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Motivation. In the past few years many prediction approaches have been proposed and widely employed in high dimensional
genetic data for disease risk evaluation. However, those approaches typically ignore in model fitting the important group
structures that naturally exists in genetic data. Methods. In the present study, we applied a novel model-averaging approach, called
jackknife model averaging prediction (JMAP), for high dimensional genetic risk prediction while incorporating pathway in-
formation into the model specification. JMAP selects the optimal weights across candidate models by minimizing a cross
validation criterion in a jackknife way. Compared with previous approaches, one of the primary features of JMAP is to allow
model weights to vary from 0 to 1 but without the limitation that the summation of weights is equal to one. We evaluated the
performance of JMAP using extensive simulation studies and compared it with existing methods. We finally applied JMAP to four
real cancer datasets that are publicly available from TCGA. Results. The simulations showed that compared with other existing
approaches (e.g., gsslasso), IMAP performed best or is among the best methods across a range of scenarios. For example, among 14
out of 16 simulation settings with PVE =0.3, JMAP has an average of 0.075 higher prediction accuracy compared with gsslasso.
We further found that in the simulation, the model weights for the true candidate models have much smaller chances to be zero
compared with those for the null candidate models and are substantially greater in magnitude. In the real data application, JMAP
also behaves comparably or better compared with the other methods for continuous phenotypes. For example, for the COAD,
CRC, and PAAD datasets, the average gains of predictive accuracy of JMAP are 0.019, 0.064, and 0.052 compared with gsslasso.
Conclusion. The proposed method JMAP is a novel model-averaging approach for high dimensional genetic risk prediction while
incorporating external useful group structures into the model specification.

1. Introduction

Due to the rapid development of biotechnology [1-4], a large
number of high-throughput and low-cost genetic datasets
have been generated and provide a broad space to investigate
the association between genetic markers and complex
diseases/disorders [5-14]. The great success of association
studies further promotes the risk prediction and evaluation
for complex phenotypes by incorporating into genetic

information (e.g., gene expressions or single nucleotide
polymorphisms) [15-20]. Due to the high dimensional
problem that the number of genetic markers is much larger
than the sample size, one of the greatest challenges for
genetic risk prediction is that it is difficult to apply tradi-
tional statistical methods in large scale molecular omics data.
In the past few years, developing prediction methods that
can efficiently model high dimensional genetic data has been
an active area and attracted much research attention, and a
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series of novel prediction approaches have been proposed
and widely employed for disease risk evaluation or gene
expression imputation [21-27]. However, most of those
approaches ignore in model fitting the important in-
formation of group structures or functional classifications
that naturally exist in genetic data. For example, it is well
known that genes can be grouped into pathways due to the
shared biological function [28]. It has been shown that
incorporating such useful group/functional information into
model fitting can substantially boost statistical power in
genetic association studies and can facilitate our un-
derstanding of the genetic architecture of disease variation
by heritability partition [27, 29-36]. In genetic data, one of
the widely-used group sources is the pathway information in
the Kyoto Encyclopedia of Genes and Genomes (KEGG)
[37, 38], which integrates information on genomic, chem-
ical, and system functions and groups genes with highly
related sequences in terms of the sequence similarity of
genes.

Besides being included in genetic association studies and
heritability estimation, group/functional information is also
recently integrated into genetic risk evaluation with large scale
omics data, e.g., the protein-network-based method [39] and
the combined-optimal-response-genes (CORGs) approach
[40]. Additionally, the regularization methods (e.g., group
Lasso) can perform a group selection and estimation by
considering the group information [41, 42]. The prediction
accuracy can be improved due to the inclusion of grouped
functional information [43-45]. For example, Tang et al. [45]
recently designed a group spike-and-slab Lasso generalized
linear model (gsslasso) that combined KEGG pathway in-
formation into model fitting and demonstrated that compared
with regularization methods (e.g. Lasso), the average gain of
prediction accuracy (measured by area under the curve
(AUQ)) of gsslasso was about 4.5% for sarcoma, 4.6% for
ovarian cancer, and about 1.6% for breast cancer by leveraging
gene expression data available from the Cancer Genome Atlas
(TCGA) [46].

However, how to appropriately include grouped
tunctional information into genetic prediction models is
less understood in the literature. Model-averaging methods
[47, 48] offer a natural manner to address this problem by
averaging the performance of multiple candidate pre-
diction models which can be efficiently constructed based
on grouped genetic datasets. Motivated by this, in the
present study, we employ a novel model-averaging ap-
proach for high dimensional genetic risk prediction while
incorporating KEGG pathway information into the model
specification. The proposed model-averaging approach
selects the optimal weights across candidate models by
minimizing a cross validation criterion in a jackknife way.
We thus refer to the method as jackknife model averaging
prediction (JMAP). We use extensive simulation studies to
evaluate the performance of JMAP and compare it with
existing methods. Finally, we apply JMAP to four real
cancer datasets that are publicly available from TCGA. To
construct candidate prediction models, in the present
study, we divide genes in terms of the KEGG pathway
information [37, 38].
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2. Methods and Materials

2.1. Overview of the J]MAP Method. We first present an
overview of JMAP here; the detailed description of JMAP is
shown in Supplementary Materials. Briefly, JMAP consists
of two-step model fitting procedures: (i) in the first step, we
divide the molecular predictors (e.g., genome-wide gene
expressions) into K biological pathways/groups (e.g., KEGG)
and build a series of candidate linear prediction models with
gene expression measurements available for various groups;
we assume that the pathways are predetermined and that the
predictors may overlap across different pathways; (ii) in the
second step, we look for a suitable weight vector for aver-
aging across the candidate models to perform a pooled
prediction. One of the primary features of JMAP is to allow
model weights to vary from 0 to 1 but without the limitation
that the summation of weights is necessarily equal to one
[47, 48]. As we will see, this weight relaxation is important
and critical, resulting in a substantial improvement of
the prediction accuracy. JMAP has been implemented
within an R function freely available at https://github.com/
biostatpzeng.

2.2. Simulations and Real Data Applications

2.2.1. Simulation Settings. We next carried out extensive
simulations to evaluate the prediction performance of
JMAP. To make the simulation settings as real as possible, we
used gene expression levels obtained from an existing TCGA
dataset of breast cancer (see below for further information
about this data). For simplicity, we extracted the expression
levels for 6,000 randomly selected genes and 500 breast
cancer patients and simulated phenotypes using the fol-
lowing model:

K
y=ZGij+e,e~N(0,InU§), (1)
=

where K is the total number of groups (or pathways); G; is
an n X m; genetic matrix for m; genes in group j with n the
sample size (here n = 500), B; is an m;-dimensional vector of
effects sizes; I, is an n x n identity matrix; and e is an
n-dimensional vector of independently and normally dis-
tributed residuals with variance o2. We considered four
scenarios with different group partitions. In scenarios 1-3,
genes were sequentially divided into 50, 200, or 300 groups
with approximately equal genes per each group; no over-
lapping of genes existed among groups. In scenario 4, we
classified genes into 328 groups in terms of the KEGG
pathway information (see below for details); note that, under
this case, the number of genes included in each group was
not equal and ~21% genes belonged to multiple pathways.
Then, following [45], in each scenario, we randomly selected
five out of all K groups (K =50, 200, 300, or 328 as defined
above) and generated: (I) the effect sizes p; (I=1, 2, 3, 4 and
5) in each of the selected groups followed a normal distri-
bution with mean zero and the same variance (say 0,2).
Under this case, all the genes in the five groups had nonzero
effect sizes; (II) unlike case I, here, we assumed that only the
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genes in the first two groups had nonzero effect sizes and half
of the genes in the last three group had nonzero effect sizes;
(III) instead of assuming equal proportion of nonzero effect
sizes in the last three groups, we set the proportion of
nonzero effect sizes to be 80%, 50%, and 20%, respectively;
(IV) in this case, we set the proportion of nonzero effect sizes
to be 90%, 70%, 50%, 30%, and 10% for the five groups,
respectively. The variance parameters o7 and o2 were
carefully chosen to ensure that y had unit variance as-
ymptotically, and the phenotypic variance explained (PVE)
by genetic component was 0.3, 0.5, or 0.8 in each case,
respectively. The effect sizes for the unselected gene groups
were set to zero.

2.2.2. Real Data Applications. We now applied JMAP to
four cancer datasets publicly available from TCGA [46],
including breast cancer (BRCA), colon and rectal cancer
(CRC), colon cancer (COAD), and pancreatic cancer
(PAAD). We downloaded both the clinical data and RN Aseq
gene expression levels for those cancers from UCSC Xena
(https://xenabrowser.net/). For each cancer, we first merged
the clinical data and gene expression levels measured from
primary cancer tissue; then, we removed genes with more
than 50% zero expressions and standardized the remaining
gene expression levels. The used datasets in this study are
summarized in Table 1. Following previous studies
[12, 38, 49], for the four cancers, we used the age at initial
pathologic diagnosis (i.e., onset age) as phenotypes because
the age of onset is an important indicator that the cancer is
likely more commonly genetic in origin. We quantile-
normalized onset age to a standard normal distribution
before prediction analysis.

2.3. Model Comparison and Implementation. For the sim-
ulated data, the genes were divided into 50, 200, 300, or 328
groups under various scenarios as mentioned before. For the
real datasets, we mapped the genes to KEGG pathways by R
package clusterProfiler (version 3.8.1) after matching gene
symbols to Entrez ids [50] and divided the genes into 328
pathway groups. For both simulated and real datasets, fol-
lowing [24], we performed 100 Monte Carlo cross validation
(MCCYV) data splits by randomly selecting 80% samples as
training data and the remaining 20% as test data. We fitted
the prediction models in the training data and evaluated the
performance in the test data with correlation coefficient (R).

As gsslasso was proved to perform better than sparse
group Lasso [45]; our competing methods only included
Lasso [51], elastic net (ENET) [52], random forest [53], and
gsslasso [45]. For both Lasso and ENET, we implemented
them via the R package glmnet (version 2.0-16), selected the
optimal penalty parameters in Lasso and ENET using 100-
fold cross validation, and set «=0.50 in ENET as done in
[54]. For random forest, we implemented it via the R
package randomForest (version 4.6-14). For gsslasso, we
implemented it via the R package BhGLM (version 1.1.0).
Following [45], we selected the optimal penalty parameter of
gsslasso by setting the slab scale (denoted by s;) to 1, cal-
culated the accuracy of prediction for a series values for the

TaBLE 1: Sample sizes and the number of genes for each cancer in
the TCGA dataset used in our analysis.

Initial gene Final data

Ph expression [nitial clinical data  after quality
enotypes data (N) control

N G N G
BRCA 1,218 20,531 1,247 1,083 17,675
COAD 329 20,531 551 275 17,493
CRC 434 20,531 736 367 17,510
PAAD 183 20,531 196 178 17,675

Note. N is the sample size and G denotes the number of genes. The average
number of genes incorporated in each pathway for the seven phenotypes
was 65 (ranging from 1 to 1,139), and about 21% genes belonged to multiple
pathways. BRCA: breast cancer; CRC: colon and rectal cancer; COAD:
colon cancer; PAAD: pancreatic cancer.

spike scale (denoted by so) (i.e., 5o=0.01xm, m=0.1, 1, 2,
... 9), and chose the optimal value for s, that resulted in a
highest prediction. We solved the quadratic problem in
JMAP (Equations (7) and (8) in Supplementary Materials)
using the optim function in R statistical software. We further
contrasted the prediction performance of all other methods
with that of JMAP by taking the difference of R between the
other methods and JMAP. Therefore, an R difference below
zero suggests worse performance than JMAP.

3. Results

3.1. Results of the Simulation Studies. The simulation results
for the difference of R with PVE = 0.3 are shown in Figure 1
with the original R values shown in Figure S1. There are 16
combinations presented in Figure 1. Compared with other
existing approaches (i.e., Lasso, ENET, random forest, and
gsslasso), we find that, except two situations, JMAP per-
formed best or is among the best methods in most of the
combinations (14 out of 16). For example, among those 14
settings, JMAP has an average of 0.075 higher prediction
accuracy compared with gsslasso, with the difference of R
ranging from 0.023 to 0.116. In the setting with 200 groups in
scenario I (where all the genes in the five groups had nonzero
effect sizes), JIMAP is better than gsslasso (0.056 higher) and
is comparable with random forest, while it behaves slightly
worse than Lasso (0.012 lower) and ENET (0.013 lower). In
the setting with 300 group in scenario III (where the genes
among the first two groups had nonzero effect sizes, but
some of the genes in the rest three groups are null with
various null proportions), all the four competitive methods
(i.e., Lasso, ENET, random forest, and gsslasso) have a
higher prediction accuracy relative to JMAP. The simulation
results for PVE =0.5 and 0.8 are displayed in Figures S2-S5
in Supplementary Materials; we observed the similar pattern
that JMAP performs better or is as good as other competing
methods in most of the simulated settings. We further
checked the estimated weights for the candidate models in
all the scenarios and found that the weights for the true
candidate models (i.e., those with nonzero effect sizes) have
much smaller chances to be zero compared with those for
the null candidate models and are substantially greater in
magnitude (Table S1).
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FiGure 1: Comparison of predictive performance of four models with JMAP with PVE = 0.3. Performance is measured by R difference with
respect to JMAP; therefore, a negative value (i.e., values below the horizontal line) indicates worse performance than JMAP. In each setting,
five groups with nonzero effect sizes were selected; I represents the settings where all the genes in the five groups had nonzero effect sizes; II
represents the settings where only the genes in the first two groups had nonzero effect sizes, and half of the genes in the last three groups had
nonzero effect sizes; III represents the settings where the effect sizes of the first two groups were nonzero, and the proportion of nonzero
effect sizes in the last three groups was 80%, 50%, or 20%; IV represents the settings where the proportion of nonzero effect sizes in the five
groups was 90%, 70%, 50%, 30%, or 10%. The predictive performance was assessed across 100 replicates in each scenario.

3.2. Results of the Real Data Applications. Now, we turn to the
real application of the TCGA data (Table 1). The results of R
differences of other four methods compared with JMAP are
presented in Figure 2. Totally, JIMAP performs comparably or
better compared with the other methods. For example, for the
COAD, CRC, and PAAD datasets, JMAP has the highest
predictive power, followed by gsslasso. Compared with
gsslasso, in these three datasets, the gains of predictive ac-
curacy of JMAP are 0.019, 0.064, and 0.052, respectively. In
the PAAD dataset, JMAP is better than Lasso, gsslasso, and
ENET, while random forest has the highest prediction ac-
curacy. In the BRCA dataset, except for random forest, the
rest of the methods (i.e., Lasso, gsslasso, and ENET) have a
higher prediction accuracy compared with JMAP.

4. Discussion

In the present study, we have employed a novel statistical
method, JMAP, for genetic prediction and evaluation of
complex phenotypes from the publicly available TCGA
datasets. Traditionally, the classical model-averaging
methods first build a series of candidate models with var-
ious degrees of model complexity; then combine all the
candidate models together to boost the prediction perfor-
mance by specifying greater weights onto better models; and
require the summation of the model weights is equal to one
[47, 55, 56]. However, unlike those previous methods, JMAP
relaxes the constraint of summing the weights of candidate
models up to one. By removing this restriction and including
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FiGure 2: Comparison of predictive performance of four models
with JMAP for the four phenotypes from the TCGA datasets.
Performance is measured by R difference with respect to JMAP;
therefore, a negative value (i.e., values below the horizontal line)
indicates worse performance than JMAP. The predictive perfor-
mance was assessed across 100 MCCV replicates. BRCA: breast
cancer; CRC: colon and rectal cancer; COAD: colon cancer; PAAD:
pancreatic cancer.

genetic pathway information, as we have demonstrated in
the simulations and real data applications, JMAP has shown
higher prediction accuracy compared with existing ap-
proaches. Furthermore, it is natural to examine whether the
weight restriction can be further relaxed to allow them to
vary between —1 and 1 [57]. However, we found that this
turther relaxing may be not beneficial for improving the
prediction performance, leading to low accuracy of genetic
prediction (Figure S7). Additionally, because each candidate
model is fitted with ordinary least squares method which
leads to an analytical solution for the effect sizes and because
the weight estimation is optimized through a constrained
quadratic manner, JMAP is thus computationally efficient
and can be easily scalable to the high dimensional genetic
risk prediction problem. For example, in the real data ap-
plications, it takes only about 3, 3, 110, 15, and 18 seconds on
average for Lasso, ENET, random forest, gsslasso, JMAP on
the COAD datasets, respectively.

In practice, the candidate models for model averaging
are typically established in terms of prior knowledge or
expert viewpoints, and the number of the candidate models
(i.e., K in our study) is assumed to be uncertain. To address
this problem, Ando and Li [48] recently proposed first to
partition predictors (equivalent to genes in our study) based
on the marginal correlation magnitude between each pre-
dictor and the response and then adaptively prepared for
candidate model for each partition. This strategy is a flexible

way and avoids the requirement of external information,
while it may be suboptimal if there is informative prior
information that can be utilized. In contrast, in our study, we
explicitly preassigned the number of candidate models for
JMAP. Indeed, using simulations, we have discovered that
JMAP possessed consistently good prediction performance
across various candidate model partitions. In our real data
applications, we also directly built the candidate models for
JMAP based on useful KEGG pathway information which
characterizes the biological functions for various sets of
genes [37, 38] and can result in each candidate model having
unique strength in capturing certain aspects of prediction
ability. Applying external informative pathways to establish
candidate models in JAMP can lead to at least three benefits:
(i) it does not need to search for the appropriate number of
candidate models by partitioning all the genes; thus, it is
computationally faster; (ii) relying on previously well-
validated pathway information, the established candidate
models are more biologically meaningful; (iii) finally, the
marginal correlation way typically groups a given gene into
only one candidate model [48], while in practice, a gene
often can be involved in multiple pathways and will be thus
included into several candidate models, e.g., in our analysis,
about 21% genes can be grouped into at least two pathways.
More generally, under the context of model averaging,
JAMP can naturally handle the overlapping group
structures—a phenomenon that is frequently encountered in
pathway-based data analyses [58]. It has been shown that
efficiently incorporating the overlapping group structures
into model fitting can raise the prediction performance [45].
Hence, JAMP has the potential for further enhancing pre-
diction accuracy. Figures S8 and S9 show the predictive
performance of JMAP and MCV2 (i.e., the model-averaging
method described in [48], where the candidate models are
constructed based on the marginal correlation magnitude
between each predictor and the response) for phenotypes
from both the simulated and real-life datasets and illustrate
the advantage of preassigning the candidate models.

As mentioned before, the greatest feature of JMAP is that
the sum of the model weights is equal to one is relaxed. In
contrast, the traditional model-averaging approaches often
assume that candidate models are equally competitive and
thus assign equal weights for all the candidate models.
However, in practice, this does not necessarily hold given the
fact that only a few pathways are active and the other
pathways may have a small or ignorable influence on
complex phenotypes. Furthermore, as shown in the simu-
lations and real data applications, relaxing the weights
limitation in JMAP allows to put more weights on candidate
models that were constructed for possibly active pathways,
potentially increasing the prediction performance. Theo-
retically, the benefit of relaxing the weights limitation in
model-averaging approaches has been proved in [48].

It is worth noting that in the candidate model of JMAP,
the least squares estimate in Equation (2) (Supplementary
Materials) is ill-conditional when the number of genetic
markers is larger than the sample size for some genes. For
example, in our analysis, there are 5.5% and 5.2% pathways
with the number of genes greater than the sample sizes for the



PAAD and COAD datasets, respectively. Under this situation,
regularization methods (e.g., Lasso) can be applied to each
candidate model [59]; however, doing this can lead to sub-
stantial increase in computational time because the simple
closed-form solution cannot be available for candidate model.
In the present study, by borrowing the idea of ridge regression
[60, 61], we have attempted to add a nonnegative constant §
into the estimates, i.e., replacing GTG with GTG + 61,
(Equation (2) in the Supplementary Materlals) In our paper
we primarily set § to be one and found that JMAP is robust
with regard to various values of & with simulations
(Figure S10). We emphasize that this is an ad hoc modification
which has no clear theoretical foundation. Further in-
vestigation of JMAP under the context that the dimension of
candidate model is larger than the sample size is an important
and interesting topic and is our next research direction.

Finally, the current version of JMAP described in our
study is constructed only for continuous phenotypes.
Extending model averaging from linear to nonlinear re-
gression under the high dimensional situations was recently
investigated [57]. However, although not mentioned, an
explicit model assumption in their study is that the number of
the predictors in each candidate generalized linear model
should be much less than the sample size to ensure the es-
timates can be identifiable. Therefore, their methods cannot
be applied to our case where the number of the genes for some
candidate models is easy to be greater than the sample size as
mentioned before. Thus, in our real data application, we had
to directly fit linear candidate models for binary phenotypes
by treating them as continuous values following previous
studies [21-23, 25]. Theoretically, modeling binary data with
linear models can be justified by the fact that the linear model
can be viewed as a first order Taylor approximation to the
generalized linear model, and this approximation is accurate
when the effect size is weak and small [21]—a condition which
generally satisfies because it has been shown that most
complex phenotypes are polygenic and are influenced by
many genetic variants with small effect sizes [7]. Nevertheless,
extending the JMAP model for application to noncontinuous
phenotypes in high dimensional prediction problems war-
rants more explorations.

Data Availability

The TCGA data are publicly available from https://
xenabrowser.net/. The BhGLM software is available from
http://github.com/nyiuab/BhGLM. The glmnet package is
available from https://cran.r-project.org/web/packages/glmnet/
index.html. Random forest software is available from https://
cran.r-project.org/web/packages/randomForest/index.html.
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A detailed description for the proposed JMAP approach.
Briefly, JMAP is a novel model-averaging based genetic risk
prediction approach that can incorporate the group bi-
ological information of genetic alterations into prediction
modeling. It consists of two-step model fitting procedures:
(1) construct candidate models and (2) optimize the model
weights. (Supplementary Materials)
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