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The prevalence of diabetes mellitus has been increasing for decades worldwide. To
develop safe and potent therapeutics, animal models contribute a lot to the studies of the
mechanisms underlying its pathogenesis. Dietary induction using is a well-accepted
protocol in generating insulin resistance and diabetes models. In the present study, we
reported the multi-omics profiling of the liver and sera from both peripheral blood and
hepatic portal vein blood from Macaca fascicularis that spontaneously developed Type-2
diabetes mellitus with a chow diet (sDM). The other two groups of the monkeys fed with
chow diet and high-fat high-sugar (HFHS) diet, respectively, were included for comparison.
Analyses of various omics datasets revealed the alterations of high consistency. Between
the sDM and HFHS monkeys, both the similar and unique alterations in the lipid
metabolism have been demonstrated from metabolomic, transcriptomic, and
proteomic data repeatedly. The comparison of the proteome and transcriptome
confirmed the involvement of fatty acid binding protein 4 (FABP4) in the diet-induced
pathogenesis of diabetes in macaques. Furthermore, the commonly changed genes
between spontaneous diabetes and HFHS diet-induced prediabetes suggested that
the alterations in the intra- and extracellular structural proteins and cell migration in the
liver might mediate the HFHS diet induction of diabetes mellitus.

Keywords: spontaneous diabetes mellitus, non-human primates, cynomolgus monkey (Macaca fascicularis),
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INTRODUCTION

Diabetes mellitus (DM) is a metabolic malfunction, characterized by a prolonged high blood glucose
level, the prevalence of which has been steadily elevating in the past decades (Martins, 2014; Zhang
et al., 2020). DM occurs when the pancreas produces insufficient insulin, and/or the body tissues,
such as the liver, resist the actions of insulin (Martins, 2018a). Animal models, as in the studies on
many other human diseases, have been wildly applied to the investigations of this metabolic disorder
affecting multiple organ systems (Martins, 2017; Kleinert et al., 2018; Backman et al., 2019). The
animals that developed diabetes mellitus spontaneously provided important insights into the
molecular and cellular pathology of DM (Yasuda et al., 1988; Bauer et al., 2011; Harwood et al.,
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2012; Wang et al., 2013). Because animals of other orders do not
fully recapitulate metabolic changes of primates, non-human
primates (NHPs) are of value in DM study with genetic and
physiological similarity to humans (Yasuda et al., 1988; Hansen,
2010; Bauer et al., 2011; Harwood et al., 2012; Pound et al., 2014;
Havel et al., 2017; Lei et al., 2020; Cox et al., 2021). With the
datasets representing the cellular and molecular alterations at
various levels in NHPs of spontaneous DM (sDM), researchers
can project the data from clinical and experimental studies to the
picture of the correlated metabolic and gene expression profiles.

Increased demands in comprehensive and quantitative
profiling at the molecular levels, along with the improvements
in analytical biotechnology lead to the rapid development of the
“omics” research (Karczewski and Snyder, 2018; Colli et al.,
2020). All branches of omics, such as metabolomics,
transcriptomics, and proteomics, identify and quantify
hundreds to tens of thousands of targets in a high-throughput
manner, providing thorough snapshots of cellular molecules
(Kulkarni et al., 2019; Mistry et al., 2019; Damiani et al., 2020;
Noor et al., 2021). The metabolome represents the molecular
fingerprint left behind cellular processes, generating a link
between cellular regulation and phenotypes (Pearson, 2007;
Holmes et al., 2008). Because of its high tolerance to volatility
and wider molecule coverage, liquid chromatography-tandem
mass spectrometry (LC-MS/MS) is the technique of choice in
metabolomics studies (Ren et al., 2018). It has been demonstrated
that the biochemical process of DM results in significant
signatures in the metabolome (Xu et al., 2013; Monnerie et al.,
2020; Sun et al., 2020). The compounds correlated with the risk of
DM, either positively or negatively, have been documented from
both clinical and experimental investigations (Mora-Ortiz et al.,
2019; Fikri et al., 2020; Sun et al., 2020). Transcriptomics, which
analyses gene expression profiling, is a commonly used tool for
investigating the regulation in response to internal and external
cues. It has been well accepted that genetics and environments are
both risk factors of DM (Murea et al., 2012; Tremblay and Hamet,
2019). The RNA sequencing (RNA-Seq) utilizing the next-
generation sequencing technology allows the quantification of
virtually the whole transcriptome in a sample (Stark et al., 2019).
Previous work has shown that transcriptomics provides the direct
links between genotype and phenotype in DM (Jenkinson et al.,
2016; Christodoulou et al., 2019). Moreover, proteomics profiles
the end products of gene regulation, and a combined
transcriptomic and proteomic datasets would enable the
portraits of the regulatory changes in gene expression (Liu
et al., 2016; Kühl et al., 2017; Dai et al., 2018). Shotgun
proteomics using the label-free quantification (LFQ) strategy,
which is in principle the most easily and widely applicable, offers
reliable quantification results with the development of
experimental approaches and data-procession tools.

The liver plays a major role in the metabolism of
carbohydrates and has been well considered as an essential
organ in DM (Meshkani and Adeli, 2009; Macdonald, 2016;
Tilg et al., 2017; De Silva et al., 2019). Insulin produced from
the beta cells first reaches the liver via the hepatic portal vein,
regulating the storage and release of glucose. The liver, as the
reservoir of sugar, is one of the primary tissues developing insulin

resistance in DM patients. A mount of studies has revealed the
abnormal gene expression and metabolic alterations in the liver
caused by DM (Tilg et al., 2017; Li et al., 2019). It has long been
accepted that insulin resistance attributes, at least partially, to the
higher intake of dietary fat and sugar. Animal models of diet-
induced insulin resistance are of validity in the DM study, which
has been widely applied to investigate the pathogenesis of insulin
resistance as well as DM (Kleinert et al., 2018). Furthermore,
having spatial information, which is measured from the various
types of tissues and organs, is generally more valuable to explain
the changes involved in the processes of disease development.
Peripheral blood (PB) is one of the most accessible samples
clinically. DM, as a disorder of multiple organ systems,
significantly changes the molecules carried in PB, which has
been discovered from many studies (O’Kell et al., 2017; Zheng
et al., 2021a). The hepatic portal vein blood (HPVB) carries not
only metabolites from the abdominal organs but also the
important proteins/peptides like insulin from the pancreas to
the liver (Edgerton et al., 2019). The available data, albeit limited,
illustrate that it variations between the DM cases and the healthy
controls.

In the present study, we diagnosed spontaneous type 2 DM
(sDM) on three cynomolgus monkeys (Macaca fascicularis) of
about 15 years old (Figure 1A). To investigate the hepatic
changes caused by extra calories related to the development of
insulin resistance and diabetes, we also enlisted another three
cynomolgus macaques who developed prediabetic symptoms
after 15-months feeding of high-fat and high-sugar (HFHS)
diet. About 3 years after the diagnosis, the liver tissue, PB, and
HPVB samples were collected from both groups of macaques and
chow diet-fed normal controls (NC) of a similar age (Figure 1A).
We sampled the metabolome, transcriptome, and proteome from
the liver of each individual. Highly consistent results were found
from multi-omics data. Analysis of metabolomic, transcriptomic,
and proteomic alone and joint revealed that both the diabetes
conditions and the HFHS diet caused the alterations in lipid
metabolism. Also, we found that the commonly changed genes of
these two groups of macaques suggested that the hepatic
alterations in the extracellular matrix and cell migration might
function importantly at the early stage of the HFHS diet-induced
diabetes mellitus. These multi-omics datasets from the liver and
blood are also a valuable resource for comparing results with
other experimental or clinical studies.

MATERIALS AND METHODS

Macaques and Growth Conditions
MaleMacaca fascicularis of about 18 years old were bought from
Huazhen Biosciences Co., Ltd. (Guangzhou, China). All
macaques were born from 16th August 2001 to 11th February
2004 (Supplementary Table S1) and grown in the animal rooms
maintained at 16 ∼ 26°C and 40–70% room humidity on a 12-h/
12-h light-dark cycle. All monkeys were housed individually in
standard stainless steel cages (80 cm × 80 cm × 85 cm) and the
assigned diets were supplemented twice a day at 8:00 (100 g) and
16:00 (150 g), plus 100 g of apple at 12:00. The animals were
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allowed to access water freely. The macaques of both NC and
sDM groups were fed with the normal food (19.26% protein, 5%
fat, no sugar, and no cholesterol), whereas the HFHS monkeys
were grown up on the same diet until switching to the high-fat
and high-sugar (HFHS) food (S 30% sugar,S 15% fat,S 10.5%
protein, andS 0.5% cholesterol) on 1st March 2019 (Figure 1A).
After 15 months of food change, blood and urine samples were
collected from all macaques after 12–14 h of fasting for

examination and the intravenous glucose tolerance test
(IVGTT) was conducted. The routine hematological
examination was performed on the Hematology Analyzer
pocH-100iV (Sysmex, Kobe, Japan). Insulin was quantified
using the Cobas E411 Analyzer (Roche, Basel, Switzerland),
and other blood biochemical analyses, including the
measurement of blood sugar, were done by the Cobas C311
Analyzer (Roche, Basel, Switzerland). Urinary analysis was done

FIGURE 1 | The design of the experiments. (A) Experimental workflow. Three groups of Macaca fascicularis were sacrificed and their liver, PB, and HPVB were
collected for metabolomic, transcriptomic, and proteomic profiling. (B–F) The comparison of urinary glucose (B), blood glucose (C), HbA1c (D), bodyweight (E), and
insulin (F) between the groups. (G) and (H) The changes in blood glucose (G) and insulin (H) during IVGTT. (I) The representatives of the histochemical staining results of
the macaque livers from the three groups.
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in the local hospital Guangzhou Conghua District Hospital of
Traditional Chinese Medicine. IVGTT was done in the morning
after 12–14 h of fasting. In IVGTT, 50% (w/v) glucose solution
was injected into the limb vein of the anesthetized monkeys
(1 ml/kg body weight) immediately after blood collection (0 min)
from another limb. Then the blood samples were collected after 1,
3, 5, 10, 20, 40, and 60 min for both sugar and insulin analysis.

All macaques were then sacrificed via overdose anesthesia at
about 18 years old, or 1.25 years after the switch of foods
(Figure 1A; Supplementary Table S1). In brief, the animals
were fasted for more than 12 h before euthanasia and transferred
to the operating room with no other experimental animals
present. Ketamine hydrochloride was injected intramuscularly
at a dose of 10–25 mg/kg, followed by the intravenous injection of
4% sodium pentobarbital solution (100 mg/kg) after animal
stabilization. Two veterinarians checked and confirmed the
death of the monkey independently before the dissection. The
liver, PB, and HPVB samples were collected by veterinarians.
Both blood samples were centrifuged at 3,000 rpm for 10 min at
4°C immediately to separate sera. All samples were frozen in
liquid nitrogen and stored at −80°C until use. The study protocol
received prior approval (license number 2020025) from the
Institutional Animal Care and Use Committee of Guangzhou
Huazhen Biosciences.

Metabolite Extraction
The hydrophilic and hydrophobic compounds were extracted
using methanol/water and MTBE/methanol/water solvent
systems, respectively. Samples were first thawed on ice. To
extract hydrophilic metabolites from the tissue samples, 1 ml
of methanol/water (7:3, v/v) was added to 50 mg of the liver, and
homogenized with steel balls for 3 min at 30 Hz, followed by
1 min of a vortex. The homogenate was then centrifuged at
12,000 rpm for 10 min at 4°C to collect the supernatant.
Hydrophobic compounds were extracted from another 50 mg
using a slightly modified protocol. Briefly, homogenization was
done with 1 ml of MTBE/methanol (10:3, v/v) and 100 µL of
water was mixed with the homogenate to extract before
centrifugation. For the sera of PB and HPVB, 3 volumes (v/v)
of methanol and a mixture of MTBE and methanol (10:3, v/v)
were whirled with the serum samples for 3 min, followed by
centrifugation at 12,000 rpm for 10 min at 4°C. All collected
supernatants were dried and store at −80°C until LC-MS/MS
analysis. Internal standards were dissolved in the solvents before
extraction.

Protein Extraction and Trypsin Digestion
The tissue sample was ground into a powder in liquid nitrogen
and mixed with 4 volumes (v/w) of lysis buffer (8 M urea and 1%
Protease Inhibitor Cocktail). The mixture was sonicated three
times (30 s each time, 2 s gap) on ice using a high-intensity
ultrasonic processor (Scientz, Ningbo, China) and centrifuged at
12,000 ×g for 10 min at 4°C. The supernatant was collected and
the protein concentration was determined with a BCA kit
following the manufacturer’s protocol.

After that, trichloroacetic acid (TCA) was added to the same
volume of each sample to a final concentration of 20%. After

1 min vortex, the samples were placed still at 4°C for 2 h, followed
by centrifugation at 4,500 ×g for 5 min. The protein pellets were
washed with pre-cooled acetone three times and completed dried
with a nitrogen stream. The dried pellets were subsequently
resuspended in 200 ml of TEAB with ultrasonication. Trypsin
was then added at a 1:50 (trypsin:protein, w/w) ratio for digestion
overnight. The tryptic peptide solution was reduced with 5 mM
dithiothreitol (DTT) for 30 min at 56°C, followed by 15 min of
alkylation with 11 mM iodoacetamide (IAA) at room
temperature in darkness. The peptides were then separated
with C18 cartridges (Waters, Milford, MA, United States) and
subjected to LC-MS/MS analysis.

Total RNA Extraction
Total RNA was extracted using Trizol (Invitrogen, Carlsbad, CA,
United States) according to the manufacturer’s instructions. In
Brief, about 60 mg of tissues were ground into a powder in liquid
nitrogen, and homogenized in the RNA extraction buffer for
2 min, followed by resting horizontally for 5 min. The mix was
then centrifuged for 5 min with 12,000 ×g at 4°C, and the
supernatant was transferred into a new tube with 0.3 ml
chloroform/isoamyl alcohol (24:1). The mix was shacked
vigorously for 15 s and centrifuged at 12,000 ×g for 10 min at
4°C. The upper aqueous phase was transferred into a new tube
andmixed with an equal volume of isopropyl alcohol, followed by
centrifugation at 13,600 rpm for 20 min at 4°C. Then the RNA
pellet was washed twice with 1 ml 75% ethanol and centrifuged at
13,600 rpm for 3 min at 4°C to desert the residual ethanol. After
5–10 min of air dry in a biosafety cabinet, the RNA pellet was
dissolved in 25–100 µL of DEPC-treated water, followed by
qualification and quantification using a NanoDrop and Agilent
2100 bioanalyzer (Thermo Fisher Scientific, MA, United States),
respectively.

Targeted Metabolomics and Lipidomics by
Liquid Chromatography-Tandem Mass
Spectrometry
Both hydrophilic and hydrophobic extracts were analyzed using a
UPLC-ESI-MS/MS system (UPLC, Shim-pack UFLC
SHIMADZU CBM A system, SHIMADZU, Japan; MS,
QTRAP® System, Sciex, Washington, United States).
ACQUITY UPLC HSS T3 C18 column (1.8 µm,
2.1 mm*100 mm, Waters, Milford, MA, United States) was
used for UPLC, working with the following parameters: the
Column temperature of 40°C, a flow rate of 0.4 ml/min, and
injection volume of 2 μL. The analysis of hydrophilic metabolites
used water containing 0.1% formic acid (A) and acetonitrile
containing 0.1% formic acid (B) as mobile phases, with a
gradient program (V/V) as follows: 95:5 at 0 min, 10:90 at
11.0 min, 10:90 at 12.0 min, 95:5 at 12.1 min, and 95:5 at
14.0 min. For lipidomic analysis, the samples were injected
onto a Thermo C30 column (2.6 μm, 2.1 mm × 100 mm).
Mobile phase was composed of acetonitrile/water (60/40, v/v)
containing 0.04% acetic acid and 5 mmol/L ammonium formate
(A) and acetonitrile/isopropanol (10/90, v/v) containing 0.04%
acetic acid and 5 mmol/L ammonium formate (B). The gradient
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program (V/V) was as follows: 80:20 at 0 min, 50:50 at 3.0 min,
35:65 at 5.0 min, 25:75 at 9.0 min, 10:90 at 15.5 min, and 80:20 at
16.0 min. The metabolome and lipidome were measured on a
mass spectrometric system with triple quadrupole (QqQ) scans
combined with LIT scans in both positive and negative ion modes
under the control of Analyst 1.6.3 software (Sciex, Washington,
United States). The ion spray voltage (IS) of the ESI source was
5500 and −4500 V for positive and negative modes, respectively.
Source temperature was set at 500°C, ion source gas I (GSI), gas II
(GSII), curtain gas (CUR) at 55, 60, and 25.0 psi, respectively, and
collision gas (CAD) high. Instrument tuning andmass calibration
in QqQ and LIT modes were performed with 10 and 100 μmol/L
polypropylene glycol solutions, respectively. Specific sets of
multiple reaction monitoring (MRM) transitions of various
periods of retention time were monitored according to an in-
house library of metabolites.

Nano-Liquid Chromatography-Tandem
Mass Spectrometry Analysis of Tryptic
Peptides
NanoLC-MS/MS was performed by coupling a NanoElute and
timsTOF Pro (Bruker, Billerica, MA, United States). The tryptic
peptide sample was dissolved in 0.1% formic acid and 2%
acetonitrile (solvent A) and directly loaded onto the NanoLC-
MS/MS platform. A constant flow rate of 450 nL/min was used
for the LC system and the solvent B of mobile phase was 0.1%
formic acid in acetonitrile, with a gradient from 4 to 22% in
0–70 min, 22–30% in 70–84 min, 30–80% in 84–87 min, and
holding at 80% for the last 3 min. The peptides were subjected to a
glass capillary ion source with an electrospray voltage of 2.0 kV
for tandem mass spectrometry analysis. The data were collected
in parallel accumulation–serial fragmentation (PASEF) mode in
which one MS full scan followed by 10 MS/MS scans with 30 s
dynamic exclusion was used. Both the precursor ions and
fragment ions were analyzed with high-resolution TOF. The
peptide precursors of changes from +1 to +5 were detected in
a scan range from m/z 100 to 1700.

Construction of mRNA Library and
RNA-Seq
Oligo (dT)-attached magnetic beads were applied to purify
mRNA from the total RNA. Purified mRNA was fragmented
into small pieces with fragment buffer. Then the first-strand
cDNA was generated using random hexamer-primed reverse
transcription, and the second-strand cDNA was synthesized.
A-Tailing Mix and RNA Index Adapters were then added by
incubation. The cDNA fragments were amplified by PCR,
followed by purification by Ampure XP Beads, and then
dissolved in EB solution. The product was validated on an
Agilent Technologies 2100 bioanalyzer for quality control. The
double-stranded PCR products were heated to denature and
circularized by the splint oligo sequence to construct the final
library. The final library was amplified with phi29 to make a DNA
nanoball (DNB) which had more than 300 copies of one
molecular. After that, DNBs were loaded into the patterned

nanoarray and single end 50 base reads were generated on the
BGIseq500 platform (BGI, Shenzhen, China).

Raw Data Processing
Integration and correction of the peak areas corresponding to the
targeted metabolites from the LC-MRM-MS/MS data were done
with MulitQuant (version 3.0, Sciex, Washington, United States),
followed by normalization against the total peak areas
measured from each sample. The Automatic method of
MultiQuent was used with the parameters specified as
following: Gaussian smooth width: 0 points; RT half
window: 30 s; min peak width: 2 points; min peak height:
800; noise percentage: 70.0%; baseline sub window: 2 min;
peak splitting: 2 points; RT tolerance: 0.2 min.

The LC-MS/MS data for proteomics were identified and
quantified using the MaxQuant search engine (Ver 1.6.6.0).
MS2 were searched against the Macaca fascicularis
(UP000233100_9541, 46,259 sequences) from the Uniprot
database (https://www.uniprot.org/) concatenating with the
contaminants database. Target-decay search strategy was
applied with decoy databases of reversed sequences. The
search parameters were specified as following: cleavage
enzyme, Trypsin/P; missing cleavages, up to 2; the mass
tolerances for precursor ions, 20 ppm in both the first search
and the main search; the mass tolerance for fragment ions,
20 ppm; fixed modification, Carbamidomethyl on cysteine;
variable modifications, acetylation at protein N-terminus,
oxidation on methionine, and deamidation on both
N-terminus and glutamine. False discovery rate, or say FDR,
for the peptide-spectrum match (PSM) and protein identification
were both 1%. The quantification method was set as LFQ.

After filtering the low-quality reads with SOAPnuke (Ver
1.5.2), sequencing alignment and mapping to the Macaca
fascicularis genome (GCF_000364345.1) from NCBI (https://
www.ncbi.nlm.nih.gov) were done by Bowtie (Ver 2.3.4.3)
using the --sensitive preset and HISAT2 (Ver 2.1.0) with
the default setting, respectively. The program RSEM (Ver 1.3.
1) was then used to quantify the reads and the gene
expression level was calculated by the FPKM method. The
differentially expressed genes were given by DESeq2
according to q-value � 0.05.

Data Analysis
Student’s t-test and calculation of Pearson correlation coefficients
were done in R using the STATS package (v3.6.2). Orthogonal
partial least squares discriminant analysis (OPLS-DA) was
implemented using the R package ROPLS (v1.20.0), and the
variables of log2 ratio outside ±0.6 and variables importance
in projection (VIP) > 1 were considered as significantly changed
variables. Principal component analysis (PCA) was performed by
MetaboAnalyst5.0 (https://www.metaboanalyst.ca) without
filtering. The data were first normalized by sum across each
sample, then z-scored for each metabolite (i.e., centralized by
mean and divided by the standard deviation) before PCA. Gene
Ontology (GO) and pathway enrichment were analyzed through
the GO Consortium (http://geneontology.org) and KEGG
websites (https://www.genome.jp/kegg/), respectively.
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RESULTS

Experimental Design
Type 2 DM symptom was found in three macaques when they
were about 15 years old. We conducted IVGTT on the monkeys
and found their ability to secret insulin in response to glucose was
significantly reduced compared to age-matched normal monkeys.
In addition to the sDM group consisting of these three, other six
carb-eating macaques of a similar age and housed at the same
farm were recruited as the control in the study. A random half
(three ones) of these control macaques were kept growing under
the unchanged conditions, termed as normal control (NC). The
other three have been fed with the HFHS diet for 1.25 years before
sacrifice (Figure 1A), which was named the HFHS group. To
profile the health conditions of each individual in detail, we have
comprehensively performed clinical tests on each crab-eating
macaque (Macaca fascicularis) (Supplementary Table S1).
The diabetes of the sDM monkey was characterized by the
highest blood sugar, urine sugar, and glycated hemoglobin
(HbA1c) levels (Table 1). As compared with the NC group,
the sDM monkeys had dramatically increased urine sugar (677
fold, Figure 1B), and higher levels of both fasting blood sugar (4.6
fold, Figure 1C) and HbA1c (2.7 fold, Figure 1D). The average
values of these three indicators of the HFHS ones were also higher
than that of the NC group (2.8, 1.5, and 1.2 fold rise in
urine sugar, blood sugar, and HbA1c, respectively) although
only the increase of HbA1c in the HFHS group showed
significantly (Figure 1D). The HFHS-caused alterations in the
blood (p � 0.06) and urine (p � 0.1) sugars had larger p-values
(Table 1), partially due to the limited number of subjects in each
group. According to the definition from the American Diabetes
Association, the criteria for diabetic humans are fasting blood
glucose ≥7 mM and HbA1c ≥ 6.5% (American Diabetes
Association, 2018). The two values of the sDM macaques
(17.9 ± 1.0 mM fasting blood glucose and 10.4 ± 1.6% HbA1c)
were much higher than these standards although both levels of
NHPs are typically lower than humans (Lei et al., 2020). The

HFHS group, on the other hand, had a fasting blood glucose of
5.8 ± 1.2 mM and an HbA1c level of 4.7 ± 0.2%, lower than but
very close to the boundaries. Furthermore, the HFHS group
showed a significant increase in body weight but that of sDM
macaques were similar to the normal ones (Figure 1E). Over
1 year of the HFHS feeding seemed to result in a level of insulin
significantly higher than that observed in the sDM monkeys
(Figure 1F). IVGTT was applied before sacrifice to measure the
response of the monkeys to blood glucose. As a result, escalated
circulating glucose failed to induce the production of insulin in all
sDM macaques, resulting in a prolonged last of high blood
glucose (Figures 1G,H). These results indicated that the sDM
individuals were at the later stages of type 2 DMwith significantly
reduced insulin secretion. The HFHS macaques showed
enhanced secretion of insulin, but glucose metabolism was still
slower than that of the normal ones, suggesting insulin resistance
in these monkeys. The Oil Red O Staining of the liver tissues
demonstrated the accumulation of lipids in the liver of the HFHS-
fed monkeys. Although much less than that of the HFHS group,
more lipid droplets were formatted in the liver of sDMmacaques,
as compared with that of the NC group (Figure 1I). These test
results indicated that the three monkeys in the sDM group were
suffering from diabetes mellitus, whereas in the HFHS group, the
subjects who had developed some lesions similar to that of DM
symptoms were prediabetes. We, therefore, profiled both
hydrophilic and hydrophobic metabolites in the liver, PB, and
HPVB of all nine individuals (Figure 1A). In parallel, we also
extracted RNA and protein from all liver samples and measured
transcriptomic and proteomic abundance profiles using RNA-seq
and shotgun proteomics approaches, respectively (Figure 1A).

Characterization of Metabolome and
Lipidome
Using the UPLC-MS/MS workflow, we identified 1,082
metabolites from all 27 samples (Supplementary Table S2).
Slight higher numbers of metabolites were detected from the

TABLE 1 | The clinical tests of all three groups of macaque.

Mean (± SD)a Ratio (p-value)b

NC HFHS sDM HFHS/NC sDM/NC sDM/HFHS

Age (year) 17.7 (±1.2) 18.2 (±0.7) 18.2 (±1) 1.03 (0.5 1.03 (0.6) 1 (1)
Bodyweight (kg) 6.4 (±0.8) 9.3 (±1.1) 7.2 (±1.2) 1.44 (0.02) 1.13 (0.4) 0.78 (0.1)

Blood
Blood glucose (mM) 3.9 (±0.4) 5.8 (±1.2) 17.9 (±1) 1.48 (0.06) 4.56 (2×10−5) 3.09 (2×10−4)
Insulin (μIU/ml) 19.1 (±14.4) 39.9 (±9.8) 14.2 (±4.8) 2.09 (0.1) 0.74 (0.6) 0.35 (0.01)
HbA1c (%) 3.8 (±0) 4.7 (±0.2) 10.4 (±1.6) 1.23 (0.02) 2.73 (0.02) 2.22 (0.02)
LDL (mM) c 0.8 (±0.2) 9.3 (±3.6) 2.6 (±1.9) 11.12 (0.05) 3.07 (0.24) 0.28 (0.04)
CREA (μM) c 72.7 (±9.7) 88.8 (±10.4) 59.6 (±5.1) 1.22 (0.1) 0.82 (0.1) 0.67 (0.01)
MCH (10-1pg) c 23.9 (±0.3) 22.8 (±0.5) 23.3 (±1.6) 0.95 (0.04) 0.98 (0.6) 1.02 (0.6)
Na+ (mM) 151.5 (±2) 150.1 (±8.6) 147.5 (±1.1) 0.99 (0.8) 0.97 (0.04) 0.98 (0.6)
Cl− (mM) 109.5 (±1.7) 113.1 (±3.7) 106.5 (±1.9) 1.03 (0.2) 0.97 (0.1) 0.94 (0.05)

Urine
Urine glucose (mM) 0.2 (±0.1) 0.4 (±0.2) 106.1 (±0.2) 2.79 (0.1) 677.3 (9 × 10−12) 243 (3 × 10−11)

aMean ± SD, of n � 3 for each of the three groups.
bThe significant changes (p < 0.05) are shown in bold.
cLDL, low-density lipoprotein; CREA, creatinine; MCH, mean corpuscular hemoglobin.
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FIGURE 2 | The comparison among the metabolomics data. (A) Principal component analysis of the 1,082 metabolites identified from all 27 samples and 4 QC
samples. (B) The metabolites of significantly different levels between the PB and HPVB samples of each group. (C–E) The metabolites of significantly different levels
between the HFHS and NC groups (C), the sDM and NC groups (D), and the sDM and HFHS groups (E). (F) The enriched classes of molecules found from the
metabolites altered in the HFHS and sDM groups. (G–I) The inter-group changes of acylcarnitines (Car), diacylglycerols (DG), and triacylglycerols (TG) in the liver
(G), PB (H), and HPVB (I) samples.
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serum samples. Principal component analysis (PCA) of all
samples illustrated a significant difference between the
circulating metabolome and that from the liver tissues
(Figure 2A). Also, the blood metabolomes of all groups had
specific fingerprints but relatively small variants between PB and
HPVB samples were observed (Figure 2A). Consistently, higher
levels of correlations were observed between blood samples and
between liver samples, but not between any blood and the liver
sample, indicating that the profiles of detected metabolites
captured the signature of the whole metabolome in different
samples (Supplementary Figure S1). The inter-group difference
in serum metabolome was much larger than that between the PB
and HPVB of the same group of macaques (Supplementary
Figure S2). In the NC monkeys, the PB and HPVB
metabolomes had a difference of only 92 metabolites
(Figure 2B; Supplementary Figure S3). More metabolites
varied between PB and HPVB in the HFHS (223) and sDM
(139) groups (Figure 2B; Supplementary Figure S2). On the
other hand, over 400 metabolites in either PB or HPVB varied
with the disease condition and/or the switch of diet (Figures
2C–E; Supplementary Figure S4; Supplementary Table S2),
indicating the significant difference in the metabolism of these
three groups. The PB and HPVB metabolomes shared a majority
of altered metabolites. Although the metabolites changed in the
liver had relative unique profiles, over half of them also
overlapped those altered in sera (Figures 2C–E;
Supplementary Figure S4; Supplementary Table S2). The
altered metabolites are mainly enriched in the various classes
of lipids as well as amino acids and peptides (Figure 2F). The
spontaneously developed diabetes mellitus caused significant
changes in the liver, characterized by the altered lipids of
diacylglycerols, monoacylglycerols, fatty acyls, sphingomyelins,
glycerophosphocholines, glycerophosphoethanolamines,
glycerophospholipids, and glycerophosphoserines. Intriguingly,
only polyunsaturated fatty acids increased in the liver as well as
the blood of the sDM monkeys, whereas elevated levels of
saturated, mono- and polyunsaturated fatty acids were
observed in the HFHS groups compared with the NC
group (Supplementary Figure S5). Consistent with the
lipid droplets found from the HFHS livers (Figure 1I),
lots of di- and triacylglycerol species increased in the liver
of HFHS groups (Figure 2G). Instead of accumulation in the
liver, di- and triacylglycerols elevated in the blood of the
sDM monkeys (Figures 2H,I), further evidenced the
diabetes of these macaques. Accordingly, enhanced levels
of bile acids were measured from the HPVB of both the
HFHS and sDM groups (Supplementary Figure S6).
However, as compared with the HFHS group, the sDM
monkeys failed to increase some bile acid species,
including hyodeoxycholic acid, a bile acid of importance
in regulating glucose homeostasis (Zheng et al., 2021b). In
contrast, the sDM subjects had higher levels of taurocholic
acid and taurodeoxycholic acid in both the liver and HPVB,
which was also observed in the plasma of human patients
(Mantovani et al., 2021). These observations suggest that
distinct metabolic signatures of sDM and HFHS monkeys
can be revealed by metabolomics and lipidomics, although

some tendencies of bile acid changes in the prediabetic
models were similar to those in the monkeys of diabetes.

RNA-Seq Analysis of the Liver
The transcriptomics has profiled the expression of 18,841 genes,
which were collapsed from over 46,000 transcripts, in the liver
tissues of these monkeys (Supplementary Table S3). The
detected transcriptome from each individual was similar in
terms of both the total number of transcripts and their
abundance distribution (Supplementary Figure S7). As
compared with the NC group, the HFHS monkeys altered the
expression of 146 (80 decreased and 66 increased) genes
(Figure 3A). The numbers of down- and upregulated genes in
the sDM group were 59 and 80, respectively (i.e., 139 in total;
Figure 3B). Between the HFHS and sDM groups, 160 genes were
different, out of which 89 and 71 showed higher levels in HFHS
and sDM subjects, respectively (Figure 3C). Interestingly, the
HFHS and sDM groups showed the largest difference in terms of
the number of altered genes. (Figure 3D). The cross-comparison
among the three groups demonstrated that these two groups
shared only 33 altered genes (Figure 3D). The altered genes
between HFHS versus NC groups and those between HFHS
versus sDM groups showed a higher number in common,
similar to the pattern observed from the comparison of the
liver metabolome (Figure 2E). The genes altered in the HFHS
groups consisted also of the ones participating in the metabolic
and signaling processes of lipoprotein particles, cholesterol, and
fatty acids; meanwhile, very-low-density lipoprotein particle
remodeling was observed in sDM monkeys rather than HFHS
group (Supplementary Figure S8). Focusing on the spontaneous
DM, we further compared the genes that commonly changed in
both the HFHS and sDM groups, and those regulated only in the
sDM macaques (Figure 3E). The only genes differentially
expressed in all three groups were PRAP1 (Figures 3D,E),
which was recently reported as a lipid-binding protein
promoting lipid absorption (Peng et al., 2021). As expected,
many genes merely changed in the sDM group, such as
SULF2, GFAP (Pang et al., 2017), ABCG1 (Daffu et al., 2015),
GCK (Haeusler et al., 2015), ISM1 (Liu et al., 2019), and CORIN
(Pang et al., 2015) (Figure 3E), have been associated with
diabetes. The significant alterations of these genes observed
only from the sDM groups but not the HFHS groups were
consistent with the mild DM-like symptoms found from these
monkeys (Figure 1). We performed a Gene Ontology (GO)
enrichment analysis of the genes commonly regulated in both
HFHS and sDM groups (Figure 3F). In accordance with the
alterations in the metabolome, these regulated genes enriched in
the cellular processes related to lipid metabolism. Additionally,
the genes regulated in both HFHS and sDM groups included also
the ones participating in the development of the extracellular
matrix. The genes commonly regulated in both HFHS and sDM
groups included a bunch of genes encoding proteins functioning
in the lipid metabolism, such as LIPG, APOA5, ACAA2, and
FABP4 (Figure 3E). Taken together, these results demonstrated
the similarity in lipid metabolism between the sDM and HFHS
groups, as those observed from the metabolomes (Figure 2).
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FIGURE 3 | The expression profile in the livers of three groups. (A–C) The volcano plots of the genes differentially expressed between the HFHS and NC groups (A),
the sDM and NC groups (B), and the sDM and HFHS groups (C). (D) The altered transcripts between every two groups of the monkeys (E) The z-scored expression of
the genes that significantly regulated commonly in both the sDM and HFHSmacaques (upper panel) and only in the sDM group (lower panel). The genes that have known
functions related to cell morphology and cell movement are underlined. (F) Fisher’s exact tested GO term enrichment (biological process) of the genes co-regulated
in both sDM and HFHS groups.
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However, the expression of some known marker genes in the
prediabetic macaques was still more similar to that in the healthy
monkeys after 15 months of intake of extra fat and sugar.

Surprisingly, structural proteins and related regulators
accounted for nearly a quarter (8 out of 33) of the genes
altered in both the sDM and HFHS groups. These eight genes
included keratins (KRT 5/6C/14/16/17), cell-matrix adhesion

protein Collagen alpha-1 (XVII) chain (COL17A1), and
cytoskeleton-binding regulatory proteins Tensin-4 (TNS4) and
Cornifin-B (SPRR1B) (Figures 3E,F). In addition, 14 commonly
regulated genes were known for their functions related to cell
morphology and cell movement. They were upregulated genes
HAND1, OSR1, FABP4, PLAT, and PRAP1, and the
downregulated ones PTK2B, S100A2, SFN, TNS4, SCG2, VIP,

FIGURE 4 | Proteomic profiling in the liver of the three groups. (A) The histogram of sequence coverage of all identified proteins. (B) The numbers of significantly
changed proteins between the groups. (C–E) KEGG pathway enrichment of the altered proteins between the NC and HFHS groups (C), between the sDM and HFHS
groups (D), and between the sDM and NC groups (E). (F) The fold changes of the four differentially expressed proteins among all three groups. FABP4; Fatty acid binding
protein 4; CNTFR, Ciliary neurotrophic factor receptor; HAL, Histidine ammonia-lyase; MVK, Mevalonate kinase. Mean ± SD are shown. *, p < 0.05; **, p < 0.01; ***,
p < 0.001.
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KRT16, VGF, and COL17A1. These results suggested that the
morphological changes in the liver caused by the HFHS diet were
likely similar to that in the diabetes liver, which might be related
to the pathogenesis of DM.

Quantitative Proteomics of the Liver
Proteomics identified approximately 5000 proteins from the liver
tissues (Supplementary Table S3). The average sequence
coverage was 28.6% and about 99% of them (4,900 out of
4,954) were identified with at least one unique peptide
(Figure 4A; Supplementary Table S4). Similar to that
observed in the transcriptome, these proteomics data also
showed that the highest alteration between the HFHS and
sDM macaques, and the largest number of regulated proteins
in common between the cross-comparisons of HFHS versus NC
as well as HFHS versus sDM (Figure 4B). Individually, the HFHS
diet triggered the alterations of 192 proteins, out of which 71 and
121 were down- and upregulated, respectively (Supplementary
Figure S9A). Also, the spontaneous DM resulted in the changes
in 153 proteins, 51 decreased and 102 increased, in the liver
(Supplementary Figure S9B). Between the HFHS and sDM
groups, we observed 298 proteins of various abundance,
consisting of 169 down- and 129 upregulated ones
(Supplementary Figure S9C). When comparing the
differential proteins from these two pair-wise contrasts, it was
found that the HFHS-enhanced metabolic pathways were largely
overlapped when referred to the NC (Figure 4C) and sDM
groups (Figure 4D). The commonly upregulated glycan
degradation pathways, PPAR signaling pathway, fatty acid
metabolism, sugar metabolism, and cholesterol metabolism
indicated the significant changes in the hepatic proteome
caused by the food composition. However, the proteins in the
sDM livers that were differentially expressed in comparison to the
proteins in the NC and the HFHS groups enriched in the distinct
pathways (Figure 4E). In contrast to the NC macaques, the
altered proteins in the sDM livers functioning in various
singling pathways, whereas the comparison between the HFHS
and sDM groups mainly highlighted the enrichment of changed
proteins in biosynthetic pathways (Figure 4D). Four proteins
were differentially expressed in all three groups (Figures 4B,F).
Fatty acid binding protein 4 (FABP4) increased dramatically in
both HFHS and sDM groups and showed the highest level in the
former (Figure 4F). FABP4 has been reported as a marker protein
for type 2 diabetes and a protein target for inflammatory diseases.
CNTFR, the receptor for ciliary neurotrophic factor (CNTF), was
reduced in both the HFHS and sDM groups. Preview studies have
also proposed CNTF as a candidate agent for the therapy of
diabetes complications (Ma et al., 2018). Both histidine
ammonia-lyase (HAL) and mevalonate kinase (MVK)
decreased in the HFHS group but elevated in the sDM groups
(Figure 4F). Mevalonic acid is the precursor for cholesterol
synthesis, in which MVK is a key enzyme. Epidemiological
studies have demonstrated that inhibiting the production of
mevalonic acid increases the risk of developing type 2
diabetes.

Cross-Omics Insights Into the Alterations of
the Liver
To find the common features of HFHS and sDM, we performed
cross-omics analyses and provided insights into pathological
changes in macaque livers. For the genes whose transcripts
and their encoded proteins were both detected from
transcriptomic and proteomic approaches, respectively, we
calculated the Pearson correlation between the transcript and
protein of each gene across all samples of each group and found
positive correlations (Pearson’s correlation coefficient >0.5) for
about a half of them (Figure 5A). For the significantly regulated
genes, a strong correlation between the changes in transcripts and
proteins was found when every two groups of macaques were
compared (Figures 5B–D). The consistency showed the changed
protein abundance caused by the pathogen of DM and/or the
switch to HFHS food were predominately regulated via gene
expression, which was captured in our data precisely. Both
transcriptomic and proteomic data supported upregulation of
FABP4 in both HFHS and sDM groups and showed the highest
level in the former (Figures 4F, 5C,D). FABP4 is one of the
biomarkers that has been associated with both type 1 and 2 DM
(Rodríguez-Calvo et al., 2019; Xiao et al., 2021). The abundance of
phosphotransferase (GCK) in the sDM livers was much lower
than those in either the NC or HFHS groups (Figures 5B,D),
evidencing the repression of hepatic glycolysis in DM. The HFHS
diet triggered the downregulation of fructose-bisphosphate
aldolase C (ALDOC), a key enzyme in both glycolysis and
gluconeogenesis pathways (Figures 5B,C). Two enzymes that
were involved in the mevalonate pathway, 3-hydroxy-3-
methylglutaryl coenzyme A synthase (HMGCS1) and farnesyl-
diphosphate farnesyltransferase 1 (FDFT1), were also increased
in the HFHS livers. Together with the consistent changes in MVK
(Figure 4F), these data indicated the suppression of cholesterol
synthesis in the HFHS monkeys. Acyl-CoA synthetase short
chain family member 2 (ACSS2) that promotes fat storage was
also lower in the HFHS groups, suggesting the downregulation of
this protein in response to the increased intake of fat. We then
conducted the joint analysis of the metabolomics and proteomics
data. As expected, all three groups had differentially regulated fat
digestion and absorption pathway (Figure 5E). Also, switching to
the HFHS diet resulted in significant changes in some mo lipid
metabolism-related pathways, such as steroid biosynthesis, PPAR
signaling, propanoate metabolism and cholesterol metabolism.
As a disease group, the sDM group had significant changes in the
regulatory and disease-related pathways, including the HIF-1
signaling pathway, prolactin signaling pathway, and growth
hormone synthesis, secretion and action pathway. On the
other hand, the divergence between the HFHS and sDM
groups included both metabolic and regulatory pathways.
Taken together, our data demonstrated that the HFHS diet-fed
macaques showed many molecular alterations in common with
the changes in the DM ones. However, the accumulated changes
that can cause cellular responses in oxygen homeostasis and
inflammation might be of importance in the development of
diabetes.
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FIGURE 5 | Joint analysis of the multiomics data. (A) The proportion of genes whose proteins and transcripts showed positive (> 0.5), negative (< −0.5), or no
correlation (between −0.5 and 0.5). (B–D) the comparisons of log2 ratios of protein and transcript levels of differential genes for sDM versus HFHS (B), HFHS versus NC
(C), and sDM versus NC (D). The black lines show the bisects y � x. (E) The pathway enrichment analysis using the metabolomics and proteomics data jointly. Plus
symbol (+) annotates the enriched pathways of significance.
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DISCUSSION

The present study included the relative abundance of both
transcripts and proteins in the liver and relative levels of
metabolites and lipids in the liver, PB, and HPVB sera from
the same individuals, providing data suited to conducting
correlation analysis at a systems level. Multi-omic data
provides comprehensive profiling of biological samples.
Proteins are functional macromolecules that arguably
participate in almost all cellular processes. The amounts of
this machinery are modulated through transcriptional
regulation as well as other types of regulatory mechanisms
such as post-transcriptional regulation and protein
degradation. From our data, we found good correlations
between transcripts and proteins for over 50% of genes
(Figure 5A). Although only a few subjects were included in
our study, this consistency strongly supported alterations of these
genes, including FABP4, GCK, ALDOC, HMGCS1, FDFT1, and
ACSS2. For a big proportion of these genes, their functions
related to DM have been documented to some extent, which
further validated our results. Previous reports have evidenced that
the correlations between mRNA transcripts and the
corresponding proteins are not always held for a certain
number of genes (Maier et al., 2009; Vogel and Marcotte,
2012). Although positive correlations were found for nearly
half of the genes, no or even negative correlated cases existed
in this dataset. These cases provide the candidates for the studies
of DM-caused protein regulation behind gene transcription.
Moreover, the changes in various classes of lipids (Figure 2)
and the alterations in the transcripts (Figure 3) and proteins
functioning in lipid signaling and metabolism (Figures 4, 5) also
indicated the consistency of our data.

The switch of diet, to our surprise, caused larger numbers of
altered molecules in the metabolome, lipidome, transcriptome,
and proteome. The majority of changes in the HFHS monkeys
were not as same as those in the sDM group (Figures 3D, 4B).
This unique profile was primarily characterized by the alterations
in the pathways related to lipidmetabolism, indicating the hepatic
response to the extra intake of fat and sugar. As compared with
both NC and HFHS groups, the sDM macaques showed
responses in the genes functioning in disease-related pathways
and regulatory pathways (Figures 4C,D, 5E). Metabolic
inflammation is an essential feature of type 2 diabetes. This
feature was indicated by the changes in the pathways related
to inflammation signaling and oxygen hemostasis, such as
including the HIF-1 signaling pathway, prolactin signaling
pathway, growth hormone synthesis pathway, as well as the
signaling pathways for EGRF and VEGF, in our data (Figures
4E, 5E). Studies in animal models have shown that diet-induced
oxidative stress and inflammation play a crucial role in the
pathogenesis of type 2 diabetes (Shoelson et al., 2006). Diet-
induced animal models of DM have long been employed in the
studies of diabetes (Kleinert et al., 2018; Engel et al., 2019). Our
data demonstrated that 1.25 years of HFHS diet feeding in
Macaca fascicularis did not cause strong signals of
inflammation and oxidative stress, resulting only in mild
obesity and prediabetic symptoms (Figure 1). The

disagreement observed from our data has also suggested that it
is of importance to measure these factors related to the
inflammatory and stressed statues in the studies of diet-
induced models for DM.

Nonetheless, the alterations common in the sDM and HFHS
groups had also been detected. This similarity was mainly the
alterations in the metabolism of lipids and fatty acyls (Figures 3F,
5E), characterized by the increased lipid levels (Figure 2) and the
upregulation of FABP4 (Figures 4, 5). FABP4 (also known as
adipocyte Protein 2 or aP2) is a lipid-binding carrier that
regulates fatty acid trafficking, which is also involved in
linking lipid metabolism with innate immunity and
inflammation (Furuhashi and Hotamisligil, 2008). FABP4 is a
secreted protein that is widely expressed in adipocytes,
macrophages, and endothelial cells (Xu and Vanhoutte, 2012).
Under normal conditions, the expression of this gene is low in the
liver, which was confirmed by the low reads of the NC group
(Supplementary Table S3). Our transcriptomic and proteomic
data consistently supported the increase of this protein in both
the sDM and HFHS groups (Figures 5C,D). These results,
especially the elevated levels of the FABP4 transcript, indicated
the upregulation of this gene in the liver of both diabetic and
prediabetic macaques. FABP4 regulates hepatic production of
glucose (Cao et al., 2013), and the mice with FABP4 deficiency
have a lower risk for obesity-induced insulin resistance and type 2
DM (Tuncman et al., 2006). Elevated levels of circulating FABP4
have been proposed as a marker of DM-related syndrome
(Rodríguez-Calvo et al., 2019), with a pro-diabetic impact in
the process of diabetes in the pancreas (Xiao et al., 2021). The
upregulation of FABP4 expression in the liver might also have a
role in the development of DM. Furthermore, an animal study has
demonstrated that Sirtuin 1 (SIRT1) regulates FABP4 secretion
from the white adipose (Josephrajan et al., 2019). Sirtuins are
signaling proteins functioning in metabolic regulation. The levels
of SIRT1 are involved with the insulin sensitivity of cells and,
therefore, associated with non-alcoholic fatty liver disease and
DM (Martins, 2018b). Although SIRT1 showed no significant
changes in its expression, SIRT5, another member of the Sirtuin
protein family, increased 1.5 fold in the sDM group
(Supplementary Tables S3, S4). SIRT5 has been suggested to
be involved in energy metabolism (Verdin et al., 2010; Park et al.,
2013). We may speculate that FABP4 regulates hepatic lipid
metabolism of the sDM macaques in a sirtuin-dependent
manner. It is worthy of further investigation that the roles of
hepatic FABP4 and sirtuins in the development of DM. As a
secreted protein, the increase of FABP4 protein in the liver might
also partially attribute to the alterations in other tissues such as
adipose tissue. The interaction between FABP4 of various sources
is likely an intriguing and important topic that should be
addressed.

Intriguingly, the gene set whose expression was similarly
changed in our prediabetic and diabetic monkeys contained a
lot of genes functioning in cell migration and cellular/
extracellular structure (Figure 3). The structural proteins have
critical regulatory functions in sensing and signaling. We have
found significant changes in keratin expression. Keratins are a
family of fibrous proteins forming intermediate filaments, which
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have been found to participate in the insulin-mediated regulation
of glucose metabolism (Roux et al., 2016). The downregulated
keratins (KRT 5/6C/14/16/17) are all skeleton proteins of
epithelial cells. It has been demonstrated that insulin
resistance disrupts epithelial repair and tissue remodeling in
the liver through impairing local cellular crosstalk (Manzano-
Núñez et al., 2019). Expression of COL17A1, a transmembrane
collagen protein important in maintaining the linkage between
the intra- and extracellular structural elements (Franzke et al.,
2005), was not detectable in the sDM macaques (Supplementary
Table S3). A previous study has also reported that reduction of
COL17A1 promotes the migration of keratinocytes (Tasanen
et al., 2004). These results, together with the enriched
alterations in cell migration (Figure 3F) the EGFR signaling
(Figure 4E), indicated the impeded epithelial reparation in the
liver of sDMmacaques, resulting in defects in wound healing and
liver injury (Brem and Tomic-Canic, 2007). The regulation of
these genes in the HFHS group showed a similar tendency,
suggesting that these responses caused by the HFHS diet
might occur earlier than the systematic oxidative stress and
inflammation. Thus these alterations possibly mediated the
HFHS diet-induced diabetes, which is worth further
investigation in the future.

This multi-omics dataset from the NHP of spontaneous diabetes
mellitus is capable of serving as a resource for various types of
diabetes researches. NHPs are used in research into human diseases
due to their genetic similarity toHomo sapiens. Macaques, including
those inMacaca fascicularis, have contributed to the studies of DM
for decades (Yasuda et al., 1988; Hansen, 2010; Bauer et al., 2011;
Harwood et al., 2012; Pound et al., 2014; Havel et al., 2017). Recently,
other groups have also reported multi-omics datasets frommonkeys
of spontaneous type 2 DM (Lei et al., 2020), and monkeys fed with a
high-fructose diet (Cox et al., 2021). Our work has added an
additional database for scientists in the field. This present study
covers the quantification of both serum metabolome and molecular
profiling of the liver from both the spontaneous type 2 DMmonkeys
and HFHS-fed monkeys grown and measured in parallel, providing
a database of quality in studies on the pathological impacts of HFHS
in DM. Human studies, such as that on clinical trials, would likely
have fewer respects of data in general. The changes in the gene
expression of themacaque liver related to the alterations in the blood
can sever as a reference for this type of investigation.

CONCLUSION

In the present work, we conducted a multi-omics analysis to
compare the molecular alterations in the liver, HPVB, and PB of
macaques of spontaneous Type 2 DM, and ones of prediabetic
symptoms caused by high-fat and high-sugar diet. Our data
indicate that protein FABP4, a lipid-binding protein that has a
crucial role in DM, was upregulated in the liver of spontaneously
occurred diabetes and HFHS-induced diabetes, evidenced by
elevation in both hepatic mRNA and protein levels.
Furthermore, we have also revealed that at the prediabetes
stage, the HFHS diet could cause malfunctions in the
epithelial cell morphology and migration, similar to the

alterations in the DM monkeys. These defects may impair
liver reparation and promote DM. Also, our work provided a
new multi-omic dataset from NHP that is likely to benefit
other DM studies.
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