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Abstract

Objective

To explore the parametric characteristics of diffusional kurtosis imaging (DKI) in the brain

development of healthy preterm infants.

Materials and Methods

Conventional magnetic resonance imaging (MRI) and DKI were performed in 35 preterm

(29 to 36 weeks gestational age [GA]; scanned at 33 to 44 weeks postmenstrual age [PMA])

and 10 term infants (37.4 to 40.7 weeks GA; scanned at 38.3 to 42.9 weeks PMA). Frac-

tional anisotropy (FA), mean diffusivity (MD) and mean kurtosis (MK) values from 8 regions

of interest, including both white matter (WM) and gray matter (GM), were obtained.

Results

MK and FA values were positively correlated with PMA in most selected WM regions, such

as the posterior limbs of the internal capsule (PLIC) and the splenium of the corpus callo-

sum (SCC). The positive correlation between MK value and PMA in the deep GM region

was higher than that between FA and PMA. The MK value gradually decreased from the

PLIC to the cerebral lobe. In addition, DKI parameters exhibited subtle differences in the

parietal WM between the preterm and term control groups.

Conclusions

MKmay serve as a more reliable imaging marker of the normal myelination process and

provide a more robust characterization of deep GMmaturation.
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Introduction
Brain water content reduction and myelin maturation are the most important changes in the
brain development of infants. Those changes can be visually evaluated on conventional mag-
netic resonance imaging (MRI) and quantitatively assessed using an advanced MR sequence.
As a non-invasive and sensitive imaging modality, MRI has been widely used in the assessment
of neonatal brain development[1–12].

Diffusion tensor imaging (DTI), an MRI technique based on the Gaussian diffusion hypoth-
esis and diffusion tensor reconstruction, can provide information concerning the underlying
microstructural characteristics of biological tissues by measuring the diffusivity of water mole-
cules. Brain development is a complicated, long-term process that exhibits rapid changes
between the third trimester of gestation and the first postnatal month[13–14]. Many studies
have investigated this chronological development and the regional variations in brain matura-
tion based on fractional anisotropy (FA) and apparent diffusion coefficient (ADC) values
derived from DTI. The results have showed that FA decreases and ADC increases during the
developmental process, particularly in white matter (WM)[3–4,8,14–20]. Recently, an
advanced MR technique, diffusional kurtosis imaging (DKI), was introduced to characterize
non-Gaussian water diffusion and tissue heterogeneity[21–26] by measuring the mean kurtosis
(MK) value within a voxel across different cellular compartments and providing more accurate
parameterization compared with DTI[27]. Previous studies[28–31]have demonstrated that
DKI is useful for investigating ischemic stroke and neuropathologies such as Alzheimer’s dis-
ease and epilepsy. One study[32]demonstrated the advantages of DKI in assessing normal
brain development in children ranging in age from newborn to 4 years old, but few studies
have focused on neonatal brain maturation, particularly in the premature newborn brain. In
this study, we aimed to explore the feasibility and application value of DKI in assessing the
brain development of healthy preterm infants.

Materials and Methods

Subjects
This study was approved by the ethics committee of Tongji hospital, Tongji Medical College,
Huazhong University of Science & Technology, and written informed parental consent was
obtained for each infant prior to examination. Thirty-five preterm infants and ten term infants
(control group) were enrolled between November 2011 and December 2013. The infants were
sedated using oral chloral hydrate or enemas (20–30 mg/kg) and underwent both conventional
MRI and DKI using a3.0T MRI scanner (GE Healthcare, Signa HDxt) with an 8-channel head
coil. Neonatal earmuffs were used for hearing protection, and possible motion artifacts were
mitigated by immobilization with a cotton pillow. An experienced neonatologist and a neuro-
radiologist were in attendance throughout the imaging process.

All selected infants met the following clinical criteria: (1) 1-min and 5-min Apgar scores>7;
(2) no evidence of postanoxic encephalopathy, congenital infection or congenital anomaly syn-
drome; and (3) normal physical and neurological examination at 6 or 12 months PMA, as
assessed by a board-certificated neonatologist. Additionally, all infants met the following radio-
logical imaging criteria: (1) normal appearance on conventional MRI and (2) no obvious
motion artifacts or an incomplete imaging process. PMA was estimated as GA at birth plus
postnatal age at the time of the MR examination. The GA and PMA range of the preterm
infants and term controls are presented in S1 Fig.

As shown in S1 Fig, we first divided the 35 preterm infants into two groups according to
PMA at the time of MR scanning: the preterm infants before term-equivalent age group (less
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than 37 weeks; range, 33 to 36 weeks; 12 infants) and the preterm infants at term-equivalent
age group (TEA group; 37 weeks or older; range, 37 to 44 weeks; 23 infants). Based on their
GAs, the preterm infants in the TEA group were then divided into two subgroups: early pre-
term infant group (GA� 32 weeks, 10 infants) and late preterm infant group (GA> 32 weeks,
13 infants).

MR Acquisition and Image Analysis
The MRI protocols included fast recovery spin echo (FSE) T1-weighted imaging (T1WI; TR/
TE = 360/11.4 ms); axial T2-weighted imaging (T2WI; TR/TE = 4260/102 ms); and a DKI
series. For the DKI sequence, the diffusion directions = 25, and the b-values = 0, 1250, and
2500 s/mm2. Both b = 1250 s/mm2 and 2500 s/mm2 were included in one sequence, and two
b0 were acquired in this sequence. The TR/TE was 7000/113 ms for both b = 1250 s/mm2 and
b = 2500 s/mm2in this DKI sequence. The acquisition matrix was 128×130. The reconstruction
matrix was 256×256. The acquisition resolution of the diffusion-weighted images was
1.4mmx1.4mmx4mm.The slice thickness was 4 mm without gap, the number of slices acquired
in the DKI sequence was 18–24, the number of excitations (NEX) was 1, and the field of view
(FOV) was 180 mm×180 mm. The total DKI scan time was 6 min 11 s.

All raw DKI data were processed using software developed by Tabesh[33] (Diffusional Kur-
tosis Estimator, version 2.0, http://academicdepartments.musc.edu/cbi/dki/DKE/dke_
download.htm). Voxel-by-voxel analysis was performed after the images (b = 1250 and2500s/
mm2) were registered to the b0 images using SPM8 and a nonlinear fitting algorithm (DKI fit-
ting). The following parametric maps were then generated: MK, FA and mean diffusivity
(MD). Regions of interest (ROIs) were manually drawn on transverse slices using ImageJ soft-
ware (http://rsb.info.nih.gov/ij/) on the FA or MDmap and then automatically projected onto
the other two parametric maps. Eight different anatomical WM and GM structures were inves-
tigated (Fig 1), including the posterior limbs of the internal capsule (PLIC);the genu and sple-
nium of the corpus callosum (GCC and SCC, respectively);the corona radiata (CR);the frontal
and parietal WM (FWM and PWM, respectively);the lentiform nucleus (LN); and the thalamus
(TH). Measurements were obtained by an experienced neuroradiologist who was blinded to
the clinical information. The ROI size for each subject was identical for the left and right hemi-
spheres. ROIs were placed at the center of structure of WM and deep GM areas to minimize
variation. To evaluate intra-observer reliability, the neuroradiologist performed the same mea-
surements for 15 randomly selected subjects (10 preterm and 5 term infants) 8 weeks later to
avoid recall bias. To evaluate inter-observer reliability, another neuroradiologist who was also
blinded to the clinical information performed the same measurements for the same 15
neonates.

Statistical Analysis
The statistical analysis was performed using SPSS software (SPSS for Windows 18.0, Chicago,
Ill), and P-valueless than 0.05 indicated statistical significance. Differences in clinical character-
istics between groups were compared using Student’s t-test and chi-square test. Intra-class cor-
relation coefficients (ICC) were calculated to assess intra- and inter-observer reliabilities of
DKI measurements. The relationships among DKI-derived parameters (FA, MD and MK val-
ues) and PMA were analyzed using Pearson’s correlation analysis. The regional developmental
differences of the selected WM regions were compared using the randomized block Student-
Newman-Keuls test. The differences among the early preterm at TEA group, the late preterm
at TEA group and the control group (term infants) were analyzed using one-way analysis of
variance (ANOVA) with Bonferroni-type false discovery rate correction.
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Results

Agreement Analysis
No significant differences were found in gender, PMA, or weight at the time of scanning, as
shown in Table 1. The DKI-derived parameters showed good inter-observer and excellent
intra-observer reliabilities for all selected ROIs (using the PLIC, SCC, PWM and LN as exam-
ples in Table 2).

Regular Developmental Pattern of the Preterm Infants
As shown in Table 3 and Fig 2, the MK value was positively correlated with PMA in the projec-
tion and commissural pathways such as the PLIC, CR, GCC and SCC. In theWM areas, the best
correlation between the MK value and PMAwas observed in the PLIC(r = 0.874, P< 0.001). A
positive correlation between the MK value and PMAwas also found in the LN and TH (r = 0.783

Fig 1. Position of ROIs on the FA (A, B) and MD (C, D) maps. A. Posterior limbs of the internal capsule (PLIC) and genu and splenium of the corpus
callosum (GCC, SCC), which are labeled as 1–4, respectively. B. Corona radiata (CR), labeled as 5–6. C. Frontal white matter (FWM), lenticular nucleus (LN)
and thalamus (TH), labeled as 7–12. D. Parietal white matter (PWM), labeled as 13–14.

doi:10.1371/journal.pone.0154146.g001

Table 1. General demographics of infants.

Group Preterm infants group with PMA
at scan <37 weeks (n = 12)

Preterm infants group with PMA at scan≥37
weeks

Term born (n = 10)

Early preterm (n = 10) Late preterm (n = 13) 　

M/F 8/4 9/1 10/3 9/1

Apgar (5min) 7.58 7.7 8.2 8.6

Mean GA (range; week) 32.0±2.0(29.0–35.1) 30.1±1.7(27.4–32.0) 34.7±1.7(32.6–36.9) 39.1±1.3(37.4–40.7)

Mean PMA at MRI (range; week) 34.9±1.2(33.0–36.3) 40.3±2.4(37.0–43.3) 39.7±2.1(37.6–44.0) 40.5±1.7(38.3–42.9)

Mean birth weight (range; kg) 1.75±0.3(1.20–2.26) 1.45±0.4(1.00–2.06) 2.12±0.4(1.60–2.87) 3.13±0.5(2.13–3.80)

Mean body weight at MRI(range; kg) 2.42±0.4(2.00–3.40) 3.07±0.4(2.30–3.40) 3.11±0.3(2.50–3.50) 3.42±0.4(2.70–4.00)

M/F = number of male and female infants; Apgar (5min) = Apgar score at 5 min; GA = gestational age; PMA = postmenstrual age. There were no

significant differences in gender among these four groups (P> 0.05). The Apgar score in the preterm infant group before TEA (n = 12) and in the early

preterm infant group at TEA (n = 10) were slightly lower than that in the term infant group (P< 0.05); there were no significant differences among these

three preterm groups and between the late preterm infant group at TEA (n = 13) and the term controls (P> 0.05). The mean GA, mean birth weight, mean

PMA and body weight at MRI of the preterm infant group before TEA (n = 12) were lower than those of the other three groups(P< 0.05).Mean GA and

mean birth weight in the preterm groups at TEA were lower than those in the term control group (P< 0.05).There were no significant differences in mean

PMA or body weight at MRI among the early preterm infant group at TEA, the late preterm infant group at TEA and the term controls (P> 0.05).

doi:10.1371/journal.pone.0154146.t001

DKI in Evaluating Premature Newborn Brain Development

PLOS ONE | DOI:10.1371/journal.pone.0154146 April 21, 2016 4 / 13



and 0.719, respectively; P< 0.001). No significant correlations were found betweenMK values
and PMA in the FWM (r = -0.268, P = 0.119) or PWM (r = -0.009, P = 0.957).

The correlation between FA values and PMA was very similar to that of MK values and
PMA in the WM areas. The FA value was strongly correlated with PMA in the PLIC, SCC and
TH (r = 0. 809, 0.674 and 0.648, respectively) and moderately correlated in the CR, GCC,
FWM, PWM and LN (r = 0.346 to 0.586).

MD values were strongly negatively correlated with PMA in the TH(r = -0.711) and moder-
ately negatively correlated with PMA in the PLIC, CR, GCC, FWM, PWM and LN (r = 0.378
to 0.587). No significant correlation was found between the MD value and PMA in the SCC
(r = -0.296, P = 0.084).

Table 2. Intra-observer and inter-observer variability of measurements.

ROI Parameters Intraclass correlation coefficient, 95% CI

Intra-observer Inter-observer

PLIC MK 0.953, 0.859–0.984 0.938,0.816–0.979

FA 0.925, 0.777–0.975 0.885,0.657–0.961

MD 0.961, 0.883–0.987 0.914,0.744–0.971

PWM MK 0.926, 0.780–0.975 0.800,0.405–0.933

FA 0.885, 0.657–0.961 0.738,0.219–0.912

MD 0.911, 0.734–0.970 0.872,0.618–0.957

SCC MK 0.936, 0.809–0.978 0.851,0.557–0.950

FA 0.914, 0.743–0.971 0.876,0.631–0.958

MD 0.899, 0.699–0.966 0.747,0.247–0.915

LN MK 0.901,0.704–0.967 0.822,0.471–0.940

FA 0.828,0.486–0.942 0.796,0.394–0.932

MD 0.973,0.919–0.991 0.955,0.866–0.985

95% CI = 95% confidence interval; ROI = region of interest; PLIC = posterior limbs of the internal capsule; PWM = parietal white matter; SCC = splenium

of the corpus callosum; LN = lentiform nucleus.

doi:10.1371/journal.pone.0154146.t002

Table 3. Correlation coefficients between DKI values and PMA for all selected ROIs.

ROIs preterm infants(n = 35) term infants(n = 10)

FA MD MK FA MD MK

White mater areas

PLIC 0.809** -0.535** 0.874** 0.695* -0.128 0.879**

CR 0.497** -0.587** 0.771** 0.221 -0.288 0.612

GCC 0.356* -0.394* 0.602** 0.135 -0.440 0.566

SCC 0.674** -0.296 0.607** 0.177 0.066 0.201

FWM 0.518** -0.378* -0.268 0.348 -0.337 0.026

PWM 0.586** -0.480** -0.009 0.573 -0.425 0.510

Grey matter areas

LN 0.346* -0.482** 0.783** 0.665* -0.246 0.756*

TH 0.648** -0.711** 0.719** 0.575 -0.228 0.717*

PLIC = posterior limbs of the internal capsule; CR = corona radiata; GCC = genu of the corpus callosum; SCC = splenium of the corpus callosum;

FWM = frontal white matter; PWM = parietal white matter; LN = lentiform nucleus; TH = thalamus.

* indicates P < 0.05

** indicates P < 0.01.

doi:10.1371/journal.pone.0154146.t003
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As shown in Fig 3, the T2 signal intensity (SI) of the PLIC gradually decreased when PMA
increased from 34 weeks to 40 weeks; an increase in the corresponding FA and MK values was
also observed. The tissue contrast between the GM andWM decreased on the T2WI and MD
maps due to the decreased water content.

Similar developmental trends were observed in the term infants, but fewer regions had sig-
nificant correlations compared to the preterm infants. The MK value was positively correlated
with PMA in the PLIC, LN and TH (r = 0.879, 0.756 and 0.717, respectively; p< 0.05) in the
term control group. The FA value was positively correlated with PMA in the PLIC and LN
(r = 0.695 and 0.665, respectively; p< 0.05). No significant correlation was found the between
these two values and PMA in the remaining ROIs.

Developmental Differences in the WMRegions
Both the FA and MK values of the WM areas changed linearly with the increase in PMA in the
preterm group, as shown above. Therefore, the randomized block Student-Newman-Keuls test
was chosen rather than ANOVA to compare the regional developmental differences in each

Fig 2. Correlations between PMA and quantitative DKI parameters in preterm infants.

doi:10.1371/journal.pone.0154146.g002
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infant. As shown in Table 4A and 4C, the MK value was higher in the PLIC than in the SCC
(0.437472 vs. 0.390371), followed by the CR, GCC, FWM, and PWM in decreasing order. The
FA value was higher in the SCC than in the PLIC and GCC (0.605600 vs. 0.514835 and
0.514600, respectively), followed by the CR, FWM and PWM in decreasing order.

In the term control group, the trend of developmental differences in the WM regions was
consistent with that of the preterm group. As presented in Table 4B and 4D, the MK value was
also higher in the PLIC than in the SCC, but the difference was not statistically significant. The
FA values in the SCC and GCC were higher than the value in the PLIC.

Subtle Differences Caused by Premature Delivery
As shown in Table 5 and Fig 4, significant differences were found among the three groups for
MD and MK values in the PWM (F = 8.856, P = 0.001; F = 5.028, P = 0.013). Compared with

Fig 3. Conventional MRI and DKI of the preterm infants at different PMAs.Rows A to C represent PMAs of 34 weeks, 37 weeks and 40 weeks,
respectively. The columns (left to right) represent the T2WI, FA, MD and MKmaps. The RAI value range in the MD column was 0.5×10-3mm/s2~4×10-3mm/
s2.The T2 signal intensity (SI) of the PLIC gradually decreased as PMA increased from 34 weeks to 40 weeks; meanwhile, the signal intensity on the FA and
MKmaps increased, as shown with a white arrow on the MKmap. The image contrast between the GM andWM decreased on the T2WI and MDmaps due
to the decreased water content.

doi:10.1371/journal.pone.0154146.g003

DKI in Evaluating Premature Newborn Brain Development

PLOS ONE | DOI:10.1371/journal.pone.0154146 April 21, 2016 7 / 13



the term control group, the MD values in the PWM for the early preterm infant and the late pre-
term infant groups were higher (1.70±0.16×10-3mm2/s vs. 2.03±0.20×10-3mm2/s and 1.94
±0.17×10-3mm2/s, P = 0.001and 0.011, respectively). The MK value in the PWM of the late pre-
term infant group was higher than in the term control group (0.21±0.02vs.0.18±0.02, P = 0.012).
No significant difference was found between the early and late preterm infant groups.

Discussion
Our findings show that the brain maturation of preterm infants can be quantitatively evaluated
with diffusional kurtosis imaging. The MK and FA values were comparable in the correlation
with PMA in most selected WM regions. Specifically, the MK value had a greater positively
correlated with PMA in the deep GM region compared with the FA value. These findings indi-
cated that diffusional kurtosis imaging might provide more information on this complex devel-
opmental process.

The WMmyelination process evolves in a spatiotemporal manner through the brain,
roughly from central to peripheral, caudal to cranial and dorsal to ventral. Postmortem studies
[34] have confirmed that mature myelination occurs earlier in the PLIC and CR, followed by
the CC, and finally the lobar WM areas. Similarly, we found that the MK value decreased grad-
ually from the PLIC to the cerebral lobe, which is in accordance with the order of the WM
areas described above; these findings suggest the feasibility of using the MK value as a reliable
indicator of the myelination process. The FA values reflected the same trend from central to
peripheral. However, the FA value was highest in the SCC rather than in the more mature mye-
linated PLIC as we expected. A probable reason for this exception might be that the MK value
is mainly determined by the extent of myelination, while the FA value is more strongly affected
by closely packed fiber bundles. The fiber bundles appear to be more tightly packed in the SCC,
leading to its higher FA value[20,32].For a relative comparison, we found that the FA values in
the SCC and GCC were higher than the value in the PLIC in the term control group, which fur-
ther confirms this point.

Table 4. Mean MK and FA values comparisons among different regions in WM areas.

a

ROI PWM FWM GCC CR SCC PLIC

Mkpreterm 0.205483 0.27613 0.324771 0.347587 0.390371 0.437472

b

ROI PWM FWM CR GCC SCC PLIC

MKterm 0.177691 0.24365 0.352944* 0.354* 0.4372† 0.458063†

c

ROI FWM PWM CR GCC PLIC SCC

FApreterm 0.139647Δ 0.145171Δ 0.286381 0.5146# 0.514835# 0.6056

d

ROI FWM PWM CR PLIC GCC SCC

FAterm 0.162423‡ 0.183193‡ 0.290963 0.516736 0.5774 0.6297

Mkpreterm(FApreterm) and MKterm(FAterm)refer to the MK values (FA values) in the preterm (n = 35) and term (n = 10)groups, respectively. The results show

that the MK value increased gradually from the PWM to PLIC, while the FA value increased from the FWM and PWM to SCC. MK value was more

consistent than the FA value in terms of myelination maturation, as previously described in a histological study[34].FA values between the FWM and PWM

(Δ), and between the GCC and PLIC (#)in the preterm group did not show significant differences (P = 0.532 and 0.979, respectively). FA values between

the FWM and PWM (‡) in the term control group did not show a significant difference (P = 0.277). MK values between the CR and GCC (*) and between

the SCC and PLIC (†) in the term control group also did not show significant differences (P = 0.947 and 0.197, respectively). Differences among other

values were statistically significant (P< 0.05).

doi:10.1371/journal.pone.0154146.t004
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In the deep GM, the globus pallidus becomes myelinated early in the developmental process,
and its dense structure may contribute to the increase in MK and FA values. In the thalamus,
our result demonstrated that both the MK and FA values were better correlated to the PMA.
This finding is consistent with previous studies[4,35]. Mukherjee et al. revealed that the matu-
rational pattern of the thalamus was intermediate between the gray matter and the white mat-
ter structures. They indicated that its greater proportion of internal white matter tracts
increased the FA value. That might explain our result that the thalamus had higher diffusion
anisotropy than the lentiform nucleus.

DKI parameters exhibited subtle differences in the parietal WM between the preterm and
term control groups. These differences are mainly attributed to the development delay caused
by premature delivery. The proliferation of oligodendrocyte lineage precursors and increased
intracellular compartments could account for the decrease in brain water content and the
increase in membrane density [5,36]. The reduced MD value in the PWMmight reflect a rela-
tively lower water concentration because the premyelination process was slightly more
advanced in the term controls. In addition, the MK value in the PWM of the late preterm infant
group was higher than that of the term control group, which might indicated the presence of
delayed underlying microstructural changes in the crossing fibers in the PWM. However, we
found no difference in MK values in the PWM between early preterm infants at TEA and term
infants. The PMA at the time of the scan should also be considered because earlier stimulation

Table 5. Comparisons among the three groups with different gestational ages at the term-corrected age.

ROIs Parameters Early preterm group Late preterm group Term control group P

PLIC FA 0.55±0.04 0.53±0.03 0.52±0.05 0.127

MD 1.18±0.06 1.18±0.07 1.17±0.05 0.862

MK 0.47±0.07 0.48±0.04 0.46±0.05 0.583

CR FA 0.30±0.05 0.30±0.05 0.29±0.04 0.854

MD 1.50±0.21 1.43±0.11 1.40±0.08 0.319

MK 0.38±0.06 0.38±0.06 0.35±0.07 0.555

GCC FA 0.52±0.05 0.53±0.06 0.58±0.06 0.058

MD 1.53±0.08 1.50±0.14 1.43±0.10 0.159

MK 0.35±0.03 0.33±0.04 0.35±0.04 0.298

SCC FA 0.62±0.08 0.65±0.05 0.63±0.06 0.387

MD 1.41±0.15 1.35±0.10 1.33±0.07 0.295

MK 0.41±0.07 0.40±0.04 0.44±0.04 0.268

FWM FA 0.14±0.03 0.16±0.04 0.16±0.02 0.171

MD 2.19±0.39 2.05±0.24 1.92±0.16 0.100

MK 0.28±0.06 0.26±0.03 0.24±0.02 0.107

PWM FA 0.15±0.02 0.17±0.04 0.18±0.05 0.107

MD 2.02±0.20* 1.94±0.17Δ 1.70±0.16 0.001

MK 0.20±0.03 0.21±0.02Δ 0.18±0.02 0.013

LN FA 0.17±0.02 0.18±0.03 0.17±0.02 0.700

MD 1.25±0.04 1.26±0.08 1.24±0.06 0.635

MK 0.29±0.03 0.30±0.03 0.29±0.02 0.674

TH FA 0.21±0.03 0.19±0.04 0.20±0.02 0.287

MD 1.12±0.07 1.13±0.06 1.09±0.04 0.234

MK 0.30±0.03 0.31±0.03 0.31±0.03 0.589

The unit of the MD value is10-3 mm2/s. Significant differences were found between the early preterm and term infants (*) as well as between the late

preterm and normal term infants (Δ).

doi:10.1371/journal.pone.0154146.t005
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Fig 4. Representative bar graphs show the distribution of DKI-derived parameters for the anatomical
WM regions among the three infant groups. Significant differences for the paired comparisons (P< 0.05)
are denoted as follows: * indicates early preterm and term infants; Δ indicates late preterm and term infants.

doi:10.1371/journal.pone.0154146.g004
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in the extrauterine environment could accelerate the development of white matter in early pre-
term infants compared to the late preterm infants[37].We also noticed similar developmental
trends in the term infants but fewer regions exhibited significant correlations compared to pre-
term infants, perhaps also indicating that brain development was more accelerated in the pre-
term infants as compared to the term infants. Previous studies[38–39]have shown that very
low birth weight preterm children had reduced FA values in the internal and external capsule;
corpus callosum; and superior, middle superior and inferior fasciculus, and low FA values in
these areas are associated with perceptual, cognitive, motor and mental health impairments.
Longitudinal follow-up is needed to determine whether the underlying parietal changes are
related to neurodevelopmental delays. In addition, Rose et al.[17]revealed significantly
decreased FA and increased T2 values in the cerebral peduncle of term controls, which may
indicate increased water content. Although our results demonstrated a decreasing trend of FA
and MK values in the PLIC in the control group compared to the preterm group, no significant
differences were found in these areas. This may be because the mean PMA of preterm infants
at the time of scanning in Rose’s study was slightly higher than that of the term infants (41.1
±1.1 vs. 39.8±1.6 weeks); however, there was no significant difference in mean PMA between
the two groups in our study (40.3±2.4 vs. 40.5±1.7 weeks).The partial volume effect with the
ROI method in our study might also contribute to the lack of significant differences in the
group comparison of DKI measurements in the PLIC region.

There were several limitations in this study. First, the sample size of subjects was relatively
small. Second, manual placement of the ROIs in the WM and GM regions might limit the reli-
ability and reproducibility of the study. However, the ROI method is easy to implement and
widely used in clinical practice, and the inter- and intra-observer reliabilities of these measure-
ments were proven to be good to excellent. Third, as the histological validation study is war-
ranted within this very early developmental age, the explanation for the meaning of DKI
metrics with underlying biological changes is lacking.

Conclusions
MK derived from DKI was proven to be more closely correlated with the extent of myelination
progression shown in histological findings, which suggests the feasibility and potential applica-
tion of the MK value as a reliable indicator during the myelination process. The MK value may
provide a more robust characterization of deep GMmaturation. In addition, DKI parameters
exhibit subtle differences in the parietal WM between the preterm and term control groups,
which may help with the understanding of early neurodevelopment.

Supporting Information
S1 Fig. Flow diagram of subject enrollment.
(TIF)
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