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Chronic anemia is commonly observed in patients with hemoglobinopathies,

mainly represented by disorders of altered hemoglobin (Hb) structure (sickle

cell disease, SCD) and impaired Hb synthesis (e.g. thalassemia syndromes,

non-SCD anemia). Both hemoglobinopathies have been associated with white

matter (WM) alterations. Novel structural MRI research in our laboratory

demonstrated that WM volume was di�usely lower in deep, watershed areas

proportional to anemia severity. Furthermore, di�usion tensor imaging analysis

has provided evidence that WM microstructure is disrupted proportionally to

Hb level and oxygen saturation. SCD patients have been widely studied and

demonstrate lower fractional anisotropy (FA) in the corticospinal tract and

cerebellum across the internal capsule and corpus callosum. In the present

study, we compared 19 SCD and 15 non-SCD anemia patients with a wide

range of Hb values allowing the characterization of the e�ects of chronic

anemia in isolation of sickle Hb. We performed a tensor analysis to quantify

FA changes in WM connectivity in chronic anemic patients. We calculated the

volumetric mean of FA along the pathway of tracks connecting two regions

of interest defined by BrainSuite’s BCI-DNI atlas. In general, we found lower

FA values in anemic patients; indicating the loss of coherence in the main

di�usion direction that potentially indicates WM injury. We saw a positive

correlation between FA and hemoglobin in these same regions, suggesting that

decreased WMmicrostructural integrity FA is highly driven by chronic hypoxia.

The only connection that did not follow this patternwas the connectivity within

the left middle-inferior temporal gyrus. Interestingly, more reductions in FA

were observed in non-SCD patients (mainly along with intrahemispheric WM

bundles and watershed areas) than the SCD patients (mainly interhemispheric).

KEYWORDS

chronic anemia, di�usion MRI, tensor analysis, sickle cell disease (SCD), thalassemia,
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Introduction

Chronic anemia (CA) is a condition in which the number

of erythrocytes or hemoglobin (Hb) concentration is lower

than expected and incapable of meeting physiological needs (1).

Worldwide, the prevalence of anemia is very high, affecting

around 1.93 billion people and causing more significant

disability than asthma, diabetes, and cardiovascular disease

combined (2). Tissue oxygen consumption is heterogeneous

and organ-specific. The brain is one of the organs with higher

metabolic demand that receives preferential blood flow under

acute circumstances (3). As a result, neurons are specifically

sensitive to hypoxia (4). CA causes reduced oxygenation in the

brain, leading to hypoxia, neuroinflammation, and white matter

(WM) remodeling (5).

CA is a standard clinical feature seen in patients with

hemoglobinopathies (6), mainly represented by qualitative

disorders in Hb structure (e.g., sickle cell disease, SCD)

and quantitative disorders of Hb synthesis (e.g., thalassemia

syndromes, non-SCD) (7). Hemoglobinopathies have been

associated with gray matter (GM) (8–11) and WM alterations

(12–17), cerebral vasculopathies (18–20), and changes in

cerebral blood flow (21–26), thus serving as a model for the

cerebral changes caused by CA (15, 17).

Studying SCD and non-SCD patients with a wide range of

Hb values and genetic predisposition to anemia simultaneously

allows the characterization of the effects of CA in isolation from

sickle Hb (17, 22). In this context, novel structural magnetic

resonance imaging (MRI) research done in our laboratory,

where SCD and non-SCD patients were simultaneously

analyzed, demonstrated that WM volume was diffusely lower in

deep, watershed areas proportional to anemia severity regardless

of Hb genotype (15). This relationship between anemia andWM

volume was confirmed in a repeated analysis with a restricted

population consisting of patients with beta-thalassemia (27).

We hypothesized that CA causes similar damaging effects

and changes in structural connectivity of WM in patients

with hemoglobinopathies. Furthermore, the damage is driven

by hyperemia and not by the intrinsic pathophysiology of

these hemoglobinopathies. To characterize alterations in the

WM, we performed a diffusion tensor imaging (DTI) analysis

and quantified the average fractional anisotropy (FA, overall

directionality of water diffusion) along the pathways connecting

every pair of regions of interest (ROIs) defined by an anatomical

atlas. This approach covers all the WM bundles in the brain and

not merely the main association fascicles (28).

Diffusion MRI (dMRI) is used to study in-vivo WM

microstructure and allows quantitative characterization

of healthy and diseased tissue. The most widely used

dMRI technique is DTI, despite various limitations. Its

derived metrics like FA are potential biomarkers of brain

abnormalities in patients with neurodegenerative diseases.

For example, DTI analysis already provided evidence of

the relationship between WM microstructure and markers

of anemia severity, such as oxygen saturation level and

Hb value (13). Additionally, SCD patients have shown

lower FA in the corticospinal tract and cerebellum (13),

across the internal capsule (14), the corpus callosum

(14, 16, 29, 30), and in the deep WM (30). Decrement

of FA was also observed in major WM tracts in CA

patients, regardless of the anemia subtype, and correlated

significantly with the neurocognitive decline observed in the

CA population (29).

Materials and methods

Participation criteria

All participants in this study were part of a larger

project on Sickle Cell Disease at Children’s Hospital Los

Angeles that its Institutional Review Board approved.

Each participant was recruited with informed consent. We

collected MRI data and blood tests on patients, including

non-SCD, SCD, and healthy controls matched by sex and

age. The accepted age range was between 10 to 50 years

old. Eligibility criteria included patients with SCD diagnosis

(Hb SS, Hb SC, Hb Sβ0, and Hb Sβ+genotypes), patients

with chronic anemia diagnosis (beta-thalassemia major,

beta-thalassemia intermedia, hemoglobin H-constant spring,

congenital dyserythropoietic anemia, spherocytosis anemia,

and autoimmune hemolytic anemia) and healthy controls

(mainly recruited from family members of SCD patients to

match race and ethnicity between groups). The exclusion

criteria disqualified those patients with previous overt stroke,

acute chest syndrome, pain crisis hospitalization (within one

month), and pregnant candidates. Similarly, individuals with

prior history of neurologic insults, developmental delay, or

chronic medical conditions that require regular medical care

or medications and pregnant candidates would be ineligible as

healthy controls.

We followed the standard guidelines and regulations

for MRI safety and exclusion criteria. On the same day,

each participant completed the MRI examination without

sedating medications, and we collected vital signs and blood

samples.

Laboratory markers

To account for the similarities and differences in CA

pathophysiology, all participants enrolled in our study

underwent a thorough examination of their blood samples.

Complete blood count, reticulocyte total, and quantitative Hb

electrophoresis percentages of Hb S, Hb A, Hb A2, hemoglobin

F, etc.) were analyzed in the clinical laboratory. Additional
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TABLE 1 Demographics.

CTL non-SCD SCD CTL vs. non-SCD† CTL vs. SCD† non-SCD vs. SCD†

N 23 15 19 - - -

Sex (F:M) 14:9 8:7 10:9 - - -

Age 21.3± 5.9 22.4± 4.8 21.8± 8.3 0.88 0.97 0.96

Transfused 0 9 5 - - -

Hemoglobin (g/dL) 13.2± 1.2 10.3± 1.7 10.2± 2.1 ≤0.01 ≤0.01 0.96

Hematocrit (%) 39.8± 3.6 32.2± 5.82 28.7± 5.3 ≤0.01 ≤0.01 0.10

White blood cell count (x103) 5.6± 1.7 7.0± 3.1 9.3± 4.3 0.33 ≤0.01 0.11

Reticulocytes (%) 1.2± 0.5 3.1± 3.1 7.8± 3.5 0.07 ≤0.01 ≤0.01

Plasma-free hemoglobin 6.7± 5.2 22.3± 23.8 21.8± 19.6 0.02 0.02 0.99

Lactose dehydrogenase 519.5± 75.2 632.2± 361.5 1008.5± 573.7 0.64 ≤0.01 ≤0.01

Absolute neutrophil count 3.2± 1.6 4.2± 1.8 5.4± 3.6 0.41 ≤0.01 0.37

Heart rate (min−1) 70.5± 20.4 79.0± 13.4 81.7± 13.9 0.28 0.08 0.88

Systolic blood preassure (mmHg) 116.1± 9.2 113.9± 9.1 115.5± 12.6 0.79 0.98 0.89

Dyastolic blood preassure (mmHg) 66.1± 9.5 60.3± 9.3 63.7± 7.3 0.13 0.65 0.51

O2 saturation (%) 99.5± 0.9 98.3± 2.9 97.8± 1.6 0.17 ≤0.01 0.66

Hemoglobin A (%) 82.2± 17.9 90.7± 7.9 23.4± 32.4 - - -

Hemoglobin F (%) 0.7± 2.4 2.9± 4.1 8.8± 9.5 - - -

Hemoglobin S (%) 14.1± 18.1 0.0± 0.0 50.9± 26.0 - - -

Mean and standard deviation of demographic information and selected complete blood count measurements.

CTL, control; non-SCD, non sickle cell disease; SCD, sickle cell disease.
†Group comparison using one-way analysis of variance (ANOVA) result with Tukey-Kramer test for multiple comparisons. Statistically significant values (p ≤ 0.05) are color-coded as

follows: green color denotes the comparison between CTL and non-SCD groups, red compares CTL and SCD, and blue color non-SCD with SCD patients.

surrogates for hemolysis like lactate dehydrogenase (LDH) and

plasma-free Hb levels were also quantified (Table 1).

Image acquisition

TheMRI data were acquired on a 3T Philips Achieva scanner

using an 8-channel head coil for each participant. The structural

3D T1-weighted (T1-w) sequence specification was TR/TE =

8.3/3.8ms, SENSE = 2, and isotropic voxel size of 1 mm3. In

addition, a single-shell dMRI sequence was acquired with TR/TE

= 6,700/86ms; isotropic voxel size of 2.5 mm3; 30 diffusion-

encoding directions at b-value = 1,000 s/mm2 and one b-value

= 0 s/mm2 using a single-shot echo-planar imaging sequence.

Post-processing

The Brain extraction and parcellation from the T1-weighted

(T1-w) images were processed with BrainSuite (brainsuite.org,

v19b). Specifically, BrainSuite’s Cortical Surface Extraction

(CSE) tool was used to perform skull stripping (31), tissue

classification, including partial volume fraction of voxels

identified as WM, GM, and CSF (32), topological corrections

(33), and delineation of the inner/outer cortex. In addition,

BrainSuite’s Surface Volume Registration (SVReg) tool (34,

35) performed anatomical co-registration to the BCI-DNI

anatomical atlas (35), and brain segmentation.

The dMRI data were corrected for localized geometric

distortions to enable accurate multi-modal analysis. Each

subject’s motion and eddy current-induced distortions were

corrected with FSL’s eddy module (36, 37). Using BrainSuite’s

Diffusion Pipeline (BDP), we registered the dMRI to the T1-w

data, followed by susceptibility-distortion correction based on

the inverse contrast normalization (38).

Di�usion modeling

Using the well-known tensor equation, we calculated

the fractional anisotropy maps in BDP. To render more

accurate tractography in the WM, we also computed in

BDP the orientation density functions (ODFs). In particular,

the ensemble average propagator response function optimized

(ERFO) uses machine learning and linear estimation theory to

optimize ODF accuracy for arbitrary q-space sampling schemes.

It has shown advantages over other methods (39). Furthermore,

ERFO can model single-shell (and multi-shell) data and has the

capacity of rendering crossing fibers with the most negligible

false positives (40).

Whole-brain deterministic fiber tracking, based on

quantitative anisotropy (41), and visualization were
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performed with the DSI Studio tractography package

(http://dsi-studio.labsolver.org). The sections of tracks

entering cortical GM or subcortical regions were

excluded to avoid partial volume effects. Afterward, detail

connectivity analysis of fiber bundles connecting two

ROIs (previously labeled on the T1-w structural images)

was implemented with the TractConnect Matlab package

(https://neuroimage.usc.edu/neuro/Resources/TractConnect).

Specifically, TractConnect uses filtered tracks connecting two

ROIs to define a volumetric white matter surface (WMS) and

projects it into the FA maps (Figure 1). Then FA values within

WMSs were averaged.

For each individual, the average FA values were used as the

elements of the connectivity matrix. 88 ROIs from the BCI-

DNI atlas were used: 66 cortical regions, 14 subcortical, corpora

quadrigemina, mammillary bodies, brainstem, and cerebellum.

Overall, this modeling method offers higher sensitivity

and specificity to detect not only regional differences in WM

microstructure (like voxel-wise analysis would do) but along the

connectivity pathways, and it is robust to some of the commonly

criticized featured of DTI ((42, 43)): the inability to render

crossing fibers and to define connectivity between ROIs by

streamlining counting. The first was overcome by using ERFO

to model diffusion ODFs and the latter by defining the WMSs

and characterizing these “connections” with the mean FA value.

Statistical analysis

For each element of the connectivity matrix (upper

triangular part), Figure 1, the FA differences between groups

were modeled using multiple linear regression analysis after

controlling for logarithm of age (log-age), sex, and group.

The logarithm of age was used because brain maturational

effects are nonlinear with age in adolescents and young

adults (44, 45). Finally, the results were also corrected

for multiple comparisons using the False Discovery Rate

(FDR) to adjust the correspondent p-values (46) with a 20%

acceptance rate.

A similar analysis was performed using a permutation

analysis using Manly’s method (47, 48), which was also FDR

corrected (49) with the same threshold. Given the complexity

of the data, it was not possible to guarantee all the assumptions

of linear modeling. Consequently, we also chose to model the

WMSs using nonparametric permutation analysis. Overlapping

between the two methods provided an additional confidence

level in our results.

For completeness, we tested the possible contribution of

changes in FA caused by monthly transfusions and LDH

values in patients. For this, we only ran a multiple linear

regression analysis controlling also for log-age, sex, and group.

All the statistical analyses were calculated using the R statistical

package (50).

FIGURE 1

FA analysis in WMS based on the coregistration of the parceled

T1-w with dMRI maps. This coregistration allows mapping the

connectivity tracks between two ROIs to the FA map. The exact

process is repeated to create a connectivity matrix for each

subject.

Results

Demographics

In this analysis we considered 19 clinically asymptomatic

SCD patients (age= 22.4± 7.8 years; Hb= 10.1± 2.1 g/dL; F=

9 patients), 15 non-SCD anemic patients (age= 22.4± 4.8 years;

Hb= 10± 2.8 g/dL; F= 8 patients) and 23 control subjects (age

= 21.3 ± 6 years; Hb = 13.3 ± 1.2 g/dL; F = 14 individuals).
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The age range for all the participants was 11.2 to 35.8 years. All

demographics are reported in Table 1.

The breakdown of the race (and ethnicity) for control

subjects was 17 African-American (non-Hispanic) and 5 White

(Hispanic) individuals. SCD patients included 17 African-

American (non-Hispanic) and 2 White (Hispanic) patients. The

non-SCD group consisted of 8 Asian (non-Hispanic), 5 White

(non-Hispanic), and 2 White (Hispanic) patients.

For the SCD group, the genotypes were 12 Hb SS and 7 Hb

SC patients. Because of the specific matches between control and

SCD, 9 of the control subjects were identified with sickle cell trait

having hemoglobin AS (HbAS). Previous work in our laboratory

suggests that the Hb AS subtype does not alter normal cerebral

blood flow (CBF) regulation and balance of oxygen supply and

demand Field (22), making Hb AS carriers good candidates for

control subjects.

The specific anemias in the non-SCD group consisted

of 7 patients with beta-thalassemia major, 3 beta-thalassemia

intermedia, 2 hemoglobin H-constant spring, 1 congenital

dyserythropoietic anemia, 1 spherocytosis anemia and 1

autoimmune hemolytic anemia.

Of the CA patients, 8 non-SCD (7 beta-thalassemia major

and 1 congenital dyserythropoietic anemia) and 5 SCD (Hb SS

patients) were on monthly transfusions. The rest of the non-

transfused SS patients were prescribed hydroxyurea and had a

mean hemoglobin F fraction of 18%. One patient with SC was

also taking hydroxyurea. At Children’s Hospital Los Angeles,

it is recommended to treat all pediatric patients, of all SCD

genotypes, nine months and older with hydroxyurea unless they

have been placed on chronic transfusion (51, 52), as indicated by

NIH guidelines (53). Furthermore, as of 2,000, all SCD patients

at our facility have received access to the transcranial Doppler

screening (51–54).

Laboratory comparisons

Laboratory and clinical markers are shown in Table 1.

Hemoglobin (p = 0.96) and hematocrit (p = 0.10) levels

were not statistically different between CA groups, but both

had statistically significant lower values compared with healthy

control (non-SCD, SCD: p ≤ 0.01). Furthermore, the SCD

population showed significantly higher levels of reticulocytes (p

≤ 0.01) and LDH (p ≤ 0.01) compared to both non-SCD and

control, suggesting increased intravascular hemolysis. However,

plasma-free Hb was not different between CA types (p = 0.99).

SCD patients had mildly increased white cell counts with respect

to control subjects (p ≤ 0.01) but not relative to the non-SCD

anemic patients (p= 0.11). In the case of Hb electrophoresis, Hb

S was highest for SCD patients. Still, our control also exhibited a

smaller percentage of Hb S because of the inclusion of sickle trait

subjects. SCD patients demonstrated the highest hemoglobin F

(Hb F) concentration, with intermediate levels observed in non-

SCD patients. Most control subjects had noHb F, but one subject

had 11.7% Hb F.

White matter connectivity

Overall, no statistically significant WMSs were found when

comparing SCD with non-SCD patients. 10 WMSs in CTL

vs. non-SCD and 5 WMSs in CTL vs. SCD analysis showed

significant differences in both multiple linear regression and

permutation analysis (Table 2). ∗FA indicates the group mean

FA after controlling for log-age and sex using the multiple linear

regression. The point-biserial correlation coefficient, r∗FA,Gr ,

shows the direction and strength of the relationship between
∗FA and the status of being anemic or not. A negative r∗FA,Gr
value depicts higher ∗FA in control individuals than CA patients.

All WMSs reported in Table 2 showed this behavior except for

one (left middle and inferior temporal gyrus) in healthy controls

vs. non-SCD comparison. The ∗FA unpaired two-samples t-test

statistic is also displayed for completeness, which agrees with the

multiple linear regression analysis.

When Hb was included in the mathematical models as a

covariate, all the ∗FA differences reported in Table 2 were no

longer statistically significant. This suggests that many of the

effects reported are driven by the Hb differences between healthy

controls and CA patients. To further study the relationship

between ∗FA and Hb, we calculated the Pearson correlation

coefficient, r∗FA,Hb, and their respective p-value, p∗FA,Hg , for the

WMSs reported in Table 2. ∗FA was significantly correlated with

Hb levels in 8 out of the 10 WMSs in the population consisting

of control and non-SCD analysis and in 3 out of the 5 WMSs in

the control and SCD population. Consequently, by calculating

r2∗FA,Hb, the proportion of variance in ∗FA explained by Hb, we

observed that in control and non-SCD for the WMSs reported

in Table 2, Hb accounts for up to 26% (right thalamus and right

amygdala) of the variance in ∗FA, and up to 21% (left thalamus

and left parahippocampal gyrus) in the case of controls with

SCD patients.

The spatial locations of the WMSs listed in Table 2 are 3D-

rendered in the left and right hemispheres of a representative

subject (Figure 2). In these same WMSs, we saw a positive

correlation of ∗FA with Hb. Significant results were bilateral and

generally symmetrical across hemispheres. Interestingly, more

WMSs survived for the non-SCD (mainly intrahemispheric

and along with watershed areas) than for the SCD (mainly

interhemispheric) group compared with healthy controls.

Table 3 shows the results of the multiple linear regression

when adding in the model transfusion status. For non-SCD

patients, 4 out of 10 WMSs displayed in Table 2 were still

statistically significant, and for SCD patients, all the WMSs

reported in Table 2 still appeared. When including LDH as a

marker of hemolysis in the mathematical model, 6 out of 10

Frontiers inNeurology 05 frontiersin.org

https://doi.org/10.3389/fneur.2022.894742
https://www.frontiersin.org/journals/neurology
https://www.frontiersin.org


González-Zacarías et al. 10.3389/fneur.2022.894742

TABLE 2 Results for *FA.

ROI-1 ROI-2 CTL *FA CA *FA r*FA,Hg
† T-statictic† r*FA,Hg

U p*FA,Hg
U

CTL vs. non-SCD

R. caudate nucleus R. middle frontal gyrus 0.37 −0.57 −0.46 t(36)= 3.1 p ≤ 0.01 0.29 ≤0.01

R. thalamus R. middle frontal gyrus 0.49 −0.70 −0.59 t(30)= 3.9 p ≤ 0.01 0.41 ≤0.01

R. thalamus R. amygdala 0.47 −0.65 −0.55 t(34)= 3.8 p ≤ 0.01 0.51 ≤0.01

L. thalamus L. gyrus rectus 0.40 −0.63 −0.50 t(34)= 3.4 p ≤ 0.01 0.37 ≤0.01

L. thalamus L. parahipppocampal gyrus 0.40 −0.56 −0.48 t(34)= 3.2 p ≤ 0.01 0.32 0.06

R. superior frontal gyrus R. cingulate gyrus 0.46 −0.73 −0.58 t(34)= 4.2 p ≤ 0.01 0.41 ≤0.01

R. transvers frontal gyrus R. subcallosal gyrus 0.49 −0.68 −0.59 t(31)= 4.0 p ≤ 0.01 0.37 0.03

R. cingulate gyrus L. cingulate gyrus 0.52 −0.72 −0.61 t(34)= 4.5 p ≤ 0.01 0.53 ≤0.01

L. cingulate gyrus L. pre-cuneus 0.45 −0.82 −0.61 t(32)= 4.3 p ≤ 0.01 0.39 0.02

L. middle temporal gyrus L. inferior temporal gyrus −0.40 0.62 0.50 t(34)= 3.3 p ≤ 0.01 −0.25 ≤0.01

CTL vs. SCD

L. thalamus L. parahipppocampal gyrus 0.50 −0.55 −0.54 t(38)= 3.9 p ≤ 0.01 0.46 ≤0.01

R. gyrus rectus L. middle orbito-frontal gyrus 0.63 −0.73 −0.68 t(37)= 5.6 p ≤ 0.01 0.35 0.03

R. middle orbito-frontal gyrus L. middle orbito-frontal gyrus 0.48 −0.59 −0.54 t(36)= 3.8 p ≤ 0.01 0.28 0.09

L. middle orbito-frontal gyrus R. subcallosal gyrus 0.54 −0.63 −0.58 t(39)= 4.5 p ≤ 0.01 0.42 ≤0.01

L. middle orbito-frontal gyrus L. subcallosal gyrus 0.58 −0.71 −0.64 t(38)= 5.1 p ≤ 0.01 0.27 0.1

Connectivity between ROI-1 and ROI-2 that was statistically significant after FDR correction in multilinear and permutation models controlling for the group, sex, and age (log-

transformed). The upper and lower sections of the table show the statistics for FAwhen comparing healthy controls (CTL) with non-SCD and SCD patients. No conections were statistically

significat when comparing non-SCD with SCD patients.
*Mean group FA controlled for sex and age (log-transformed) along the volumetric white matter surface connecting these ROIs. Standardized (unitless) values are shown.
†Point-biserial correlation coefficient and results of the unpaired two-samples t-test on the *FA values between groups.
UPearson correlation of *FA with Hb and the correspondent p-value is also displayed.

WMSs were statistically significant for non-SCD and 4 of 5

WMSs for SCD patients.

Discussion

We observed potential microstructural differences along

WMSs in both groups of patients with CA with and without

SCD compared to controls. These results predominantly showed

lower FA values in CA patients, indicating the loss of coherence

in the main diffusion direction, which could indicate WM

injury. Lower FAwas highly associated with decreasing Hb levels

revealing that the decreased microstructural integrity found in

CA patients is highly driven by chronic hypoxia.

Previous work in CA has shown that the whole brain

increases cerebral blood flow (CBF) to compensate for the

loss of oxygen-carrying capacity (21, 24, 55–57). This offset

in CBF preserves total resting oxygen delivery to the whole

brain (21, 22, 55, 58), such that the correspondent oxygen

extraction fraction (OEF) from the cerebral cortex seems to

be normal or even reduced (26, 59–62). Although resting

oxygen delivery is preserved in the cortex, the cerebral vascular

reserve is diminished, proportional to the resting hyperemia

(23, 25), potentially leaving the brain vulnerable to acute insults

such as nighttime hypoxia, acute anemia, and fever. However,

while there have been some reports of reduced cortical and

subcortical GM volumes (9, 63, 64) in patients not receiving

chronic transfusion or hydroxyurea treatment, total GM volume

appears preserved (65) in clinically asymptomatic SCD patients

(adolescents and young adults) treated with either therapy

suggesting that cortical volume loss may not manifest until later

in life.

However, regions of deep WM do not seem to have the

same metabolic stability during periods of ischemic stress. OEF

is increased in the deep watershed areas (56), colocalizing with

WM injury patterns (18, 58, 66). Chai et al. (58) showed that

independently of disease state, CBF and oxygen delivery to

regions of deep WM and border zone regions are considerably

smaller than those measured elsewhere within the WM and

GM. Furthermore, Wang et al. (30) showed that elevated CBF

can be associated with normal-appearing (i.e., infarct-free) WM

disruption. Inadequate resting oxygen delivery in the WM is

further compounded by blunted cerebrovascular reserve (25).

Thus, chronic hypoperfusion plays a role in the development

of the entire WM damage phenotype, including hyperintensities

on the T2 FLAIR (17, 18, 58, 66, 67), reduced WM volume

(15, 27, 68) or changes in diffusion metrics (12–14, 16, 29, 30).

Based on this consideration, the damage observed in non-

SCD patients compared with controls followed an intuitive

pattern located primarily in the frontal-parietal WM watershed

areas (Table 2). Watershed areas are regions in the brain that sit
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FIGURE 2

3D-rendering of left and right hemispheres of a representative subject, the white matter surfaces (WMSs) where FA was controlled for age (log

transformed), sex and group and it was statistically significant in both statistical models (linear regression and permutation analysis) after FDR

correction. The specific regions of interest are listed on Table 2. Top Row: green WMSs, comparison of healthy controls (CTL) with non-sickle

cell anemia (non-SCD). Bottom row: red WMSs, comparison of CTL with sickle cell anemia (SCD).

in-between major cerebral arterial territories and are the most

susceptible to hypoxic-ischemic damage when a supply-demand

mismatch occurs in the cerebrovascular supply (18, 58, 69).

While most of the affected connections were unilateral,

WMSs observed with lower FA in non-SCD patients appeared

similarly distributed between the two hemispheres (Figure 2).

These results are consistent with the spatial patterns of lower

WM volume associated with the severity of anemia diffusely

across frontal, parietal lobes, and temporal lobes especially in

these watershed areas (15, 68).

Given that most of the WMSs survived when controlling

for a hemolysis marker (Table 3), the results are also aligned

to a model of global hypoxia that will usually cause diffuse,

bilateral brain injury as seen in patients in drowning accidents,

cardiac arrest, or bilateral carotid stenosis, in contrast to more

localized and asymmetric injury patterns caused by embolic

stroke (70). Therefore, we suggest that the injury pattern inWM

microstructure of non-SCD patients can indicate global chronic

hypoxia driven by anemia’s effect on the brain’s hemodynamics.

A possible explanation is that the vascular architecture providing

blood perfusion to WM areas is the long-penetrating medullary

arteries with poor collateralization. Consequently, WM is

especially vulnerable to hyperintensities development under

focal ischemic events or periods of acute stress (71).

For SCD patients and healthy controls, three out of five

connections crossed to the contralateral side. Interhemispheric

involvement is consistent with previous results from our

laboratory showing lower FA in the corpus callosum in CA

patients (higher burden on SCD) (29). There are similar

observations on SCD in studies performed in Tanzania (16),

the United Kingdom (14), and the United States (30). Kawadler

et al. (13) also showed associations between microstructural

properties in the corpus callosum with daytime oxygen

saturation andHb levels in SCDpatients, indicating that hypoxia

related at least in part to low hemoglobin in SCD patients drives

the WM injury patterns.

Previous DTI studies in SCD patients have also reported

widespread FA decrease in theWM (12–14, 30). Surprisingly, we

did not observe this extent of systematic FA derangements. This

difference possibly reflects the variability in disease expression

in our SCD cohort compared to previous reports; 7 subjects

had SC genotype, and 5 of the 12 SS patients were receiving

chronic transfusions. While SC and chronically transfused

patients develop WM hyperintensities, the phenotype of their

WM disease is less severe than nontransfused SS and Sβ0 (72),

and may even result from different mechanisms. Furthermore,

the mean hemoglobin F fractions among the nontransfused SS

patients was 18%, suggesting good response to hydroxyurea. Our
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TABLE 3 Results of FA when controlling for transfusion status and lactose dehydrogenase (LDH).

ROI-1 ROI-2 T-statictic

Transfusion� LDH♦

CTL vs non-SCD

R. caudate nucleus R. middle frontal gyrus - -

R. thalamus R. middle frontal gyrus t(30)= 3.0 p ≤ 0.01 t(30)= 3.4 p ≤ 0.01

R. thalamus R. amygdala - t(34)= 3.5 p ≤ 0.01

L. thalamus L. gyrus rectus - -

L. thalamus L. parahipppocampal gyrus - -

R. superior frontal gyrus R. cingulate gyrus t(34)= 2.9 p ≤ 0.01 t(34)= 3.5 p ≤ 0.01

R. transvers frontal gyrus R. subcallosal gyrus - t(31)= 4.1 p ≤ 0.01

R. cingulate gyrus L. cingulate gyrus t(34)= 2.7 p ≤ 0.01 t(34)= 4.0 p ≤ 0.01

L. cingulate gyrus L. pre-cuneus t(32)= 2.3 p ≤ 0.01 t(32)= 3.8 p ≤ 0.01

L. middle temporal gyrus L. inferior temporal gyrus - t(34)= −3.2 p ≤ 0.01

CTL vs SCD

L. thalamus L. parahipppocampal gyrus t(38)= 3.9 p ≤ 0.01 -

R. gyrus rectus L. middle orbito-frontal gyrus t(37)= 5.6 p ≤ 0.01 t(37)= 4.1 p ≤ 0.01

R. middle orbito-frontal gyrus L. middle orbito-frontal gyrus t(36)= 3.8 p ≤ 0.01 t(36)= 2.8 p ≤ 0.01

L. middle orbito-frontal gyrus R. subcallosal gyrus t(39)= 4.5 p ≤ 0.01 t(39)= 3.2 p ≤ 0.01

L. middle orbito-frontal gyrus L. subcallosal gyrus t(38)= 5.1 p ≤ 0.01 t(38)= 4.1 p ≤ 0.01

Connectivity between ROI-1 and ROI-2 that was statistically significant after FDR correction in the multilinear model. For consistency same ROIs are displayed as in Table 1. The upper

and lower sections of the table show the statistics for FA when comparing healthy controls (CTL) with non-SCD and SCD patients. Similar to Table 2, no conections were statistically

significat when comparing non-SCD with SCD patients.
�Unpaired two-sample t-test on FA values controlled for the group, sex, age (log-transformed), and transfusion status.
♦Unpaired two-sample t-test on FA values controlled for the group, sex, age (log-transformed), and LDH values.

non-SCD and SCD cohorts were matched for hemoglobin level,

so one could reasonably have expected a similar spectrum of

disease. Nevertheless, this is a cross-sectional study of young

adults, and there is a possibility that exposure to severely reduced

arterial oxygen content prior to treatment irreversibly affected

brain microstructure during brain development in transfusion-

dependent non-SCD patients.

Additionally, Table 3 shows almost no contribution

from monthly transfusions or LDH in the WMSs

found in SCD patients. Possibly, the distribution

of WMS in SCD and non-SCD looks substantially

different due to uncontrolled confounders, such as

chronic pain reported extensively as a burden for SCD

patients (73, 74).

In childhood, SCD patients might have an intermittent

pain phenotype. Around 50% of the cases evolve as a

chronic pain syndrome in adulthood, with periods of lower

and higher pain correlated with the ongoing vaso-occlusion

(75). Table 2 shows a significant involvement of the orbito-

frontal gyrus, which has been implicated in the modulation

of chronic pain (76–78) and pain-related emotions (79).

Furthermore, functional imaging studies have shown that

regions like the thalamus and the parahippocampal gyrus, also

depicted in Table 2, belong to the functional pain network

(80, 81). In particular, the thalamus has been identified as

a central region that processes pain (82). Anemia, by itself,

is a robust biomarker of disease severity in SCD, so it is

not surprising that hemoglobin levels correlate with FA in

pain circuits.

Several research groups have also shown neurocognitive

decline in patients with CA, suggesting a possible and

early involvement of the brain even in the absence of

overt strokes (83, 84). Many significant WMSs were in the

prefrontal cortex (Figure 2), where WM abnormality has been

associated with negative effects on neurocognitive function

in CA patients (14, 15, 29). Specifically, Chai et al. reported

that lower FA in the corpus callosum was associated with

lower scores across nine neurocognitive measures. At the

same time, Stotesbury et al. (14) found that white matter

microstructural properties were associated with processing

speed, where FA was the strongest predictor. Additional

work in our laboratory has previously demonstrated that

lower WM volume predicted low matrix reasoning scores, a

measure of executive function, in CA patients and identified

changes in resting-state fMRI activity in the orbitofrontal and

subcallosal gyri (11). Altogether, microstructural injury patterns

indicated in CA patients driven by low Hb levels may have

cognitive consequences.
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Limitations

The small sample size limited our study. All participants

were part of a larger project on Sickle Cell Disease at

Children’s Hospital Los Angeles that involved various MRI

protocols (75 minutes of total scan time) and was not limited

to the dMRI sequence (4 minutes). Our current approach

allowed us to include all WM tracks, but it required to have

high-quality structural and diffusion data, limiting us to a

smaller sample size than described in Chai et al. (29). While

significant sex differences have been previously indicated in

the study of CA, we could not fully resolve sex disease-

specific differences. The use of data from multiple cohorts

of CA, whose intrinsic pathophysiology is different, weakens

statistical power in the short term but opens the possibility to

differentiate and characterize the unique damage induced by

individual hemoglobinopathies. In addition, the control subjects

were mainly recruited from family members of SCD patients,

and they do not necessarily represent the non-SCD population.

Consequently, the statistical differences that we found in non-

SCD patients (even when controlling for log-age and sex) could

be affected by random effects.

Although our contemporaneous hematological

investigations are a strength of this study, we did not have

previous hemoglobin or any oxygen saturation values. The

use of chronic blood transfusion therapy in some of our

patients potentially represents a limitation on our findings

because no single hemoglobin level characterizes the hypoxic

exposure. Furthermore, SCD patients are often placed on

chronic transfusions later in life (than non-SCD patients)

and their current hemoglobin values do not reflect their

lifetime hypoxic exposure. Chronic transfusion is also a

complicated therapeutic yielding improvement in erythrocyte

deformability and oxygen-carrying capacity but increased

viscosity in the microcirculation can potentially worsen the

blood flow and oxygen delivery (85). Given our sample size,

it would be tough to accurately separate the rheologic and

oxygen-carrying capacity effects of red blood cells. Furthermore,

the inclusion of transfusion status in the model weakens the

statistical power by adding an additional degree of freedom.

In addition, we were not able to assess any additional effect of

low oxygen saturation on arterial oxygen content and therefore

hypoxic exposure.

The constraints associated with using single-shell diffusion

images and simple tensor modeling are well documented in the

literature, and urge caution to draw firm conclusions from a

single tensor metric like FA. This work tried to address some

of these limitations by using ERFO ODFs to correctly render

crossing fibers and creating WMSs to avoid characterizing

connectivity by streamlining counting. However, we recognize

that the information provided by FA is limited and that other

methods like diffusion kurtosis imaging and neurite orientation

dispersion have proven to be more robust to some of the pitfalls

of DTI and could provide a more biological explanation of our

current observations.

Conclusion

To characterize the effects of CA in white matter, mean

FA along the WMSs (surface connecting two ROIs) of chronic

anemic patients with sickle and non-sickle anemias were

compared with healthy controls. This grouping allowed the

isolation of sickle hemoglobin effects in our analysis. Both CA

cohorts showed localized FA differences along the WMSs of

patients compared with controls but did not show differences

between them. However, non-SCD patients manifested bigger

systematic FA derangements in the watershed areas that were

bilateral and spatially symmetrical. These results suggested that

the broad spectrum of variability in disease expression in our

sickle cell anemia cohort and uncontrolled confounders of

mesostructure integrity affected our ability to detect widespread

WM abnormalities as proposed in the literature. Nevertheless,

finding interhemispheric WMSs affected in SCD aligns with

previous literature reports showing decreased FA in the corpus

callosum in CA patients. Recognizing both the differences

and the similitudes between CA patients and the affliction

that anemia causes in white matter may help develop earlier

and more generalized interventions to help overcome the

anemia burden.
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