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Introduction: Hypoxia induces dilatation of the umbilical vein by releasing autocoids from endothelium;
prostaglandins (PGs), adenosine and nitric oxide (NO) have been implicated. ATP is vasoactive, thus we
tested whether hypoxia releases ATP from primary Human Umbilical Vein Endothelial Cells (HUVEC).
Methods: HUVEC were grown on inserts under no-flow conditions. ATP was assayed by luciferineluci-
ferase and visualised by quinacrine labeling. Intracellular Ca2þ ([Ca2þ]i) was imaged with Fura-2.
Results: ATP release occurred constitutively and was increased by hypoxia (PO2: 150e8 mmHg), ~10-fold
more from apical, than basolateral surface. Constitutive ATP release was decreased, while hypoxia-
induced release was abolished by brefeldin or monensin A, inhibitors of vesicular transport, and
LY294002 or Y27632, inhibitors of phosphoinositide 3-kinases (PI3K) and Rho-associated protein kinase
(ROCK). ATP release was unaffected by NO donor, but increased by calcium ionophore, by >60-fold from
apical, but <25% from basolateral surface. Hypoxia induced a small increase in [Ca2þ]i compared with ATP
(10 mM); hypoxia inhibited the ATP response. Quinacrine-ATP fluorescent loci in the perinuclear space,
were diminished by hypoxia and monensin, whereas brefeldin A increased fluorescence intensity,
consistent with inhibition of anterograde transport.
Discussion.: Hypoxia within the physiological range releases ATP from HUVEC, particularly from apical/
adluminal surfaces by exocytosis, via an increase in [Ca2þ]i, PI3K and ROCK, independently of NO. We
propose that hypoxia releases ATP at concentrations sufficient to induce umbilical vein dilation via PGs
and NO and improve fetal blood flow, but curbs amplification of ATP release by autocrine actions of ATP,
so limiting its pro-inflammatory effects.
© 2015 The Authors. Published by Elsevier Ltd. This is an open access article under the CC BY-NC-ND

license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
1. Introduction

The umbilical vein, which is critically important in the delivery
of oxygen to the fetus, is regulated by autocoids, rather than
autonomic nerves [1]. At normal levels of oxygenation, it has
vasoconstrictor tone: falls in partial pressure of oxygen (PO2)
induce umbilical venous dilation, whereas rises in PO2 induce
vasoconstriction [2]. Hypoxia-induced dilation has been attributed
to endothelium-dependent release of NO and hyperoxia-induced
vasoconstriction, to endothelin [3]. Adenosine and ATP have also
been implicated. Adenosine is released from the placenta into
umbilical venous blood in anemia, hypoxia, growth retardation and
pre-eclampsia [4e6]. Moreover, hypoxia decreases adenosine up-
take via its endonucleoside transporter (ENT-1) in human umbilical
rshall).
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vein endothelial cells (HUVEC) [6]. Adenosine dilates umbilical vein
by stimulating A2A receptors to increase NO synthesis [7].

ATP is also released into placental circulation in normal preg-
nancy, while high ATP concentrations in pre-eclampsia are
considered a danger signal [5]. ATP is rapidly metabolised by
ectonucleotidases to adenosine, but ATP itself is vasoactive. ATP
evokes vasoconstriction in placenta via P2X receptors on vascular
smooth muscle, but induces vasodilation via P2Y receptors on
HUVEC, by increasing NO and PGI2 synthesis [8e10]. Further, the
balance of ATP, ADP and adenosine regulate platelet aggregation,
inflammation, immunity, and vascular proliferation, high concen-
trations of ATP being pro-inflammatory and immunostimulatory
[5,10e12]. It has been reported that ATP is released from endo-
thelial cells by hypoxia [1,4,5]. However, whilst hypoxia augmented
shear stress-stimulated ATP release from primary HUVEC, hypoxia
alone did not affect ATP release [13]. But, in that study, O2 was
decreased from 95 to 0%O2, which may well have masked the ef-
fects of hypoxia over the physiological range. Decreasing O2 from20
nder the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
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Fig. 1. Effect of hypoxia on ATP release from apical and basolateral surfaces of HUVEC. Columns show mean ± SEM; *, ***: hypoxia vs normoxia; P < 0.05, <0.01 respectively (n ¼ 9,
N ¼ 3 in each case; n: number of inserts, N: number of donors). Note different scales for ordinates.

W.K. Lim To et al. / Placenta 36 (2015) 759e766760
to 1% did release ATP from pulmonary artery vasa vasorum endo-
thelial cells (VVEC). However, these cells were obtained from
chronically hypoxic calves, cultured to passages 2e7 and growth
arrested [14]: they cannot be compared to normally proliferating
primary HUVEC. Further, in human endothelial cell lines, hypoxia
(2%O2) inhibited ATP release via connexion 43 (Cx43) hemi-
channels [15].

Thus, our primary hypothesis was that hypoxia over the physi-
ological range releases ATP from primary HUVEC, predominantly
from apical rather than basolateral surfaces; we considered this
would give maximum potential for ATP to influence blood cell
Fig. 2. Effect of pharmacological antagonists on constitutive and hypoxia-induced ATP relea
(A), and effects of PI3K and ROCK inhibition with LY294002 or Y27632 (B). In each case, ap
inhibitors shown in black and hatched columns respectively. All data are shown as % of c
P < 0.001 respectively, *, ***: vs normoxic or hypoxic control; P < 0.05, 0.01 respectively (n
interaction and vascular regulation. Since our results supported this
hypothesis, we hypothesised that hypoxia-induced release of ATP is
vesicular, given release of ATP from HUVEC by shear stress, and
hypoxia-induced release from VVEC were ascribed to exocytosis
[14e16]. However, ATP can be released by various transporters and
channels [17]. Notably, thrombin-induced ATP release from HUVEC
and hypoxia-induced ATP release from erythrocytes were attrib-
uted to pannexin channels, which are inhibited by NO [18e20]. But,
both NO and hypoxia increased adenosine release from endothelial
cells, whichwe attributed to NO out-competing O2 for their binding
site on cytochrome oxidase and decreasing ATP synthesis [21,22].
se from HUVEC. Effects of vesicular transport inhibition with brefeldin A or monensin
ical: left, basolateral: right. Hypoxia-induced ATP release in absence and presence of

onstitutive release in normoxia (mean ± SEM). x, xxx: hypoxia vs normoxia; P < 0.05,
¼ 18, N ¼ 6 in each case; n ¼ number of inserts, N: number of donors).



Fig. 3. Effect of Ca2þ ionophore A23187 (top) and NO donor (bottom) on ATP release from apical and basolateral surfaces of HUVEC in normoxia. Columns show mean ± SEM. *** vs
control; P < 0.01 (n ¼ 9, N ¼ 3; n ¼ number of inserts, N ¼ number of donors). Note different scales for ordinates showing apical (left) and basolateral (right) release of ATP.
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However, it could be that NO actually releases ATP, which is
metabolised extracellularly to adenosine. Thus, we hypothesised
that NO releases ATP from HUVEC.

2. Methods

Umbilical cords were obtained with informed consent (West Midlands-South
Birmingham NHS Regional Ethics Committee) from 25 normal, full-term pregnan-
cies, and isolated as described previously [23]. For a detailed account of method-
ology see on-line data Supplement.

2.1. ATP release

First passage HUVEC were seeded onto 24-well culture inserts, to allow differ-
entiation of release from apical and basolateral surfaces [24]. After monolayer for-
mation, they were incubated at 37 �C with 5% CO2 (normoxia), or 1% O2/5% CO2 in N2

(hypoxia) for 30 min. Medium was then removed from apical and basolateral
compartments for ATP assay by conventional luciferineluciferase assay.

To assess effects of vesicular transport inhibition, HUVECwere pre-incubated for
60 min with brefeldin A (20 mM), monensin (10 mM) or vehicle (1:1000 DMSO). The
roles of phosphoinositide 3-kinases (PI3K) or Rho-associated protein kinase (ROCK),
were assessed by using LY294002 (20 mM), or Y27632 (10 mM), that inhibit PI3K and
ROCK respectively [14,25,26]. To examine effects of increasing intracellular Ca2þ

concentration ([Ca2þ]i), or NO donor, medium was replaced with one containing
ionophore A23187 (10 mM), NO donor S-Nitroso-N-acetylpenicillamin (SNAP;
100 mM), or vehicle (1:1000 DMSO).

2.2. [Ca2þ]i imaging

HUVEC were loaded with Fura-2 AM (12.5 mM), placed in a sealed cuvette and
perfused with Krebs' at 37 �C bubbled with 95%air/5%CO2 (normoxia), or 95%N2/5%
CO2 (hypoxia): outflow PO2 was 147e153 and 7.6e9.9 mmHg respectively.

On an inverted microscope, Fura-2 AM was excited alternately at 340 and
380 nm and emissions captured at 510 nmwith a CCD camera. Imageswere analysed
offline to quantify changes in [Ca2þ]i. Initial experiments on single cells showed
calcium responses in different cells were synchronised, thus all cells within the area
of interest were analysed as one unit.

Dose-responses curves were obtained by adding 1, 10, 100, 300 or 1000 mM ATP.
In HUVEC from 6 donors we verified the [Ca2þ]i response to ATPwasmediated via P2
receptors, by challenging with ATP (10 mM) after suramin (100 mM). The effect of
hypoxia was tested by switching from normoxia to hypoxia for 4 min. The effect of
ATP (10 mM) in hypoxia was also tested.

2.3. ATP visualisation

HUVEC seeded on glass coverslips were incubated for 60 min at 37 �C with
quinacrine (0.5 mM)which labels ATP [16,27,28]. DAPI was applied to stain nuclei and
cells were examined with a confocal microscope.

HUVEC were incubated in either normoxia or hypoxia for 60 min and then
viewed with UV epi-illumination (excitation at 494 nm, emission captured at
518 nm) or bright field illumination. In addition, HUVEC were incubated in brefeldin
A (10 mM), monensin (100 mM), or vehicle (1:1000 DMSO) for 60 min, labeling with
quinacrine (30 mM) for a further 5 min. All comparisons were made between cells of
the same donor, at identical exposure time and gain settings.

2.4. Statistical analysis

Data are expressed as mean ± S.E.M. Comparisons were made by using Student's
unpaired t-test, or repeated measures ANOVA and post hoc Fisher PLSD tests were
used to compare effects of different pharmacological agents and their vehicle.
P < 0.05 was considered significant.

3. Results

3.1. Effect of hypoxia on ATP release from HUVEC

In normoxia, HUVEC constitutively released ATP from apical and
basolateral surfaces (P < 0.05 or 0.001: Fig. 1). Allowing for the



Fig. 4. Changes in [Ca2þ]i evoked in HUVEC by ATP in normoxia and acute hypoxia, and by hypoxia. Top: original recordings of [Ca2þ]i in HUVEC in response to ATP (10 mM) in
normoxia (A), ATP (10 mM) in normoxia vs hypoxia (B), hypoxia (C), note different scale for ordinate. Bottom: dose response relationship for ATP-induced increase in [Ca2þ]i relative
to that evoked by 100 mM ATP (A), mean change in [Ca2þ]i evoked by ATP (10 mM) in normoxia vs hypoxia (B), mean change in [Ca2þ]i evoked by hypoxia compared with that evoked
by ATP (10 mM, C). Columns show mean ± SEM (5 or 6 samples from 6 different donors in each case). ***: P < 0.01, ATP in normoxia vs ATP in hypoxia, or vs hypoxia.
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volume of apical and basolateral compartments (200; 700 ml
respectively), apical release was ~5-fold greater than basolateral
release. Hypoxia increased ATP release by ~6-fold and 3-fold from
apical and basolateral surfaces respectively, absolute amounts be-
ing ~10-fold greater from apical surface.

Vesicular transport inhibition with brefeldin A, or monensin
decreased constitutive release (P < 0.05) and abolished hypoxia-
induced release of ATP from apical and basolateral surfaces
(P < 0.05 or 0.001: Fig. 2A). Inhibition of PI3K and ROCK with
LY294002 or Y27632 did not affect constitutive ATP release, but
abolished hypoxia-induced ATP release fromboth surfaces (P< 0.05
or 0.001: Fig. 2B). Vehicle did not affect ATP release (data not
shown).

Ca2þ ionophore A23187 increased ATP release far more from
apical than basolateral surface (Fig. 3A). The NO donor SNAP did not
affect apical or basolateral release (Fig. 3B).
3.2. [Ca2þ]i imaging

ATP evoked a rapid increase in [Ca2þ]i in HUVEC, followed by a
sustained phase; the [Ca2þ]i elevation evoked by ATP was
concentration-dependent (Fig. 4A). After suramin, the [Ca2þ]i
response to ATP (10 mM), was slower and maximum [Ca2þ]i eleva-
tion was inhibited by 57.8 ± 5.8% (data not shown).

In hypoxia, the increase in [Ca2þ]i evoked by 10 mM ATP was
blunted relative to that evoked in normoxia (Fig. 4B). Hypoxia alone
caused a small, reversible increase in [Ca2þ]i that was repeatable;
this response was much smaller than that evoked by ATP (10 mM;
Fig. 4C).
3.3. Visualisation of ATP

Confocal imaging revealed a punctate pattern of ATP labeled
with quinacrine, clusters of highest fluorescencewere concentrated
in perinuclear space, but fluorescent loci also occurred at the cell
boundary. Images at 1.0 mm intervals in the z plane showed HUVEC
monolayers were ~4.0 mm thick; each fluorescent locus was
0.5e1.4 mm diameter (Fig. 5A).

Imaging by fluorescence and bright field microscopy confirmed
high intensity fluorescent loci, mainly in perinuclear space (Fig. 5B).
Real-time observation revealed fluorescent loci were not stable: an
occasional non-recurring transient increase in fluorescence in-
tensity occurred at a particular locus followed by rapid disappear-
ance. In hypoxia, quinacrine-staining was markedly attenuated,
fluorescence intensity of most loci being much lower (Fig. 5C).

Brefeldin A increased the number and intensity of fluorescent
areas especially in perinuclear space (Fig. 6B vs A). By contrast,
monensin decreased the number and intensity of fluorescent loci
(Fig. 6C vs A).

4. Discussion

In the present study on primary HUVEC, we observed
quinacrine-labeled fluorescent loci mainly in the perinuclear re-
gion, as described for ATP-containing vesicles in HUVEC, presum-
ably in the region of Golgi apparatus [16,17,27]. They were
~0.5e1.4 mmdiameter and similar in size to ATP-containing vesicles
labeled with quinacrine in liver and pancreatic acinar cells [27,28].
We confirmed that monensin, which facilitates Naþ/Hþ transport
and collapses membrane potential across vesicles [29], greatly



Fig. 5. Images of HUVEC showing quinacrine-staining of ATP in normoxia and hypoxia. A: example of confocal image of HUVEC monolayer taken at 1 mm intervals, dual-labeled with
quinacrine and DAPI. Dashed line drawn around cell boundary. Nucleus appears blue; ATP loci green (white arrows) in perinuclear region (Image representative of 4 samples from 2
donors) Below: fluorescent images of HUVEC stained with quinacrine before (B) and after (C) exposure to hypoxia (representative of 3 samples from 2 donors, both in normoxia and
hypoxia).
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decreased fluorescent intensity in HUVEC [16]. This is consistent
with dispersion of ATP from vesicles. That brefeldin A increased the
intensity of fluorescence in the perinuclear region is consistent
with it inhibiting anterograde transport and facilitating retrograde
transport such that ATP accumulated in the mixed Golgi/endo-
plasmic reticulum system [30].

4.1. Constitutive ATP release

The spontaneous bursts of high intensity fluorescence we
observed at discrete loci in HUVEC seemed similar to those
described in astrocytes, liver, bronchial and lung epithelial cells
[28,31,32], while our assays demonstrating constitutive release of
ATP that was much greater from apical, than basolateral surfaces,
were consistent with experiments on a range of endothelial cells
including HUVEC [24]. Our novel finding that this constitutive
release was decreased by brefeldin A and monensin, strongly sug-
gests that primary HUVEC, under no-flow conditions at PO2

~150 mmHg, occasionally discharge ATP by exocytosis, particularly
from apical surfaces.We cannot exclude spontaneous release of ATP
through Cx-43 hemi-channels [32], or by Hþ-ATP synthase that
generated ATP under basal conditions in HUVEC [17,33] and were
localised in apical membranes.

It is very unlikely constitutive ATP releasewas through pannexin
channels, implicated in agonist-induced ATP release from HUVEC
[19]. For NO donor did not inhibit constitutive ATP release, con-
trasting with the finding that NO nitrosylates pannexin channels, so
inhibiting ATP release [20]. That NO did not increase ATP release
from HUVEC nicely differentiates the mechanisms for ATP and
adenosine release in hypoxia. We concluded that increased NO, or
hypoxia rebalances the competitive interaction between NO and O2
on cytochrome oxidase in endothelial cells, so leading to adenosine
release [21,22]. The present evidence agrees with that conclusion.
There is no reason to suppose NO releases ATP, which is metab-
olised extracellularly to adenosine.

4.2. Hypoxia-induced ATP release

Our findings that hypoxia greatly stimulated ATP release from
the apical surface, that this was abolished by brefeldin A or mon-
ensin and that hypoxia considerably decreased the intensity of
fluorescent loci, indicate that hypoxia-induced ATP release from
primary HUVEC is mainly attributable to exocytosis. This conclu-
sion directly contrasts with the report that in primary HUVEC,
hypoxia per se had no effect on ATP release [13]. However, “nor-
moxia” in that study was equilibration with 95%O2 for 1 h [13],
which generated a 2e3 fold increase in reactive oxygen species
(ROS) and [Ca2þ]i in endothelial cells [34]. This may have over-
whelmed the ability of “hypoxia” (0%O2) to evoke exocytotic ATP
release if this response is dependent on a small increase in ROS and
[Ca2þ]i ([35], see below). Irrespective, ours is the first study to
demonstrate that a fall in PO2 from ~150 to ~9 mmHg e over the
physiological range e releases ATP from HUVEC by exocytosis,
predominantly from apical surfaces.



Fig. 6. Effects of brefeldin A and monensin on quinacrine-stained HUVEC. Fluorescent and bright field images of quinacrine-stained HUVEC with vehicle (A), after brefeldin A (B),
after monensin (C). Left; epi-illumination showing quinacrine-induced fluorescence, middle; epi-illumination þ bright-field trans-illumination, right; overlay of quinacrine fluo-
rescence (pseudo-colored in red) over bright-field image. Brefeldin A led to accumulation of quinacrine fluorescence in perinuclear region, whereas monensin led to loss of
quinacrine fluorescence. Representative in each case of 3 samples from 2 donors.
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That ATP release was polarised in normoxia and hypoxia, raises
the question of whether the mechanisms that stimulate hypoxia-
induced ATP release are polarised, or ATP release itself. Since
Ca2þ ionophore evoked a 30-fold increase in ATP release from the
apical surface, but only a ~20% increase from the basolateral sur-
face, we propose that vesicles primed to release ATP are preferen-
tially located near the apical surface and are triggered to discharge
ATP by an increase in [Ca2þ]i [36].

That hypoxia evoked a small increase in [Ca2þ]i is consistent
with this being integral to hypoxia-induced ATP exocytosis. The
hypoxia-evoked increase in [Ca2þ]i was much smaller than that
evoked by 10 mMATP which is comparable to the finding in human
saphenous vein endothelial cells [35]. This disparity suggests that
ATP released by hypoxia is unlikely to have acted back on P2 re-
ceptors to further increase [Ca2þ]i and augment ATP release, as
shown in aortic endothelium and HUVEC during hypotonic cell
swelling [37,38]. In fact, we showed that hypoxia blunted the in-
crease in [Ca2þ]i evoked by exogenous ATP. This may be explained
by cross-talk between signaling pathways for hypoxia and ATP. In
saphenous vein endothelial cells, hypoxia-induced release of ROS
from mitochondria acted on ryanodine receptors to release Ca2þ

from intracellular stores, whereas ATP stimulated P2 receptors to
release Ca2þ via inositol triphosphate receptors, which were
inhibited by ROS [35]. Thus, ROS generated by hypoxia may inhibit
ATP-evoked Ca2þ release. Functionally, our results raise the pos-
sibility that the inhibitory effect of hypoxia on ATP-evoked in-
creases in [Ca2þ]i helps prevent self-regenerating release of ATP
from HUVEC and its potential harmful effects [5]. A similar sug-
gestion was made for the inhibitory effect of NO synthesised by
ATP acting on P2Y receptors, on ATP release through pannexin
channels [20].

Inhibition of PI3K and ROCK with LY294002 and Y27632
respectively, abolished hypoxia-induced ATP release from HUVEC.
Similarly, PI3K inhibition abolished hypotonic swelling-induced
ATP release from liver cells, while PI3K and Rho-ROCK inhibition
attenuated hypoxia-induced ATP release from growth arrested,
chronically hypoxic VVEC; both were attributed to exocytosis
[14,28]. Importantly, hypoxia activated PI3K in coronary artery
endothelial cells [39] and increased RhoA and ROCK expressions in
HUVEC [40]. Further, PI3K was implicated in vesicular transport,
while RhoA-ROCK signaling was implicated in actin re-organisation
during hypotonic swelling [37,38]. Thus, we conclude that vesicular
release of ATP from primary HUVEC in acute hypoxia involves an
increase in [Ca2þ]i and is dependent on a PI3K, Rho-ROCK pathway.

We assayed ATP at 30 min of hypoxia and did not establish the
time course of release. Hypotonic swelling stimulated ATP release
within 10 min, and ATP accumulated gradually until 30 min [37,38].
Increased shear stress released ATP from HUVEC within 1e2 min
[13,16] and we showed hypoxia increased [Ca2þ]i within 2 min.
Thus, it seems likely ATP release beganwithin 2 min of hypoxia and
that medium [ATP] gradually increased. This should be tested.

At 30 min of hypoxia, medium [ATP] reflects the balance be-
tween that released into the medium and its metabolism by
ectonucleotidases. Vesicular release is directly temperature-
dependent below 24 �C, but ectonucleotidase activity is much
greater at 37 �C than 24 �C [24]. Thus, our experiments at 37 �Cmay
have facilitated vesicular release of ATP, but enhanced adenosine
formation relative to studies at room temperature [24,37,38].
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Irrespective, it may be noted that [ATP] measured in hypoxia was in
the nM range, whereas that required to evoke an increase in [Ca2þ]i
was in the mM range. This disparity is consistent with [ATP]
measured in medium of HUVEC during shear stress and hypotonic
swelling [14,37,38], and with [ATP] required in HUVEC to stimulate
NO and PGI2 synthesis and vasodilation via P2Y receptors [8e10].
By contrast, [ATP] close to the cell surface and P2 receptors, is in the
mM range when ATP is released [27,41] and much higher than
measured in medium in vitro, or plasma in vivo [42,43]. Thus, our
findings are compatible with current views that locally-released
ATP and adenosine play important roles in vascular regulation
[10]. Not only does hypoxia inhibit adenosine uptake into HUVEC
via ENT-1, but ATP also inhibits ENT-1 transport by acting on P2Y
receptors [6,44]. Thus, hypoxia-induced ATP release from HUVEC
would be expected to increase extracellular concentrations of both
ATP and adenosine.

In summary, the present results show that acute hypoxia is an
effective stimulus for ATP release from primary HUVEC, primarily
from the apical surface, i.e. towards the blood stream in vivo. We
show that ATP is released from vesicles located predominantly at
the apical surface, by exocytosis, involving an increase in [Ca2þ]i
and depending on PI3K, ROCK signaling. The ability of ATP acting on
P2 receptors to increase [Ca2þ]i was inhibited by hypoxia, sug-
gesting that self-regenerating release of ATP is blunted by hypoxia;
this may limit pro-inflammatory and pro-thrombotic effects of
high ATP concentrations in umbilical vein [5,12,13]. Nevertheless, a
fall in PO2 from ~100 to 8.5 mmHg induced near maximal dilation
of human umbilical vein that was endothelium-dependent [2,3].
We suggest ATP is released in adequate concentrations from
HUVEC during hypoxia to stimulate P2Y receptors to increase NO
and PGI2 synthesis [9,10], thereby contributing to umbilical vein
dilation and increased fetal blood flow reported, for example,
during fetal respiratory movements associated with hypoxia [45].
Adenosine generated from ATP by ectonucleotidases in hypoxia
may augment venodilation, but limit thrombosis and inflammation
[7,11,12].
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