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PD-L1 expression in non-small cell lung cancer (NSCLC) is predictive of response to
immunotherapy, but scoring of PD-L1 immunohistochemistry shows considerable
interobserver variability. Automated methods may allow more consistent and expedient
PD-L1 scoring. We aimed to assess the technical concordance of PD-L1 scores produced
using free open source QuPath software with the manual scores of three pathologists. A
classifier for PD-L1 scoring was trained using 30 NSCLC image patches. A separate test
set of 207 image patches from 69 NSCLC resection cases was used for comparison of
automated and manual scores. Automated and average manual scores showed excellent
correlation (concordance correlation coeffecient � 0.925), though automated scoring
resulted in significantly more 1–49% scores than manual scoring (p � 0.012). At both
1% and 50% thresholds, automated scores showed a level of concordance with our ‘gold
standard’ (the average of three pathologists’ manual scores) similar to that of individual
pathologists. Automated scoring showed high sensitivity (95%) but lower specificity (84%)
at a 1% threshold, and excellent specificity (100%) but lower sensitivity (71%) at a 50%
threshold. We conclude that our automated PD-L1 scoring system for NSCLC has an
accuracy similar to that of individual pathologists. The detailed protocol we provide for free
open source scoring software and our discussion of the limitations of this technology may
facilitate more effective integration of automated scoring into clinical workflows.

Keywords: pathology, PD-L1, biomarker, non-small cell lung cancer, digital pathology

INTRODUCTION

The treatment of advanced-stage non-small cell lung cancer (NSCLC) has seen considerable advances with
the introduction of immunotherapy [1]. Expression of programmed death ligand 1 (PD-L1) is predictive of
response to treatment with PD-1 and PD-L1 inhibitors [2]. PD-L1 expression has conventionally been
manually scored as the proportion of tumor cells with any membranous staining. Thresholds of 1% and
50% have been used for different inhibitors [3]. However, there exists considerable interobserver variability
in PD-L1 scoring [4–6], a factor that can limit the predictive value of PD-L1 testing. There is also no gold
standard for “true” PD-L1 scores, though technical concordance of results across multiple pathologists has
supported the interchangeability of different PD-L1 assays [3, 7].

Automated scoring of digital slide images is a potential means of high-throughput precise and
accurate PD-L1 scoring, which may reveal more robust associations with treatment response.

Edited by:
József Tímár,

Semmelweis University, Hungary

*Correspondence:
Chen Zhou

czhou@bccancer.bc.ca

Received: 24 September 2020
Accepted: 10 February 2021
Published: 26 March 2021

Citation:
Naso JR, Povshedna T, Wang G,

Banyi N, MacAulay C, Ionescu DN and
Zhou C (2021) Automated PD-L1
Scoring for Non-Small Cell Lung

Carcinoma Using Open-
Source Software.

Pathol. Oncol. Res. 27:609717.
doi: 10.3389/pore.2021.609717

Pathology & Oncology Research March 2021 | Volume 27 | Article 6097171

----
----
----
----
----

ORIGINAL RESEARCH
published: 26 March 2021

doi: 10.3389/pore.2021.609717

http://crossmark.crossref.org/dialog/?doi=10.3389/pore.2021.609717&domain=pdf&date_stamp=2021-03-26
http://creativecommons.org/licenses/by/4.0/
mailto:czhou@bccancer.bc.ca
https://doi.org/10.3389/pore.2021.609717
https://doi.org/10.3389/pore.2021.609717


However, performance is likely to differ between methodologies,
many of which require locally unavailable or proprietary
software. Studies using proprietary software or in-house
developed algorithms have produced PD-L1 scores comparable
to pathologists [8, 9], but implementation may be complicated by
the need for funding and licensure agreements. Free open source
software may therefore provide a more accessible option for
automated scoring.

The free open source program QuPath is notable as it does not
require any software expertize or coding skill to create custom
scoring approaches [10, 11]. The application of QuPath to PD-L1
scoring was first reported in the setting of colorectal carcinoma
[11]. The resulting PD-L1 scores had prognostic value, but a
comparison with manual scoring was not provided. A subsequent
study using QuPath to score NSCLC PD-L1 showed promising
results [12]; However, it remains unclear whether the degree of
deviation of QuPath automated scores from their “gold standard”
is within the range of interobserver variability between individual
pathologist’s manual scores. While detailed descriptions of the
variables that can be customized in QuPath are available from its
developers, the literature is lacking a simple step-wise protocol for
the development and implementation of QuPath PD-L1 scoring
in NSCLC.We aimed to provide such a protocol and demonstrate
how the resulting automated scores compare to manual
pathologist scores. We also analyze sources of discordance
between automated and manual scoring and discuss how the
limitations of automated scoring may affect the integration of this
technology into clinical PD-L1 testing workflows.

METHODS

This study was approved by the University of British Columbia
Research Ethics Board (H18–01619, approved Aug 27th, 2018).
Cases were identified retrospectively from the British Columbia
Cancer (BC Cancer) archives. PD-L1 immunohistochemistry was
performed on freshly cut sections using 22C3 antibody (#M365-3,
Dako/Agilent, Santa Clara, CA, United States) on the VENTANA
BenchMark ULTRA IHC/ISH system (Ventana/Roche, Tucson,
AZ, United States) following a protocol previously demonstrated
to have analytical concordance with the commercial 22C3
PharmDx and VENTANA SP263 assays [13]. ULTRA cell
conditioning solution (#950-224, Ventana/Roche, Tucson, AZ,
United States) was applied for 48 min, followed by a 64 min room
temperature incubation with 1:40 PD-L1 antibody and detection
using the OptiView DAB IHC Detection Kit (#760-700, Ventana/
Roche, Tucson, AZ, United States). Slides were immunostained in
multiple batches interspersed with clinical cases.

Cases were scanned on a MoticEasyScan Infinity instrument
(Motic Digital Pathology, Richmond, BC, Canada) at x40
magnification. Three image patches from each case were
selected by a pathologist to represent different tumor
morphologies and PD-L1 staining levels, and were exported as
tiff images for scoring. Image patch size in testing and training
sets is indicated in Table 1. Test set image patches were at most
4.0 mm2, allowing pathologists to focus on detailed examination
and precise scoring of a small area, but included a range of sizes to

assess whether automated scoring could perform robustly over a
size range.

Automated scoring of each image patch used QuPath software
(version 0.1.2) [10, 11]. A detailed step-by-step protocol is
provided in Supplementary Material. Briefly, the stains were
separated using color deconvolution, and nuclei were identified
based on user-specified morphological parameters in the
hematoxylin channel. Cell areas were estimated based on the
proximity of neighboring nuclei and specified parameters. Sixty-
seven morphological features calculated for each cell were used as
input for a random trees classifier. The classifier was trained to
distinguish tumor cells from background cell populations
through user annotation of tumor regions in 30 image patches
from 10 randomly selected cases. Classifier outputs were
displayed as image mark-ups throughout the process of
annotation, allowing continual monitoring of classifier
performance. Automated PD-L1 scores were calculated as the
percent of tumor cells whose mean DAB optical density exceeded
an empirically determined threshold.

Manual scores for the digital image patches were obtained
independently from three pathologists with training and
experience in PD-L1 scoring (G.W., C.Z. and D.N.I.), blinded
to the clinically reported PD-L1 score. Membranous staining of
any intensity in tumor cells was counted as positive, and
expressed as a percentage of the total number of tumor cells
on a continuous scale. Average manual scores were calculated by
first averaging the continuous-scale scores of individual
pathologists, then placing the average continuous scores into
categories (<1%, 1–49% and ≥50%). Case level QuPath and
pathologist scores were calculated as the weighted average of
the continuous-scale scores on the three image patches, weighted
according to what proportion of the total number of tumor cells
(according to QuPath) were in each image. Thus, the case level
QuPath scores are equal to the total number of ‘positive’ cells
across all three image patches, divided by the total number of
tumor cells across all three image patches. The resulting
continuous-scale case level scores were then placed in <1%,
1–49% and ≥50% categories.

Statistical analysis was performed using the R Project for
Statistical Computing (version 3.5.2) in RStudio version
1.2.1335. Continuous scores were compared using Lin’s
concordance correlation coefficient and Wilcoxon signed rank
tests (for paired data) or Mann-WhitneyU-tests (for independent
data). Categorical scores were compared using a Chi-squared test.
p-values < 0.05 were considered statistically significant.
Agreement between scoring methods was assessed using
Cohen’s kappa, with kappa values interpreted as follows:
0.40–0.69 indicates weak agreement, 0.70–0.79 indicates
moderate agreement, 0.80–0.89 indicates strong agreement and
≥0.9 indicates near perfect agreement) [3].

RESULTS

Three image patches representative of different tumor
morphologies and PD-L1 staining levels were selected for each
of 79 large resection cases of NSCLC (case demographics in
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Table 1). The image patches from 10 randomly selected cases
were used for training the QuPath classifier (n � 30 image
patches), while image patches from the remaining 69 cases

(n � 207 image patches) were used for testing the
performance of automated scoring. The independent manual
scores from three pathologists were compared to automated

TABLE 1 | Case demographics.

Category Training set Testing set

n % n %

Sex
Female 5 50% 35 51%
Male 5 50% 34 49%

Diagnosis
Adenocarcinoma, non-mucinous 8 80% 58 84%
Squamous cell carcinoma 1 10% 11 16%
Non-small cell carcinoma NOS 1 10% 0 0%

Site
Lung 10 100% 66 94%
Metastasis to bone 0 0% 1 1%
Metastasis to brain 0 0% 2 3%

Procedure
Lobectomy 6 60% 45 65%
Wedge resection 4 40% 21 30%
Large resection of metastatic tumor 0 0% 3 4%

Image patch area [mm2, median (range)] 0.94 [0.16–7.94] NA 0.44 [0.05–4.01] NA

FIGURE 1 | Representative images of PD-L1 stained non-small cell lung carcinomas from (A,B) a case with TPS 1–49% and (C,D) a case with TPS ≥50% in all
scoring methods (∼X200). The unannotated image is shown in (A,C) and QuPath annotations are shown in (B,D). Blue indicates PD-L1 negative tumor cells, red
indicates PD-L1 positive tumor cells and purple indicates background stroma and immune cells.
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scores for the same patches (representative images in Figure 1).
Analysis of the 207 images patches was calculated to provide
adequate power (i.e., power ≥0.80) for detecting a difference in
kappa of 0.11 (assuming a standard deviation of 0.4 and alpha
of 0.05).

When using a continuous scale, automated scores were
strongly correlated with the average of the three pathologist’s
manual scores (Lin’s concordance correlation coefficient 0.925
(95% confidence interval 0.903–0.942). When converted to
categorical scores, there was concordance between automated
and average pathologist scores for 186/207 images (90%) when
using a 1% positivity threshold, and 191/207 images (92%) when
using a 50% positivity threshold. Similar rates of concordance
were seen between individual pathologist’s scores and the average
manual scores (91–95% concordant when using 1% positivity
threshold, and 95–97% concordant when using 50% positivity
threshold, Table 2). Cohen’s kappa statistic for agreement
between automated and average manual scores (κ � 0.80 for
1% threshold; κ � 0.78 for 50% threshold) was not significantly
different from the kappa statistics for agreement between each
individual pathologist and the average manual score (Table 2).
Interobserver variability in pairwise comparisons between the
individual pathologists (1% threshold: average 88% concordance,
average κ � 0.76; 50% threshold: average 93% concordance,
average κ � 0.82) was similar to estimates of interobserver
variability in the literature [6, 14, 15].

We then assessed whether automated scoring tended to
increase or decrease scores relative to the average pathologist
score. Cases discordant across the 1% threshold most often had
higher scores in automated than manual analysis (i.e., 16 image
patches had 1–49% QuPath scores and <1% average pathologist
scores, whereas only 5 image patches had <1%QuPath scores and
1–49% average pathologist scores, Figure 2A). When evaluated
on a continuous scale, automated scores were on average 0.8%
higher than average pathologist scores, for cases with average
manual scores ≤5% (p < 0.001, Figures 2B,C). When using a 1%
threshold for positivity and considering the average manual score
to be the gold standard, automated scoring had a high sensitivity
for positive scores (95%), similar to individual pathologists, but

had a lower specificity (84%) than individual pathologists
(Table 2).

In contrast, cases discordant around the 50% threshold all
scored lower in automated than manual analysis (i.e., all 16
discordant cases had 1–49% QuPath scores and ≥50% average
pathologist scores). When evaluated on a continuous scale,
automated scores were on average 10% lower than average
pathologist scores, for cases with average pathologist scores
>5% (p < 0.001, Figures 2D,E). The continuous scores from
individual pathologists also deviated significantly from the
average manual scores (e.g., one pathologist’s scores were on
average 7% higher than average pathologists scores, p <
0.001 Figures 2D,E), in keeping with the notion that
automated and individual pathologist scores have similar
accuracy relative to the ‘gold standard’ average manual score.
When using a 50% threshold for positivity and considering the
average manual score to be the gold standard, automated scoring
had an excellent specificity for positive scores (100%) but had a
lower sensitivity (71%) than individual pathologists (Table 2).

Reflecting the tendency of automated scoring to underestimate
the PD-L1 score of high-scoring cases and overestimate the PD-
L1 score of low-scoring cases, more image patches scored in the
1–49% category when using automated rather than average
manual scores (p � 0.012, Figure 2F). Images with an
automated score of 1–49% were most likely to be discordant
with the average manual score: There was 40% discordance for
images with an automated score of 1–49%, 6% discordance for
images with an automated score <1, and 0% discordance for
images with an automated score ≥50%. There was no significant
association between discordance and adenocarcinoma vs.
squamous cell carcinoma diagnosis (p � 0.96), image patch
area (p � 0.96), the number of tumor cells identified by
Qupath (p � 0.058) or primary vs. metastatic site sampling
(p � 0.29).

Examination of the 37 image patches with discordant
automated and average manual scores revealed that 11 (30%)
had at least one pathologist in agreement with the automated
score category, such that the automated score could be viewed as
‘correct’ depending on the pathologist. Of the remaining 26

TABLE 2 | Agreement of automated scores and individual pathologist’s manual scores with the average manual score for single image patches.

Threshold Scoring method Concordant with
average manual
score (n [%])

Cohen’s kappa
for agreement
with average
manual score

(95% CI)

Sensitivitya (%) Specificitya (%)

1 QuPath 186/207 (90%) 0.80 (0.71–0.88) 95 84
Pathologist #1 188/207 (91%) 0.82 (0.74–0.89) 83 100
Pathologist #2 191/207 (92%) 0.85 (0.77–0.92) 87 98
Pathologist #3 197/207 (95%) 0.90 (0.84–0.96) 98 92

50 QuPath 191/207 (92%) 0.78 (0.69–0.92) 71 100
Pathologist #1 200/207 (97%) 0.91 (0.85–0.98) 95 97
Pathologist #2 196/207 (95%) 0.87 (0.80–0.95) 98 93
Pathologist #3 201/207 (97%) 0.93 (0.87–0.98) 93 99

aThe average manual score was used as the ‘gold standard’ for sensitivity and specificity calculations.

Pathology & Oncology Research March 2021 | Volume 27 | Article 6097174

Naso et al. Automated PD-L1 Scoring



images, 13 scored higher by automated than manual scoring
(i.e., 1-49% rather than <1%) but tended to have scores close to
the threshold: 9 of those images scored <2% and 7 exceeded 1%
threshold as a result of 4 or fewer cells being called positive. On
review of the QuPath annotations, factors that contributed to
overestimation of PD-L1 scores included debris miscalled as
positive staining (in 6 images), positively staining stromal cells
miscalled as tumor (in 6 images) and positively staining airspace
macrophages miscalled as tumor cells (in 5 images, Figures
3A,B). Very faint brown staining at the edge of a tumor
fragment (“edge-artifact” to the human eye) was called
positive staining by QuPath in 2 images. In one case of
squamous cell carcinoma, mis-designation of negative-staining
tumor cells as stromal cells falsely elevated the PD-L1 score. The
remaining 13 out 26 images with automated scores discordant
across all pathologists had lower automated than pathologist
scores. Of those, 11 had automated scores in the 1–49%

category, including 7 that scored >40%. Factors that
contributed to the underestimation of PD-L1 staining included
very faint staining being miscalled as negative (in 7 images) and
membrane staining falling outside of the area designated as tumor
cell (in 8 images, Figures 3C,D).

To simulate diagnostic evaluation of a full case, we calculated
weighted averages of the continuous-scale scores for the three
image patches per case (see Methods) to produce single ‘case
level’ scores, which we then placed in to <1%, 1–49% and ≥50%
categories. Though the reduced sample size (n � 69 rather than
207) limited the power of this analysis (power � 0.6 for detecting
a 0.15 difference in kappa, assuming a standard deviation of 0.4
and alpha of 0.05), we noted similar percent concordance,
sensitivity and specificity (Table 3) as in the single patch
analysis above, supporting that the trends discussed above
are likely to hold true over larger tissue areas and potentially
whole slides.

FIGURE 2 | Comparison of automated (“QuPath”) and manual (“pathologist”) PD-L1 scores (A) The number of image patches in each PD-L1 TPS category when
using scores from automated or single pathologist scoring compared to average pathologist scores (B,D) Scores for each image patch ordered by the average
pathologist score (C,E) Bland-Altman plots of the difference in scores vs. the mean of scores for different scoring methods compared to average pathologist scores. For
each data series, the horizontal lines represent two standard deviation above the mean difference, the mean difference, and two standard deviations below the
mean difference. Data for image patches and data for image patches with an average score ≤5% are shown in (B,C), and those with an average pathologist score >5%
are shown in (D,E). (D) The proportion of image patches in each PD-L1 score category according to each scoring method.
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DISCUSSION

This study is the first to show how NSCLC PD-L1 scoring using
free open source software compares with the range of manual
scores generated by a group of pathologists: QuPath automated
PD-L1 scores showed agreement with average manual scores
equivalent to that of individual pathologists, such that the overall
accuracy of automated scoring could be considered comparable
to that of individual pathologists. Values for agreement between
pathologists in our study (1% threshold: 88% concordance,

κ � 0.76; 50% threshold: 93% concordance, κ � 0.82) were
similar to those in prior studies (e.g. 1% threshold: 84%
concordance, κ � 0.54–0.63; 50% threshold: 82% concordance,
κ � 0.75–0.83) [6, 14, 15]. We therefore considered the range of
manual scores in our study to be an adequate representation of the
variability typically seen in practice.

We also provide the first detailed step-by-step protocol with
optimized settings for NSCLC PD-L1 scoring using a free open
source platform. QuPath has a point-and-click style interface
operable by any user, and may be implemented without delays for

FIGURE 3 | Examples of cases with discordant automated and manual PD-L1 scores. QuPath annotations (B,D) are shown to the right of the corresponding
unannotated PD-L1 stained area, 400–600X magnification (A,C). (A,B) Over-estimation of PD-L1 staining using QuPath was contributed to by false positive annotation
of debris (green arrow), inflammatory cells (purple arrow) and edge artifact (orange arrow). (C,D) Under-estimation of PD-L1 staining using QuPath was contributed to by
cell area being underestimated, such that membranous staining fell outside of the annotated area of the cell ↓.
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licensure or funding. To our knowledge, the only prior
assessments of QuPath scoring in NSCLC compared to
consensus pathologist scores did not report sufficient
methodological detail for their classifier to be reproduced [12,
16]. Supporting the generalizable utility of QuPath, they reported
a correlation with manual scores (R � 0.91) [12] similar to that in
our study (concordance correlation coefficient � 0.925).

Consideration of the limitations of automated scoring
identified in our study may play a role in the shaping the
clinical use of automated scoring. Automated scores may be
used as ‘tie breakers’ for difficult cases near cut offs, analogous
to the use of immunohistochemistry to favor a diagnosis when
morphology is ambiguous. QuPath may be of most use in
confirming <1% and ≥50% scores, as automated scores in
these categories were least likely to be discordant. One may
have particular confidence in QuPath scores <1% or ≥50%,
but put less weight on QuPath scores of 1–49%. Alternatively,
if an automated system was used for the initial scoring of all cases,
cases just above the 1% threshold and just below the 50%
threshold may benefit from reflex manual review, as such
cases are most likely to have discordant automated and
manual scores.

Automated scoring may also have a use in quality assurance,
serving as a consistent benchmark against which manual
pathologist’s scores could be compared. Through comparison
with automated scores, pathologists could compare their scoring
to that of other pathologists without having to score the same
cases (e.g. if pathologist 1 tends to score below automated scores
and pathologist 2 tends to score above automated scores,
pathologist 1 likely tends to score lower than pathologist 2).
Comparison with automated scoring could also assess for drift in
scoring tendencies over time, helping to identify when refresher
training may be of value.

A time saving benefit of automated scoring may be realized in
sites with an established workflow for slide scanning. The largest
time investment in developing a QuPath scoring method was
manual determination of an optimal threshold for staining
intensity. We highlight this as one drawback of QuPath
compared to approaches that use machine learning to identify
an ideal threshold in an automated fashion. Before
implementation in other laboratories or use with other PD-L1

staining protocols, the staining intensity threshold is likely to
require re-optimization, as staining intensity may differ.

Training of a tumor vs. background classifier in QuPath
required relatively few annotated cases: our classifier produced
excellent results despite being trained on only 30 images from 10
cases. Interestingly, accuracy was similar for adenocarcinoma and
squamous cell carcinoma test samples despite only three of the
training images being from squamous cell carcinoma. A prior
study using QuPath to score breast cancer biomarkers also had
robust results despite training on only three cases per marker
[10]. A custom classifier of similar accuracy may therefore be
trained for local slides (to account for local differences in staining
or include additional tumor morphologies) with minimal time
spent annotating tumor areas and only a small number of cases
needed. As alveolar macrophages misidentified as tumor cells
contributed to falsely elevated automated scores, it may be
particularly useful to include training set images with
abundant alveolar macrophages that are manually annotated
as such. Performance may also be improved by training on a
greater number of cases capturing more variability in
morphology.

However, significant improvement in the accuracy of
automated scoring may be limited by the difficulty of
balancing accuracy at two different thresholds. For instance,
lowering the threshold for what intensity of brown coloration
is called positive staining may improve accuracy at the 50%
threshold by raising proportion of ≥50% calls, but may
decrease accuracy at the 1% threshold by introducing false
positive 1–49% calls. Similarly, optimization of cell size
estimation (which determines whether membrane staining is
detected as part of the cell) is limited by the variability of
tumor cell sizes between cases. Increasing the “allowable” cell
size may increase detection of positively staining large cells, but
may incorrectly attribute the staining of inflammatory cells to
adjacent small tumor cells. It’s possible that accuracy may be
improved by developing multiple different algorithms
customized for different ranges of cell size or PD-L1 staining
(e.g., having small, medium and large cell versions of the
algorithm, or using different thresholds depending on whether
the case is anticipated to have high or low levels of PD-L1
staining); these possibilities remain to be explored. While the

TABLE 3 | Agreement of automated scores and individual pathologist’s manual scores with the average manual score for each patient case.

Threshold (%) Scoring method Concordant with
average manual
score (n [%])

Cohen’s kappa
for agreement
with average
manual score

(95% CI)

Sensitivitya (%) Specificitya (%)

1 QuPath 64/69 (93%) 0.77 (0.62–0.93) 98 85
Pathologist #1 63/69 (91%) 0.84 (0.71–0.97) 88 96
Pathologist #2 67/69 (97%) 0.94 (0.86–1) 95 100
Pathologist #3 65/69 (94%) 0.87 (0.76–0.99) 98 88

50 QuPath 63/69 (91%) 0.76 (0.58–0.94) 68 100
Pathologist #1 68/69 (99%) 0.96 (0.89–1) 95 100
Pathologist #2 67/69 (97%) 0.93 (0.83–1) 100 96
Pathologist #3 67/69 (97%) 0.93 (0.83–1) 95 98

aThe average manual score was used as the ‘gold standard’ for sensitivity and specificity calculations.
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small size of most artifactual debris makes it difficult to annotate
accurately, manual or automated artifact exclusion may also be
explored.

We note that mucinous and sarcomatoid carcinomas were
not included in our study as adequate case numbers were not
available, and thus results may not be generalizable to these
groups. Additional training and testing on small biopsy
specimens is also advised prior to implementation on such
specimens, as a greater degree of crush artifact and tissue
fragmentation in small biopsies may reduce the accuracy of
tumor cell recognition. Although the slides in our study were
stained in several batches and therefore reflect some degree of
intra-laboratory variation in staining, additional examination
of how batch-to-batch variation in staining may affected
QuPath scoring accuracy is warranted. We caution that the
random trees classifier method used by QuPath is prone to
overfitting, necessitating testing on additional independent
validation sets prior to clinical use. Demonstration that
automated and manual scoring are truly clinically
interchangeable requires cohorts with treatment response
data. Comparisons with outcome are beyond the scope of
our study as the majority of cases in our study did not
receive immunotherapy.

The present study demonstrates that automated PD-L1
scoring of NSCLC samples has an overall accuracy similar to
that of individual pathologists, but has a tendency to predictably
under- or over-estimate scores in particular scenarios. QuPath
may be readily implemented following our step-by-step protocol,
providing automated scores that may be of value in clinical PD-L1
testing workflows.
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