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Abstract

Background: In genome-wide association studies, it is widely accepted that multilocus methods are more
powerful than testing single-nucleotide polymorphisms (SNPs) one at a time. Among statistical approaches
considering many predictors simultaneously, scan statistics are an effective tool for detecting susceptibility genomic
regions and mapping disease genes. In this study, inspired by the idea of scan statistics, we propose a novel
sliding window-based method for identifying a parsimonious subset of contiguous SNPs that best predict disease
status.

Results: Within each sliding window, we apply a forward model selection procedure using generalized ridge
logistic regression for model fitness in each step. In power simulations, we compare the performance of our
method with that of five other methods in current use. Averaging power over all the conditions considered, our
method dominates the others. We also present two published datasets where our method is useful in causal SNP
identification.

Conclusions: Our method can automatically combine genetic information in local genomic regions and allow for
linkage disequilibrium between SNPs. It can overcome some defects of the scan statistics approach and will be
very promising in genome-wide case-control association studies.

Background
In genome-wide association studies (GWAS), it is gener-
ally accepted that multilocus methods can obtain better
power than single-locus approaches that test only one
single-nucleotide polymorphism (SNP) at a time [1-3].
Among a large number of mathematical and statistical
approaches considering many predictors simultaneously,
scan statistics [4] serve as a useful multilocus analytical
means for combining genetic information on multiple
contiguous SNPs. In this method, the whole genome is
scanned by a sliding window with estimated size, and
the moving sum for each window is computed as the
sum of suitable single-locus statistics. Then the scan sta-
tistic, defined as the largest moving sum, is calculated
and its associated empirical p-value is evaluated by per-
mutation tests.
Despite its remarkable advantages, the scan statistics

method has two drawbacks that can restrict its practical

use: (I) linkage disequilibrium (LD) within local genomic
regions is not taken into account, which can result in an
inflated type I error rate; (II) all contiguous SNPs within
a genomic region (window) are selected simultaneously,
which can bring excess noise and increase the false dis-
covery rate (FDR).
During the last decade, various advances based on the

framework of scan statistics have been developed. Zaykin
et al. [5], Dudbridge et al. [6], and Yang et al. [7] pro-
posed more effective and powerful test statistics within
each sliding window and improved the sensitivity of scan
statistics; Sun et al. [8] took into account the complex
distribution of human genomic variation in the detection
of causal chromosomal regions; Browning [9] and Li et
al. [10] proposed a variable-sized sliding-window method
based on Markov chain and regularized regression analy-
sis. In their method, there is no need to specify a window
size for haplotype tests, which makes it particularly useful
in the investigation of association studies.
In this study, we propose a novel sliding window-

based multilocus method for identifying a subset of sus-
ceptibility SNPs based on forward variable selection,
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using generalized ridge logistic regression (GRLR) for
model fitness at each step. As a broader and generalized
form of ridge logistic regression, GRLR can take advan-
tage of prior information between any pair of SNPs and
impose proper shrinkage penalty on each SNP within
the genomic region of interest. Our method can auto-
matically combine genetic information within local
regions and select a subset of SNPs that best predict dis-
ease status, whose associated empirical significance level
is assessed by permutation tests. We demonstrate by
simulations and analysis of two published datasets that
our method is highly informative and promising.

Methods
Generalized ridge logistic regression
Logistic regression (LR) is a common statistical method
for looking into the dependency of a binomial response on
a number of variables (predictors), whose general form is:

log
(

pi

1 − pi

)
= β0 + xT

i β1, i = 1, 2, . . . , n,

where the m-dimensional vector xi represents the ith
observation and pi is the probability of observing the ith
outcome yi = 1. The regression coefficients parameter

β =
(
β0, βT

1

)T can be estimated by maximizing the fol-

lowing log likelihood:

LLR (β) =
n∑

i=1

[
yilog(pi

)

+
(
1 − yi

)
log

(
1 − pi

)
.

Although logistic regression is very popular in case-
control association analysis, it suffers from several short-
comings. If the number of SNPs in the regression model
is larger than the number of observations, this method
fails [1]. Moreover, with a large number of SNPs in the
regression model, predictors can be highly correlated
(high linkage disequilibrium), which can lead to further
degradation of the model [11]. With the use of quadratic
(L2) penalization, ridge logistic regression (RLR) [12] can
overcome these disadvantages of logistic regression and
increase the stability of model fitness. This method has
recently been applied successfully in several biological
investigations including accommodating linkage disequi-
librium [13] and uncovering gene-gene interactions [11].
For the analysis discussed below, we consider general-

ized ridge logistic regression (GRLR), a broader and gen-
eralized form of ridge logistic regression, which amounts
to maximizing the following penalized log likelihood:

LGRLR(β ; λ, P) =
∑n

i=1
[yi log(pi)

+(1 − yi) log(1 − pi)] − 1
2λβ1

TPβ1,

Where p is a nonnegative definite penalty matrix and
l is a positive scale constant, that is, a tuning parameter,
which can be specified by cross-validation. The regres-
sion coefficients in the model are estimated using the
Newton-Raphson iterative algorithm. The effective
degrees of freedom and the variance of the coefficients
can be approximated by estimators introduced in [14].
Then the Wald test can be applied to assign p-values to
the regression coefficients.
Due to the feature of quadratic penalization that none

of the coefficient estimators would be equal to zero in
the shrinkage, GRLR cannot serve as an independent
tool for model selection; however, the traditional for-
ward selection procedure can be utilized, with the use of
GRLR for model fitness in each round. In forward vari-
able selection, we start with no predictor in the model
and then add the one variable that leads to the best
score. We continue adding variables one at a time until
the score stops improving. In this study, we choose the
AIC (Akaike Information Criterion) [15] as the scoring
method in the variable selection procedure, which mea-
sures goodness of fit of a statistical model.
As a proof of concept, we assume a sample of M indi-

viduals genotyped at N SNPs. For each individual, the
three genotypes AA, AB, and BB on any given SNP are
denoted by 0, 1, and 2, respectively, where the B allele is
the minor allele, and an additive model is assumed. For
the phenotype, the disease-affected status is denoted by
1, while the disease-unaffected status is denoted by 0.
Let x be an N × M matrix containing the sample geno-
types, where N is the number of SNPs and M is the
number of individuals. Let y be an M-dimensional vec-
tor representing sample phenotypes. The procedure of
our method is described below, and an intuitive flow-
chart is displayed in Figure 1.
Initially, we compute the p-values P1, P2, ..., PN for all

the N SNPs, using logistic regression. For the ith SNP,
where i = 1, 2, ..., N, we construct a search region with
that SNP being in the center of the region. Let u and v
denote the sizes (i.e. the numbers of SNPs) before and
after this SNP, where u and v are always equal as long
as the search region is entirely located in a chromo-
some. The constructed search region with the ith SNP
as the central SNP is denoted by:

Gi(u, v) = {i − u, i − u + 1,

. . . , i, . . . , i + v − 1, i + v}.
To define the penalty matrix p in the GRLR model, we

use the physical position information between pairs of
SNPs in the search region, in order to impose different
weights on different SNPs based on their distances to
the center. The larger the distance between a SNP and
the center, the more penalties would be placed on it.
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Other weighting functions for pairwise SNPs can also be
implemented, such as the LD measurements D or r2. In
this study, we only consider physical position informa-
tion. Assume that the positions (base pairs) of SNPs in
the region Gi(u,v) are denoted by Wi(u, v) = {Di-u, Di - u

+ 1, ..., Di, ..., Di + v + 1, Di + v}. Then the nonnegative
definite penalty matrix p is defined by:

P = {diag[
√

Di−u − Di,
√

Di−u+1 − Di, . . . , 0,

. . . ,
√

Di+ν−1 − Di,
√

Di+ν − Di]}
/
∑i+ν

j=i−u

√
Dj − Di.

To avoid introducing excess noise, we do not use the
information from all SNPs in each search region, because
those with single-locus p-values too large (i.e. marginal

effects too low) may contribute little to the power. To do
this, we denote t as the p-value truncation threshold, and
those SNPs with single-locus p-values larger than t will
be excluded from the search region. In practical applica-
tions, the threshold t may be set somewhere from 0.05 to
0.10. After the truncation on Gi(u,v), the adjusted search
region is denoted by Ti(u,v).
With the above configuration, we apply forward selec-

tion to each search region Ti(u,v), using GRLR for
model fitting in each step. Denote Bi(u,v) as the current
best subset of SNPs for each step of the model selection
procedure, which is empty at the beginning. We start by
fitting the GRLR model using the central SNP (i.e. the
ith SNP) as the only predictor, and calculating the cor-
responding AIC. Then we remove the central SNP from
the search region, Ti(u,v), and add it to Bi(u,v). Next,

Central SNP

Upper u SNPs

Lower v SNPs

STEP 2: Truncation

Truncated

Truncated

STEP 3:Model Selection

Fit the GRLR model

only using the

central SNP and

compute the AIC;

e.g. AIC = 126

Fit the GRLR model

using the central

SNP, and another

SNP that can

minimize the AIC;

e.g. AIC =120

Fit the GRLR model

using the current

two SNPs, and

another SNP that

can minimize the

current AIC; e.g.

AIC =118

STEP 4: Calculate P value

The current AIC cannot be reduced.

Calculate the p value for the final

model fitness (three SNPs are

selected in this search region).

STEP 1: Construct search region

Consider the

next region

Figure 1 Summary of steps in GRLR method. Step 1: Construct search region; Step 2: SNP truncation; Step 3: Apply forward selection to the
region, fitting the GRLR model in each iteration; Step 4: Calculate the p-value for final model and switch to next region.
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the remaining SNPs in Ti(u,v) are entered into the
GRLR model one by one, along with the SNPs in Bi(u,v)
as predictors. We select the one SNP which can reduce
the original AIC most. Then we add it to Bi(u,v),
remove it from Ti(u,v), and update the current AIC. We
repeat this procedure until none of the remaining SNPs
in Ti(u,v) can decrease the current AIC. Finally we
investigate the last model and calculate the correspond-
ing p-value P{Ei} for the model fitness, where the subset
Ei stands for the selected SNPs in this search region.
Considering all the search regions over the whole gen-

ome, our test statistic is defined as the minimum of all
P{Ei}s. To assign a global empirical p-value for the
selected subset of SNPs, we use L permutations by ran-
domly switching the case-control labels in the observed
dataset. Considering the computational burden, we can
construct search regions of interest using the top S
SNPs whose p-values are smallest among all the p-
values computed by the logistic regression. An alterna-
tive is to pre-define another truncation threshold and
exclude the SNPs whose p-values exceed the threshold.

Simulations
We apply our method to simulated data and compare its
performance with that of five other methods in current
use. For each replication, we generate a susceptibility
genomic region with 21 SNPs (consisting of the central
SNP, the upper u = 10 SNPs, and the lower v = 10
SNPs) under two scenarios. In Scenario (A), two SNPs
within the region are disease-causing, while in Scenario
(B), three SNPs are disease-causing. In both scenarios,
one causal SNP is located at the center of genomic
region while other causal SNPs are randomly located.
We generate 100 independent individuals (50 cases and
50 controls), using the following logistic regression
model:

log
(

pi

1 − pi

)
= β0 + â1xi1+

. . . + âkxik, i = 1, 2, . . . , n.

In this model, the predictor xij refers to the genotype
of the ith individual at the jth causal SNP, where geno-
types AA, AB, and BB are coded by 0, 1, and 2, respec-
tively, assuming the B allele is the minor allele. In
Scenario (A), k (the number of causal SNPs) equals 2,
while in Scenario (B), k equals 3. The intercept bo is
determined by requiring a disease prevalence of 0.05;
other regression coefficients bj are set to 1.0.
Assume that each SNP within the region is derived

from a multivariate normal distribution, and the var-
iance-covariance matrix Σ is defined by: Σpq = 1, when p
= q; Σpq = r, when |p - q| ≤ 5; Σpq = 0, otherwise. The

correlation coefficient r can be varied in simulations.
For each SNP, we determine its genotype by its corre-
sponding value generated from a multivariate normal
distribution. If the value falls into the interval (-∞,
qnorm((1 - f)2)), the genotype of this SNP is set to AA;
if the value falls into the interval (qnorm(1 - f 2), + ∞),
the genotype of this SNP is set to BB; otherwise, the
genotype of this SNP is set to AB. Here, f is the fre-
quency of the B allele (i.e. minor allele frequency) and
the function “qnorm” computes the quartile of standard
normal distribution.

Results
Power calculations
We compare the performance of our method (GRLR)
with that of logistic regression (LR), Fisher product
method (FPM) [16], truncated product method (TPM)
[5], lasso logistic regression (Lasso) [10,17,18] and elastic
net (Enet) [19,20]. FPM uses a sliding window with fixed
size to scan the genomic region, and for each window, it
computes the sum of the logarithm of each p-value.
Then the test statistic is defined as the minimum value
over all windows. TPM is similar to FPM but it focuses
on the p-values that are no more than a pre-fixed trun-
cation threshold. In this simulation study, the truncation
threshold for TPM method is set to 0.05 and the win-
dow size is set to 5 in both FPM and TPM methods.
For the Lasso and Enet methods, all SNPs in the search
region are entered into regression models and subsets of
SNPs are selected. The tuning parameters in both meth-
ods are determined by cross-validation. For the GRLR
method, the truncation threshold is also set to 0.05 and
the tuning parameter l is set to 1. We mimic the physi-
cal distances between different SNPs by constructing a
simple mapping function that the position of the bth

SNP in the genomic region is set to b.
For each combination of these parameters, with minor

allele frequencies f = 0.1, 0.3, or 0.5 and correlation
coefficients r = 0.0, or 0.2, we carry out 500 replications
and assess the power of various methods under both
scenarios. To ensure that the type I error rate of each
method is equal to 0.05, we utilize the following control
procedure: for the FPM, TPM, and GRLR methods, 500
permutations are applied in each simulated replication.
For the Lasso and Enet methods, since they often
include extra terms and tend to have a high type I error
rate [21,22], we apply 10 times ten-fold cross-validations
for each generated replication. For each selected SNP in
the observed data, its consistency is defined as the num-
ber of times that it occurs in 100 sub-datasets that con-
tain 90 percent of observations. The consistency
thresholds are determined under the null hypothesis to
ensure the normal type I error rates.
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For power considerations, the testing “success” can be
defined by different strategies:
Scenario (A) (two causal SNPs)

• Strategy I: at least one of the two SNPs is detected
• Strategy II: both SNPs are detected

Scenario (B) (three causal SNPs)
• Strategy I: at least one of the three SNPs is
detected
• Strategy II: at least two of the three SNPs are
detected
• Strategy III: all three SNPs are detected

Tables 1 and 2 show the results of power simulations
for the six methods under the conditions of Scenario (A)
and Scenario (B), respectively. Considering all 30 condi-
tions in the results, the averaged power for the six meth-
ods LR, FPM, TPM, Lasso, Enet, and GRLR, are equal to
0.373, 0.400, 0.394, 0.498, 0.539, and 0.558, respectively.
Our GRLR method is the overall winner and Enet is sec-
ond, being slightly less powerful than our method. Lasso
performs worse than GRLR and Enet, but clearly outper-
forms the remaining three methods. FPM and TPM have
quite similar power results, and LR ranks last. It is inter-
esting to note that our GRLR method works very well
under Strategies II and III, which indicates that our
method is especially powerful in uncovering all causal
SNPs within a given genomic region.
In our GRLR method, arbitrary choices of the trunca-

tion threshold and the size of the sliding window may
become a potential problem. Thus we investigate the
impact of different truncation thresholds t = 0.05 or

0.10, and different sizes of regions 11, 21, or 41 (i.e. u =
5, 10, or 20). We focus on Scenario (B) (three causal
SNPs), and set the minor allele frequency to 0.5. Results
are shown in Figure 2, where we can see that the power
fluctuation caused by different choices of the two para-
meters is not large. It indicates that our method is not
very sensitive to the choice of truncation threshold and
the size of the sliding window.
We conducted additional simulations to test the per-

formance of our method conditional on various choices
of the tuning parameter l. We consider Scenario (A)
(two causal SNPs) and apply two definitions of testing
success, Strategy I (requiring that at least one of the two
SNPs is significant) and Strategy II (requiring signifi-
cance at both SNPs). The correlation coefficient and the
minor allele frequency are set to 0.0 and 0.30, respec-
tively. The number of replication runs is 500 for all
simulations. Results show that, when the tuning para-
meter l equals 0.01, 0.1, 1.0, 10, and 100, the power of
our proposed method under Strategy I equals 0.678,
0.650, 0.650, 0.640, and 0.672, respectively, while the
power under Strategy II equals 0.600, 0.560, 0.558,
0.548, and 0.574, respectively. We can see that the
power fluctuation caused by different values of l is not
large. It indicates that our method is not very sensitive
to the selection of the tuning parameter, although it is
unknown which selection can lead to the best result.

Table 1 Power calculation under Scenario (A)

Strategy Corr MAF Method

LR FPM TPM Lasso Enet GRLR

I 0.0 0.10 0.196 0.206 0.198 0.210 0.226 0.196

0.30 0.638 0.620 0.602 0.688 0.670 0.650

0.50 0.792 0.734 0.730 0.790 0.828 0.826

0.2 0.10 0.184 0.216 0.194 0.194 0.204 0.206

0.30 0.712 0.642 0.622 0.690 0.726 0.704

0.50 0.860 0.794 0.788 0.902 0.888 0.870

II 0.0 0.10 0.008 0.078 0.070 0.032 0.052 0.124

0.30 0.122 0.266 0.252 0.340 0.392 0.558

0.50 0.354 0.304 0.306 0.526 0.624 0.768

0.2 0.10 0.018 0.088 0.064 0.066 0.078 0.126

0.30 0.202 0.296 0.300 0.364 0.458 0.608

0.50 0.400 0.370 0.360 0.628 0.690 0.806

Results of power simulations for six methods under Scenario (A) (two causal
SNPs). Two definitions of testing success, Strategy I (requiring that at least one
of the two SNPs is significant) and Strategy II (requiring significance at both
SNPs), are applied in comparisons; The number of replication runs is 500 for
all the simulations. Corr = correlation coefficient; MAF = minor allele
frequency.

Table 2 Power calculation under Scenario (B)

Strategy Corr MAF Method

LR FPM TPM Lasso Enet GRLR

I 0.0 0.10 0.302 0.346 0.320 0.330 0.388 0.310

0.30 0.740 0.716 0.732 0.826 0.832 0.696

0.50 0.906 0.888 0.900 0.932 0.940 0.872

0.2 0.10 0.342 0.422 0.422 0.436 0.404 0.368

0.30 0.814 0.846 0.832 0.838 0.854 0.784

0.50 0.948 0.942 0.946 0.960 0.966 0.900

II 0.0 0.10 0.040 0.200 0.180 0.158 0.202 0.270

0.30 0.280 0.478 0.490 0.630 0.704 0.680

0.50 0.544 0.622 0.612 0.804 0.862 0.856

0.2 0.10 0.058 0.256 0.264 0.210 0.238 0.314

0.30 0.440 0.580 0.582 0.646 0.730 0.758

0.50 0.700 0.672 0.678 0.858 0.914 0.890

III 0.0 0.10 0.002 0.022 0.016 0.044 0.066 0.100

0.30 0.030 0.082 0.066 0.340 0.434 0.460

0.50 0.140 0.084 0.076 0.558 0.640 0.656

0.2 0.10 0.004 0.056 0.050 0.062 0.080 0.122

0.30 0.124 0.088 0.090 0.324 0.422 0.490

0.50 0.292 0.094 0.092 0.550 0.672 0.704

Results of power simulations for six methods under Scenario (B) (three causal
SNPs). Three definitions of testing success, Strategy I (requiring that at least one
of the three SNPs is significant), Strategy II (requiring that at least two of the
three SNPs are significant), and Strategy III (requiring significance at all three
SNPs), are applied in comparisons; The number of replication runs is 500 for all
the simulations. Corr = correlation coefficient; MAF = minor allele frequency.
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We further compared the performance of single-locus
logistic regression and our proposed method by increas-
ing the total number of SNPs in each simulated window
to 200 and the number of causal SNPs to 10. For ease of
calculation, only 100 permutations were applied in each
of 200 replication runs. Simulation results show that, for
logistic regression method, the proportion of times that it
can successfully detect at least one causal SNP is 0.465,
while the proportion of times that it can detect at least
two causal SNPs is only 0.110; for our GRLR method, the
proportion of times that it can successfully detect at least
one causal SNP is 0.455, while the proportion of times
that it can detect at least two casual SNPs is 0.445. These
results indicate that our method is more powerful in dis-
covering multiple disease variants.

Analyzing published data
To further demonstrate our GRLR method and evalu-
ate its practical applications in real dataset analysis,

we apply it to two published genome-wide datasets:
(1) a case-control dataset for heroin addiction [23]
with approximately 10,000 SNPs and 200 individuals
(100 cases and 100 controls), and (2) a case-control
dataset for age-related macular degeneration (AMD)
collected in Hong Kong [24,25] with approximately
100,000 SNPs and 223 individuals (96 cases and 127
controls).
For the heroin addiction data, we initially apply logis-

tic regression on all the SNPs using the whole-genome
data analysis toolset PLINK [26]. Table 3 shows the ori-
ginal p-values of the top 10 SNPs, as well as the
adjusted p-values after applying the Bonferroni correc-
tion and 1000 permutations. From the result, none of
the SNPs are statistically significant at threshold a =
0.05 after multiple test correction. To apply our GRLR
method to the dataset, we construct genomic search
regions based on the SNPs whose single-locus p-values
are no larger than 0.05; the truncation threshold within
each search region is also set to 0.05; the size on each
side of the central SNP is set to 10; the tuning para-
meter l in the GRLR model is set to 1.0. We use 1000
permutations to assign empirical p-values for the
selected subset of SNPs. A summary of the analysis
results is shown in Table 4, where the identified subset
{rs1408830, rs965972} is statistically significant with a
global empirical p-value of 0.027. It is interesting to
note that using logistic regression or other single-locus
methods, p-values for the two SNPs are 2.23 × 10-04 and
5.06 × 10-03, neither of which is statistically significant
at a = 0.05 after multiple testing corrections. In con-
trast, our method automatically combines the associa-
tion information of the two SNPs and leads to a
significant result.
For the AMD Hong Kong data, after applying logistic

regression, only the SNP rs10490924 is statistically
significant, whose functional significance had been
established experimentally [24]. Table 5 shows the

Figure 2 Impact of different thresholds on power. The effects of
different truncation thresholds t = 0.05 or 0.10, and different sizes of
regions 11, 21, or 41 (i.e. u = 5, 10, or 20) on power (y-axis). Only
Scenario (B) (three causal SNPs) is considered, and the minor allele
frequency is set to 0.50.

Table 3 Results for heroin addiction data using logistic regression

Rank Chr SNP rs# Bp Position Odds Ratio Original P-value Bonferroni Correction Empirical P-value

1 1 rs1408830 189929064 2.36 2.23E-04 1.0000 0.573

2 20 rs720010 7174248 2.04 4.20E-04 1.0000 0.841

3 13 rs950064 58410147 2.23 4.44E-04 1.0000 0.866

4 13 rs2016056 58410016 2.26 4.54E-04 1.0000 0.876

5 4 rs951299 99955054 0.48 6.68E-04 1.0000 0.955

6 11 rs1381784 42426136 2.33 8.68E-04 1.0000 0.984

7 5 rs2421057 158958294 2.19 8.70E-04 1.0000 0.984

8 17 rs1714984 12558426 2.26 9.37E-04 1.0000 0.986

9 9 rs3866796 15340199 0.50 9.48E-04 1.0000 0.986

10 4 rs1986513 126424833 0.17 1.34E-03 1.0000 0.998

Analysis results for the published dataset on heroin addiction using logistic regression. Odds ratios, original p-values, p-values after Bonferroni correction, and
empirical p-values (derived from 1000 permutations) of the top 10 SNPs are listed.
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original p-values of the top 10 SNPs, as well as adjusted
p-values for multiple testing corrections. For our GRLR
method, we construct search regions based on the SNPs
whose single-locus p-values are no larger than 0.01.
Other parameter configurations are the same as those
applied in the first dataset. A summary of the results is
shown in Table 4. Our method shows that the identified
subset {rs2736911, rs10490924, rs763720} is statistically
significant with an empirical p-value of 0 (evaluated by
1000 permutations). Based on this estimate, the 95%
confidence interval for p extends from 0 through 0.003,
which is considerably smaller than the published p-value
of 0.027 (Table 4).

Discussion
Our method has the following advantages: (I) GRLR
automatically combines association information of SNPs
within each sliding window, and by truncating SNPs
with low marginal effects and penalizing SNPs with a
large distance from the center, our method can exclude
excess noise and allow for linkage disequilibrium in
local genomic regions; (II) we apply a forward model
selection framework and fit the GRLR model at each
step, since GRLR cannot serve as a means for variable
selection. The results of power simulation and real data-
sets analysis indicate that this procedure works very
well; (III) the global empirical p-value for the selected
subset of SNPs is evaluated by permutation analysis,
which properly handles the multiple testing problem
and furnishes a valid type I error rate.

There are still some aspects in our GRLR method that
can be improved in future work: (I) we do not consider
the selection of the tuning parameter l in this study.
Cross-validation is an important tool for determining
the tuning parameters in penalized regression
approaches. It would be reasonable to determine l by
cross-validation, although it would introduce a higher
computational burden; (II) the choices of window size
and the truncation threshold in our method are arbi-
trary, which may reduce the stability of our method.
Although simulation results show that the impact of
these parameters on power is not large, a variable-size
sliding-window procedure could be a better choice.
Another way is to allow for the free variability of these
parameters and then determine the best ones by permu-
tations; (III) the Lasso and Enet methods can perform
better than our proposed method in high-dimensional
model selection, since they can deal with multiple vari-
ables simultaneously. In this case, the introduction of a
truncation threshold is not quite necessary for the appli-
cations of these two methods. For power comparisons,
however, we wanted to apply the same preselection pro-
cedure and the same truncation threshold to the Lasso
and Enet methods. It is of our interest to investigate
this further in future work; (IV) it is ideal to apply our
region construction procedure to all SNPs. In this study,
the search regions are constructed based on the SNPs
whose marginal p-values do not exceed some pre-
defined threshold; (V) it is of our interest to use the LD
measurements or the combination of the LD and the

Table 4 Results for both datasets using GRLR

Dataset Chr Selected Subset of SNPs Test Statistic Empirical P-value

heroin addiction 1 {rs1408830, rs965972} 1.26 × 10-07 0.027

AMD HK 10 {rs2736911, rs10490924, rs763720} 1.32 × 10-11 0.000

Analysis results for two published datasets using our GRLR method. Genomic search regions are constructed based on the SNPs whose single-locus p-values are
no larger than a fixed threshold 0.05 for the heroin addiction data, and 0.01 for the AMD Hong Kong data; the truncation threshold within each search region is
set to 0.05; the maximal length on each side of the central SNP is set to 10; the tuning parameter l in GRLR model is set to 1.0. Empirical p-values are derived
from 1000 permutations.

Table 5 Results for AMD Hong Kong data using logistic regression

Rank Chr SNP rs# Bp Position Odds Ratio Original P-value Bonferroni Correction Empirical P-value

1 10 rs10490924 124204438 0.26 1.25E-09 0.0001 0.001

2 8 rs10504152 54292668 0.18 5.45E-06 0.4428 0.062

3 7 rs10499342 4340896 0.36 3.88E-05 1.0000 0.550

4 13 rs2011847 69496879 0.42 5.86E-05 1.0000 0.738

5 8 rs1377131 53838124 3.09 7.49E-05 1.0000 0.836

6 4 rs10520462 182400252 3.21 8.73E-05 1.0000 0.888

7 1 rs1564485 53333649 0.41 1.10E-04 1.0000 0.940

8 5 rs10521010 33931083 3.03 1.17E-04 1.0000 0.943

9 5 rs251610 65314237 0.45 1.55E-04 1.0000 0.980

10 20 rs1858597 95685 0.42 1.66E-04 1.0000 0.987

Analysis results for the published dataset on AMD Hong Kong using logistic regression. Odds ratios, original p-values, p-values after Bonferroni correction, and
empirical p-values (derived from 1000 permutations) of the top 10 SNPs are listed.

Liu et al. BMC Bioinformatics 2011, 12:384
http://www.biomedcentral.com/1471-2105/12/384
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physical distance information in constructing the
weights for SNPs.

Conclusions
In this study, we propose a new sliding window-based
multilocus approach for detecting causal SNPs, which is
based on forward model selection using generalized
ridge logistic regression (GRLR) for model fitness at
each step. Our method can overcome some defects of
the scan statistics approach and provides a powerful
procedure for identifying causal genomic region and
mapping susceptibility genes in routine case-control
association studies. In particular, because of its capabil-
ity of automatically combining association information
of multiple SNPs and its advantage on variable selection,
our method can be a useful technique in the analyses of
human complex diseases. Our software (available by
request) is written in R [27], with the use of the Design
Package [28] and glmnet Package [29].
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