branch an
discussed in the text, are labeled 12 s and 13 s. From this cluster tree, new
one cluster, they may switch branches as the order of the
clusters is increased. A node occurs when two or more
branches converge to form a large cluster. Some nodes
may be nested within even larger clusters forming a larger
branch representing a larger portion of the protein. In this
case, the entire section of branches that converges into a
larger node comprising a significant portion of the protein
is called a module. If a branch reaches a point where the
cluster is not nested in a higher-order cluster, then that
branch should be left unattached to the cluster tree; it
may have functional or structural significance on a local
scale and should be retained in the cluster tree diagram.
As already mentioned, each higher-order cluster should

contain most of the sites included in the lower-order clus-
ter(s) that are nested within it by choosing a reasonable
number of clusters, or a k value that is not too small. The
completed tree should be a valuable tool in identifying
and understanding sub-molecular relationships, both
functional and structural, within the generalized 3D struc-
ture of the protein family being investigated.
Each information granule is defined as an attribute

cluster and allows for local analysis, as well as a global
analysis under this framework. The hierarchical levels of
analyses then provide multiple views into the protein
structure including key residue–residue contacts, pair-
wise, third- and fourth-order relationships with multiple
sites on up to larger sub-domains.
the aligned sequence data for the ubiquitin family are shown above
ndent sites they contain). The organized clusters form primary
he attribute cluster with the highest internal interdependency (highest
d is labeled according to its branch number. Two secondary clusters,
insights can be gained into details of folding and structure.
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Table 2 lists 14 attribute clusters within the aligned
sequences of the ubiquitin family. Each of these reflects
complex variability and association information that can
be analyzed and compared to the functional and struc-
tural characteristics necessary for the ubiquitin family.
By studying these generated granules, detailed insights
can be gained on the sub-molecular characteristics of
the ubiquitin family.
To summarize our approach, Figure 1 shows a flow

chart diagram for the attribute cluster analysis of protein
families. The analysis begins with the downloading of a
sequence alignment of all sequences predicted for a pro-
tein family. Redundant sequences are then removed so
that the resulting alignment consists only of unique
sequences for that family. The resulting alignment is
then analyzed using our method to detect attribute clus-
ters. The attribute clusters are then grouped into hier-
archical families of clusters forming branches, some of
which may form a hierarchical cluster tree, an example
of which can be seen in Figure 2. The clusters are then
analyzed for structural and functional contributions with
the objective of better understanding the key internal
hierarchical structural sub-domain relationships and at
various levels.

Statistical significance of results
Our approach is to locate statistically significant associa-
tions among sites in a multiple sequence alignment, as
well as statistically significant patterns of amino acids
within those associations. For locating associations be-
tween sites, the normalized mutual information Rii'

(Equation 1) between attributes Xi and Xi', known as re-
dundancy, is used.
To ensure that patterns are statistically significant, the

adjusted residual of each possible pattern within cluster
is calculated [23]. The residual of a pattern λ is defined
as the difference between the actual occurrence of λ and
its expected occurrence, or

δλ ¼ oλ� eλ ð7Þ
where eλ is the expected occurrence of the pattern
which, in this case, is that there are no patterns. The
adjusted residual of the pattern λ is defined as

γλ ¼ δλffiffiffiffiffi
νλ

p ð8Þ

where νλis the variance of δλ. To find an amino acid pat-
tern within a given cluster, a lower cutoff value for the
adjusted residual is chosen. The adjusted residuals are
calculated based on the amino acids observed within the
multiple sequence alignment within the particular clus-
ter being examined (i.e., only one cluster is analyzed at a
time, which reduces the computational search to just the
aligned sites in the cluster). An adjusted residual that is
less than the cutoff value is rejected and an adjusted re-
sidual higher than the cutoff value is retained as signifi-
cant to a certain confidence level. (For example, an
adjusted residual of 2.58 means that an amino acid pat-
tern is statistically significant to a confidence level of
99%, and an adjusted residual of 3.29 is statistically sig-
nificant to a confidence level of 99.9%.)
In this way, only statistically significant results are

obtained and spurious results preempted. Thus, statis-
tical significance is the operative criterion throughout
the search process, ensuring statistically significant
results. For a multiple sequence alignment, the mini-
mum number of non-redundant aligned sequences
required for statistically significant results is five [23].
However, only very strong associations and patterns will
be revealed with such a small sample size. Adding add-
itional non-redundant sequences to the alignment will
increase the likelihood of finding additional patterns
within the same association of sites, and of locating the
smaller associations among sites that may be nested
within the stronger, larger associations. Thus, the larger
the non-redundant multiple sequence alignment, the
more attribute clustering detail can be resolved.

Computational results for ubiquitin and
transthyretin
Several dozen attribute clusters were generated by the
program from the sequence alignment for both the ubi-
quitin and transthyretin (TTR) families, ranging from
simple, pair-wise clusters up to one 58th-order cluster in
the case of TTR. For clarity and logical flow, we shall
discuss the results in the step-wise order as they
emerged in the process of our analysis, dealing first with
ubiquitin, then with TTR. To assist in clarity, a summary
of the most significant results and predictions is shown
in Table 3.

Ubiquitin
The cluster tree
A cluster tree was assembled as described in the Section
“Attribute clusters and information granules”, and is
shown in Figure 2. Two types of branches can be
observed. A Type I branch is made up of aligned site
clusters which exhibit little or no interlacing with clus-
ters residing in other branches (for example, primary
branch (1) in Figure 2). The lack of interlacing between
a Type 1 branch and other branches may indicate that
the residues within a Type I branch are assembled
completely prior to folding into the larger structure.
The Type II branch, as illustrated by branches (5), (6),
and (7), is made up of attribute clusters containing sites
that interlace with sites in other branches. The overlap-
ping/interlacing sites in the attribute clusters among Type



Table 3 Overview of experimental results and predictions

Results Predictions for further research

1. Attribute clusters can be grouped into a hierarchical cluster tree
composed of branches, nodes, and modules

Cluster trees may reveal details of folding constraints and other
functionality relationships

2. Within modules, two types of branches were found: (i) Type I;
independent/non-interlacing with other branches and (ii) Type II;
interlacing with other branches

The relationship between Types I and II branches may indicate
constraints in the folding, tertiary structure and functionality of
protein molecules

3. Attribute clusters with highest SR(mode) values were most
commonly third- and fourth-order (3 to 4 associated sites)

Support for the next largest building block in proteins above
single amino acids is typically a 3 to 4 amino acid structural unit

4. Three types of attribute clusters were found: (i) H-bonded clusters,
(ii) Van der Waals clusters, and (iii) extended clusters

Identifying attribute clusters may support possibility of predicting
protein tertiary structural relationships involving H-bonds, van der
Waals interactions, or multiple site effects

5. Representative clusters found in ubiquitin confirm that the
statistical criterion used can identify structural constraints such as
bonding, binding and recognition sites (Table 2)

Can be used to locate key sub-molecular components of a protein,
as well as components critical for the function of that protein

6. Ubiquitin molecule found to be composed of four major modules Consistent with the four major areas of chemical shift
perturbations between Ub1 and Ub2
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II branches suggest that there is a strong structural rela-
tionship among those branches, giving robust structural
stability in the region containing them. A prediction that
arises out of the observation of two neighboring, strongly
interlaced Type II branches, is that during translation, the
two branches may fold into each other before folding as a
cohesive unit back onto the part of the protein that has
already been formed by earlier branches.
Figure 2 reveals that the 14 primary branches con-

verged into 4 primary modules (labeled in Figure 2 as
modules 1–4). Modules formed as the result of merging
two or more primary modules are labeled as modules A
and B (Figure 2). For example, modules 1 and 2 con-
verged to form module A. Since branches 8, 9, and 10
were strongly interlaced, and showed no signs of conver-
ging with branches 11–14, branches 8–10 were grouped
to form their own module 3. The strong interlacing of
branches 11–14 resulted in the formation of module 4.
Once the cluster tree was completed, the next steps were
to analyze a representative cluster from each branch,
and then analyze the four modules. The next three sec-
tions contain the results of these steps.

Representative clusters
For the next step, we chose a set of representative clus-
ters for detailed examination. Any cluster can be chosen
to represent a primary branch, but for ubiquitin, the
cluster with the highest SR(mode) value was chosen to
be the representative cluster. The representative cluster
for each branch is shown highlighted in red in Figure 2
and labeled 1 to 14, where the numeral denotes the pri-
mary branch number. Table 2 contains a list of the rep-
resentative clusters for the primary branches 1–14
together with the highest adjusted residue value of the
strongest pattern within each representative cluster.
Using the secondary structure revealed in the X-ray

diffraction 1.8 angstrom solved structure 1UBQ [37,38]
available from the Protein Data Bank, of the representa-
tive attribute clusters in each branch, we observe that (a)
11 out of 14 clusters included loops or turns; (b) 9 out
of 14 included beta strands; and (c) 5 out of 14 included
helices. We also note that three of the clusters occurred
entirely within loops or turns, with only one cluster oc-
curring entirely within a helix and only one entirely
within a beta strand. Since loops and turns can be highly
constrained structurally, it may explain why a higher oc-
currence of clusters included loops and turns.
Another observation from the representative clusters

(highlighted in red in Figure 2) is the percentage of
fourth-order (involving four sites) clusters. Of the set of
clusters, one from each primary branch, that had the high-
est SR(mode) value (i.e., the strongest average inter-
dependency between sites), 7 were fourth-order (50%), 5
were third-order (36%), sixth-order clusters comprised
only 14%, and there were no fifth-order high SR(mode)
value clusters in the individual branches. This suggests
that the most common structural units within proteins
may involve 3 to 4 amino acids. The node for Module 1
composed of the 21st-order cluster (6–25, 27) had a high
SR(mode) value of 0.202. This high internal interdepend-
ency may be a strong predictor of a structural sub-domain
. A high SR(mode) value at the node of a module indicates
the level of internal interdependency and stability once
the folding is complete for that module.
The k-modes algorithm found one or more patterns for

each of the representative clusters. Recall that a pattern
consists of an association of specific amino acids among
the sites in the cluster. For statistical significance, an
adjusted residual value was calculated for each pattern in
a cluster. The residual value for each of the representative
clusters shown in Table 2 is only for the pattern with the
highest residual found within each representative cluster.
Many of the clusters had other patterns as well. For ex-
ample, two patterns for each of three different
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representative clusters are shown in Table 1. The fact that
patterns were discovered for each of the representative
clusters is verification that the attributes clusters discov-
ered by this method contain high residual associations of
amino acids.

Classifying the clusters
The third step was to examine and classify the clusters
to see what significance they had within the 3D struc-
ture. We note that the representative clusters chosen for
their high SR(mode) values within each branch can be
interpreted as functionally significant either for structure
or external binding and interaction. The 3D structure of
ubiquitin is shown in Figure 3A, using the solved struc-
ture 1UBQ. In Table 2, comparisons between the clus-
ters and model 1UBQ were made. For functional
significance, known and suspected sites that are involved
in external binding or recognition are as follows:

(a)Sites 6, 11, 27, 29, 33, 48, and 63 are thought to be
possible binding sites in the formation of poly-
ubiquitin, with sites 48 and 63 thought to be the
most common [39,40].
Figure 3 Ubiquitin. (A) The 3D structure of ubiquitin, using the 1UBQ solv
molecule. The three sites are all within van der Waals interaction distance o
overall structure. (B) Module 1. This module contains two H-bonded cluste
structural stability once folding is complete, especially cluster 1 with six H-b
der Waals cluster discovered by the k-modes algorithm.
(b)Sites 8, 44, and 70 form hydrophobic patches that
appear to contact the corresponding sites in Ub2,
stabilizing the dimer in its closed conformation [41].

(c)Sites 47, 49, and 71 form hydrogen bonds with
corresponding sites in the other moiety in Lys-48
linked Ub2 [42].

(d)Sites 42, 72, and 74 are located at the interface
between the two ubiquitin domains, which may
represent possible interaction sites that distinguish
multi-ubiquitin chains from a single ubiquitin
molecule, providing a means of external recognition
[42].

Using these comparisons, the representative clusters
(1–14) in each branch were then examined. All of the
major clusters were found to be either functionally or
structurally significant (Table 2). Some clusters in par-
ticular were found to have an important internal structural
relationship and are discussed in detail below. Even though
the k-modes algorithm is blind to the position of a site in
the sequence, most of the discovered clusters contain sites
that are either consecutive, or very close in sequence prox-
imity, which one could expect to be structurally associated.
ed structure. Part of cluster 13 s is also shown within the ubiquitin
f each other and may have an important role in the stability of the
rs, which may play a role both in folding and then maintaining
onds anchoring the loop. (C) Cluster 12 s, a strong example of a van
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This result suggests that the method presented here is able
to pick up local structural associations remarkably well.
Furthermore, there are some cases where the associated
sites of the clusters are located at a distance (e.g., sites 30,
43, 68, and 69) with binding site relationships, or other
structural or functional relationships (Table 2).
In addition to the Types I and II branches describing

how the sites are interlaced, at least three types of attri-
bute clusters were also observed which we designate: H-
bonded clusters, van der Waals clusters, and extended
clusters. H-bonded clusters contain residues that are in
mutual H-bond contact. An example of this type of clus-
ter is (1) shown in Figure 3B, forming a loop stabilized
by no less than six predicted (PyMol) internal H-bonds.
The second type of cluster, the van der Waals cluster,
has sites that are not bonded but are in van der Waals
contact. An example of this type is cluster (12 s), mod-
eled in Figure 3C. The 1UBQ model reveals that the last
cluster in the primary branch (12) (although quite dis-
persed along the primary sequence) contains van der
Waals interactions, as well as predicted H-bonds, with
sites 43 and 44 in van der Waals contact with sites 68
and 69, and two additional hydrogen bonds predicted by
PyMol between site 44 and site 68. Hence, the clusters
help to identify sites that are closely related in the ter-
tiary structure, and often in actual contact, though
widely separated in the primary sequence.
These first two types of clusters predicted by the pat-

tern recognition software used in this research can read-
ily be corroborated by mapping the attribute clusters to
a solved 3D structure for the protein. The third type,
however, designated as the extended cluster, is composed
of sites that are distant both in the primary sequence, as
well as the final 3D structure, yet they have a very high
SR(mode) value, indicating strong association. When
mapped onto the solved 3D structure of the protein, it is
less obvious why the constituent sites form an attribute
cluster. There are two possible reasons why some clus-
ters may consist of sites that are not within van der
Waals interaction distance from each other in the 3D
structure, yet demonstrate a strong interdependency.
First, it is possible that for extended clusters, the inter-
dependence is due to the net effect of the conformation
angles ψ and ϕ and the conformations of the side chains
for the amino acids within the cluster [43] upon the
short and medium range structure and free energy state
of the protein in the area containing the extended attri-
bute cluster. This net effect may be required to minimize
free energy and directly maintain the stable tertiary
structure. Second, the association of sites that are not
structurally proximate to each other may be due to ex-
ternal functional constraints such as external binding as
first conjectured by Wong et al. [9]. From Table 2, it can
be observed that some clusters with no obvious internal
structural relationship, such as 9, 11, 12, and 14, all con-
tain external binding sites or, where the interaction is
not yet known, external contact points with the external
molecule it binds to [39]. Thus, the mutual interdepend-
ency of the sites in an extended cluster may be due to
external binding requirements of functional controls
where a number of sites are involved.
The success of this method in identifying important

structural associations within ubiquitin does not mean
that it will identify all such bonds, especially when the
association among sites is weak. It does, however, dem-
onstrate the ability to identify some key residue–residue
contacts from the alignment data. This relationship
among statistical association, molecular structure, and
functionality is also consistent with earlier findings that
identified the relationship among statistical patterns and
3D bonding structure [18] and functionality such as her-
edity factors in cancer suppressor genes [16,17]. The
current results bring to light further details of statistical
patterns that are strongly indicative of molecular struc-
ture and functionality in an alignment of proteins. Fur-
ther work needs to be done to enable distinctions
among clusters that predict residue-residue contacts,
extended clusters that are keys in achieving structural
stability, and those associated with external binding sites.
One possible approach which has not been explored is
to compare the FC of each site, which may be more
heavily influenced by external binding, with the site clus-
ters [6]. Another approach would be to compare the
results of steered molecular dynamic computational
modeling [44,45] on the more interesting parts of the
cluster tree to see how those results would correlate
with the cluster tree.

The modules
The final step was to examine the modules predicted by
the cluster tree. For better visualization of the module
locations and the major branch node-forming clusters on
the sequence, Figure 4 shows the modules as boxes super-
imposed over the sequence with its color-coded secondary
structure (taken from the 1UBQ model). Major clusters
(color coded boxes) are also included. To avoid a confus-
ing number of modules and clusters superimposed on just
one sequence, two identical sequences are used for clarity,
with two modules shown on each one.
To evaluate the validity of this modular view of ubi-

quitin, it has already been observed that at pH values of
6.8 to 7.5, the chemical shift perturbations are modular
between the single ubiquitin molecule and the Lys-48
linked dimer form of ubiquitin (Ub2), with four areas of
perturbations [41]. The same four areas of perturbations
have also been observed for Lys-63 linked Ub2 [40]. The
remarkable correspondence among the four modules



Figure 4 Secondary structure of ubiquitin with locations of modules and major clusters. The location of the major clusters associated with
the four major modules is shown, for clarity, on two identical secondary structure ribbons, taken from model 1UBQ. An example of smaller
clusters nested within larger clusters can be seen in the clusters associated with Module 2. The attribute (site) clusters associated with Modules 1
and 2 were found to be compact, with only a small region of interlacing involving sites 26, 28, and 31. Of particular interest are the two clusters
associated with Module 4 that contain some sites that are quite distant in the primary structure. The key sites in these very extended clusters are
sites 30, 43, and 69 which, although widely separated in the primary sequence, are actually in Van der Waals contact, as shown in Figure 3.
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obtained by our method and the four areas of chemical
shift perturbations is summarized in Table 4, providing
validation that these four modules actually represent
structural units within ubiquitin.

Module 1
The tertiary structure of Module 1 is shown in Figure 3B.
The cluster with the highest SR(mode) value, discovered in
our experiment, was cluster (1), with a SR(mode) value of
.26. Cluster (1) is also labeled in Figure 2 and consists of
sites (7, 9–11). The high SR(mode) value shows that the
sites are highly associated. From the 1UBQ model in
Figure 3B, no less than six H-bonds are predicted by the
MacPyMol model between Thr-7 and the other members
of the cluster, sites 9–11. The number of internal H-bonds
not only explains why it has such a high SR(mode) value,
Table 4 Module and perturbation area comparison

Module number Sites spanned in module

1 6–25

2 26–41

3 42–59

4 60–74
but it also indicates that site 7 is especially important
within the cluster. Furthermore, the presence of the six
predicted bonds in the cluster is an indication that cluster
(1) provides structural stability to the loop and as a result,
may have an important role in folding the two beta
strands into a beta sheet. Site 11 within cluster (1) is also a
known binding site [39] (Table 2).
Cluster (3) also has one of the higher SR(mode) values

in the alignment, with a value of 0.19. From Figure 3B, it
can be observed that this cluster, containing sites (18–
19, 21) is part of the next loop after the beta sheet. In
this particular cluster, there are two predicted bonds be-
tween Asp 21 and Glu 18, providing verification for the
significance of the computationally discovered associ-
ation. The double bond has the effect of providing struc-
tural rigidity to the loop.
Sites spanned in perturbation areas of Ub2

6–20

20–39

40–60

61–76
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Module 2
From Figure 2, the core of Module 2 is composed of three
interlacing Type II branches 5 to 7, made up of attribute
clusters from sites 29 to 43. An examination of the clusters
for each branch reveals that the sites in each of the three
clusters straddle sites in the other two. For this reason,
these three branches appear to form a very stable, interlock-
ing structural unit. The high internal structural stability pre-
dicted by the Type II branches may explain why, in earlier
work by Varadan et al. [40,41], the area spanned by module
2 was observed to demonstrate significantly lower chemical
shift perturbations than those observed in the areas
spanned by the other three modules. It is often the case that
sites within a cluster, though separated in the primary struc-
ture of sequence, may have members that are close once
folding has occurred and may actually be bonded to each
other. Sites 37 and 40 in cluster (7) are an example of this
common occurrence. The 1UBQ model also provides a
clear interpretation for cluster (5), by revealing the van der
Waals relationship within the cluster between sites 30 and
41.

Module 3
The unique feature of this module stands out in the
cluster tree (Figure 2) as it reveals its relative independ-
ence from the other modules. This leads to a prediction
that the branches in module 3 may fold into a stable
sub-domain first, and then the entire sub-domain folds
into the already folded module A to form module B. It is
also notable that module 3 has a very close correspond-
ence to the previously discovered third perturbation area
shown in Table 4 [40,41].

Module 4
Recent work involving ubiquitin unfolding kinetics using
hydrogen/deuterium exchange methods correlates with the
results found here [46,47]. For example, the B5 strand,
represented by module 4, appears to unfold before the loop
and helix represented by primary branch 10 in module 3.
This echoes what the cluster tree reveals regarding the in-
dependence of module 4. The cluster tree method demon-
strated here may work very well in conjunction with
unfolding studies in revealing details of protein folding.

Transthyretin results
Transthyretin (TTR) is a homotetramer composed of a
dimer of dimers. The tetramer contains a solvent chan-
nel within which is a binding pocket for two thyroxine
molecules. Each dimer interface includes sites 114 to
120, forming an 8-strand, anti-parallel β-sheet, which
constitutes the wall of the solvent channel. TTR is often
found in complex with Retinol Binding Protein (RBP).
At the center of this interface for human TTR are sites
20, 81, and 84 [48]. There are some TTR variants that
result in amyloid formation. Two of the most common
forms are Val30Met and Leu55Pro variants, both of
which produce amyloidosis [49].
A multiple sequence alignment consisting of a total of

465 non-redundant sequences for the TTR family [50]
was downloaded from Pfam and computationally ana-
lyzed using the k-modes algorithm. A large number of
associated sites within the TTR alignment were discov-
ered. The clusters were then arranged into a cluster tree
as shown in Figure 5. The cluster tree for TTR shown in
Figure 5 is remarkably different from the cluster tree for
ubiquitin shown in Figure 2. Only three major branches,
labeled as 5, 6, and 7 in Figure 5, converge into nodes
forming a sub-domain module. This sub-domain module
forms the TTR dimer interface and is shown in
Figure 6B. Of the remaining, non-converging branches,
there are six short branches that only achieve a fifth- or
sixth-order cluster before terminating. These branches
are labeled in Figure 5. Each of these branches are com-
posed of hierarchically nested clusters, but only up to
the fifth- or sixth-order. At that point, they abruptly
end, rather than being absorbed into a higher order clus-
ter or node. This suggests that the clusters in these
branches play an important, but localized role in the
structure or function of TTR. As mentioned earlier, each
cluster within a nested hierarchical set is interesting to
examine. To gain some understanding into these short
branches, sample third-order clusters from branches A
to F were examined individually within the context of
the solved transthyretin structures available in the Pro-
tein Data Bank, pdb 2F7I, and pdb 1OO2 [51-54]. The
importance of cluster A3 is revealed by its location,
squarely at the TTR/RBP interface. This suggests that the
clusters forming branch A may be critical to successful
TTR/RBP binding. Cluster B3 straddles site 30, a site previ-
ously known to be highly sensitive to the proper folding of
TTR, as mentioned above. Cluster B3 and site 30 are
shown in Figure 6B. This suggests that cluster B3 is critical
to the proper folding of TTR. The Val30Met variant may
result in a failure in the formation of the β-sheet between
sites 29 and 44 which, in turn, results in a misfolded struc-
ture prone to the formation of amyloids. Clusters D3 and
E3, shown in Figure 6C, appear to be closely related in
structure and function. Both trios consist of one site at ei-
ther end of the channel β-sheet and one site at the centre,
in close proximity to the thyroxin molecule. It appears that
the two clusters play an important role in stabilizing that
region of the β-sheet for the purpose of providing the
proper structure for the thyroxin pocket. Cluster F4 is posi-
tioned at the dimer interface between the two TTR mono-
mers. Cluster C3 is at the tetramer interface between the
two dimers. All six clusters appear to be situated at key
locations within the homotetramer that are either structur-
ally important, or important for binding, or both.



Figure 5 TTR cluster tree. The above diagram shows clusters of mutually associated sites found within a multiple sequence alignment for
transthyretin, composed of 465 non-redundant sequences. It is remarkable that although some of the branches converge to a large node
forming a major module, many of the branches do not converge to large nodes. This suggests that much of Transthyretin lacks the structural
stability that comes with large nodes composed of many interdependent branches. This may provide insight as to why Transthyretin is
susceptible to misfolding.
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The overall cluster tree for TTR is remarkably different
from the ubiquitin cluster tree in that there are large
branches in TTR that do not converge into the rest of the
tree. This may suggest that TTR does not have the in-
ternal stability that ubiquitin has, and may be more prone
to misfolding. Further work on other proteins that are
prone to misfolding would be warranted here, to see if
non-converging cluster trees are characteristic of potential
instability. Those results would need to be compared with
the cluster trees for strongly stable proteins. An overview
of our results and predictions is provided in Table 3.

Conclusions
We have introduced here a powerful new approach for
analyzing the multiple sequence alignment data of protein
families and discovering key associations among aligned
sites and their importance within the 3D structure.
Using two proteins of known structure and function as
a test bench, our method revealed key associations
among residues and sites that appear to have important
structural and functional significance. It can, therefore,
be applied to protein families of unknown structure and
function. From our work, statistically analyzing the mul-
tiple aligned sequences for a protein family through the
pattern discovery method presented in this paper
revealed many key residue–residue contacts, as well as
the sub-domain structure of ubiquitin and TTR. When
the discovered attribute clusters were arranged accord-
ing to their order, cluster trees were constructed which
rendered further insights (dependent upon the hier-
archy) into how the protein may fold. With our site
clustering results, the secondary structure of ubiquitin
forms four modules, which are closely associated with the
four regions of perturbation in Lys-48 and Lys-63 linked
Ub2 previously reported. Two categories of cluster
branches, Types I and Type II, as we proposed, were dis-
covered that may render a more a detailed understanding
of how the protein folds. Furthermore, we observe that



Figure 6 Transthyretin subdomain module and clusters. (A) The structure for the complete tetramer (pdb 1002), composed of four
transthyretin monomers. (B) The sub-domain module, formed by three converging branches in the cluster tree (shown in light green in Figure 5)
is shown in red. This module forms the dimer interface. Cluster B3 is shown in magenta in (B). Its importance is indicated by the fact that it
straddles site 30, for which there is a well known val30met mutation that leads to misfolding and amyloidosis. This suggests that cluster B3,
consisting of sites 29, 30 and 44 (B), has a critical roll in achieving a stable folded 3D structure. (C) Clusters D3 (labeled in yellow) and E3 (labeled
in white) appear to be closely related. Each trio of mutually associated sites has remarkable symmetry, with one site at each end of the
homotetramer channel, and one site in the center of the thyroxin binding site. The two residues at each end of both trios is likely important for
the stabilization of the thyroxin pockets.
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three types of attribute clusters were identified by our
method, H-bonded, van der Waals, and extended clusters
associated with binding sites. Such observations give add-
itional insights into which associations of aligned sites
make key contributions to a protein’s structural stability.
Using the binding sites in the 1UBQ model and previ-
ous discoveries in the literature, we validate that the
discovered clusters have both structural and functional
significance. The TTR cluster diagram revealed further
secrets of its 3D structure. Six short, non-converging
branches were found, all of which contain clusters that
have important structural or functional significance.
Only one multi-branch sub-domain module was found
for TTR, associated with the interface between the two
monomers. The number of non-converging branches
into large modules, however, suggests that TTR may be
prone to instability when folding.
The method presented here, backed by previous work
with ubiquitin and TTR, suggests that granular computing
as a concept can make an important new framework for
revealing the relationship between low-order (three or
four residues) residue–residue contacts and the demarca-
tion of higher-order sub-domains, using a cluster tree.
This sub-molecular hierarchical view also identifies sites
within a protein that may be of particular structural or
functional importance in the design of new drugs, for ex-
ample. The ability to discover key residue–residue con-
tacts, branches, and larger structural sub-domains within
a protein through the k-modes analysis of the multiple se-
quence alignment will be a significant asset in understand-
ing the details in the sequence of protein folding,
structure, and functionality among different residue loca-
tions within a hierarchical global protein framework. Fur-
thermore, by discovering the important attribute clusters
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within a protein, predictions can also be made as to which
mutations could be more harmful or more stable than
others. All these play an important role in furthering our
understanding of the information processing capability of
genes and proteins, in terms of the specific use of func-
tional units at specific locations on the sequence to create
the 3D structure as well as the internal and external func-
tionality of the molecules.

Methods
The ubiquitin protein family was chosen as a suitable
workbench to test our method for three reasons. First,
the number of samples is reasonably large, numbering a
few thousand, permitting a meaningful statistical ana-
lysis. Second, the structure of ubiquitin is well known
and a 3D model is available from the Protein Database
[38]. The available 1UBQ 3D model permitted us to
compare the results and analyze their implication in
terms of their structure and folding. Finally, there is con-
siderable knowledge of the functions of ubiquitin, the
most well known of which is the labeling of proteins for
destruction within the cells of eukaryotic life [39,55].
In our experiment, an aligned set of 2,442 sequences

for ubiquitin was downloaded from the Pfam database
[56]. The data were then computationally post processed
to retain columns less than 20% gapped. After the inser-
tions and duplicate sequences were removed, the num-
ber of unique sequences remaining was 1,066 and the
number of aligned sites remaining was 69. The align-
ment did not include the first 5 sites that were missing
from the Pfam alignment at the time we performed our
analyses. These 69 sites represented sites 6–74 of the
ubiquitin primary structure using the 1UBQ 3Dmodel
from the protein data base [38].
At the onset of our experiment, the pre-processed data,

consisting of 1,066 aligned, unique sequences was then ana-
lyzed using the k-modes algorithm for discovering clusters
of attributes (sites) within the primary structure of ubiqui-
tin. The data were also analyzed to compute the SR(mode)
value for each cluster.
The first step in analyzing the results was to manually ar-

range the clusters into a cluster tree as described earlier in
the Section “Attribute clusters and information granules”.
Branches containing the lowest-order clusters are denoted
as primary branches and are numbered from 1 to 14 across
the top of Figure 2. Within a nested hierarchical set of clus-
ters, each cluster will be informative to examine; there is no
official representative cluster. One way of choosing a repre-
sentative cluster is to pick out clusters that have higher mu-
tual interdependency than others, indicated by a high SR
(mode) for the cluster. For the ubiquitin family only, this
method was chosen, although any other cluster could have
been picked as a representative cluster for a particular
branch. The first step was to compute the SR(mode) value
for each cluster in the primary branch. The cluster in each
branch with the highest SR(mode) value was chosen as the
representative cluster, since it had the highest mutual inter-
dependency. If two clusters in the same branch had similar
values for SR(mode) the cluster with the higher order was
selected, since the higher-order cluster would contain more
sites and, thus, be more informative and interesting. For
the same reason, if a higher-order cluster in the branch had
a SR(mode) value that was only slightly lower than the
highest SR(mode) value of another, lower-order cluster, the
higher-order cluster instead was chosen as the representa-
tive cluster for that primary branch. For consistency, a cer-
tain percentage difference can be chosen as the cutoff.
These representative clusters, each composed of two or
more sites with a high interdependence as indicated by the
SR(mode) value, were then computationally analyzed to de-
termine what patterns (associations of specific amino acids
within the sites spanned by the attribute cluster) were con-
tained within each representative cluster. The residual of
each of the patterns was also computed. The discovered at-
tribute clusters of ubiquitin were examined in terms of
their relevance to the 3D structure using the 1UBQ model.
They were also analyzed for function as described in the lit-
erature. Statistically significant patterns were computation-
ally discovered by searching for amino acid combinations
that had an adjusted residual value greater than 3.29, which
corresponds to a confidence level greater than 99.9%. A
multiple sequence alignment for TTR, downloaded from
Pfam [50], was also analyzed using the same procedure out-
lined above for ubiquitin with the exception as to how the
representative clusters were chosen. Since all clusters are
statistically significant, any cluster can be chosen as a sam-
ple cluster. For TTR, we chose the third-order clusters as
the sample clusters. Since the criterion was different for
TTR, they were referred to as sample clusters rather than
representative clusters. Ideally, if time and resources per-
mit, all clusters should be examined to more fully under-
stand their significance.
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