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Abstract
For swine breeding programs, testing and selection programs are usually within purebred (PB) populations located in 
nucleus units that are generally managed differently and tend to have a higher health level than the commercial herds in 
which the crossbred (CB) descendants of these nucleus animals are expected to perform. This approach assumes that PB 
animals selected in the nucleus herd will have CB progeny that have superior performance at the commercial level. There is 
clear evidence that this may not be the case for all traits of economic importance and, thus, including data collected at the 
commercial herd level may increase the accuracy of selection for commercial CB performance at the nucleus level. The goal 
for this study was to estimate genetic parameters for five maternal reproductive traits between two PB maternal nucleus 
populations (Landrace and Yorkshire) and their CB offspring: Total Number Born (TNB), Number Born Alive (NBA), Number 
Born Alive > 1 kg (NBA > 1 kg), Total Number Weaned (TNW), and Litter Weight at Weaning (LWW). Estimates were based on 
single-step GBLUP by analyzing any two combinations of a PB and the CB population, and by analyzing all three populations 
jointly. The genomic relationship matrix between the three populations was generated by using within-population allele 
frequencies for relationships within a population, and across-population allele frequencies for relationships of the CB with 
the PB animals. Utilization of metafounders for the two PB populations had no effect on parameter estimates, so the two 
PB populations were assumed to be genetically unrelated. Joint analysis of two (one PB plus CB) vs. three (both PB and CB) 
populations did not impact estimates of heritability, additive genetic variance, and genetic correlations. Heritabilities were 
generally similar between the PB and CB populations, except for LWW and TNW, for which PB populations had about four 
times larger estimates than CB. Purebred-crossbred genetic correlations (rpc) were larger for Landrace than for Yorkshire, 
except for NBA > 1 kg. These estimates of rpc indicate that there is potential to improve selection of PB animals for CB 
performance by including CB information for all traits in the Yorkshire population, but that noticeable additional gains may 
only occur for NBA > 1 kg and TNW in the Landrace population.
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Introduction
In the swine breeding industry, meeting consumer and 
producer demands drives innovation and decision making at 
all levels. Typical breeding programs are implemented in well-
managed and highly bio-secure purebred (PB) populations that 
drive the genetic merit of pigs at the commercial producer 
level, which are typically crossbred (CB). In addition to the 
unique genetic composition of PB vs. CB animals, pigs in 
the PB breeding populations are not exposed to the same 
environmental stressors that their CB descendants will 
experience in a typical production environment (Wei and van 
der Werf, 1994; Bijma and van Arendonk, 1998; Dekkers, 2007; 
Zumbach et  al., 2007; Zeng et  al., 2013; Tusell et  al., 2016). As 
such, selection for production traits observed in the PB animals 
at the nucleus level may not be entirely indicative of how their 
CB descendants will perform at the commercial level. As a 
result, recording phenotypes at the commercial CB level and 
integration of these to estimate breeding values of PB nucleus 
animals may improve the accuracy of selection in the nucleus 
PB populations for CB performance improvement. Many studies 
have examined the use of PB and CB data or a combination 
of these to determine which scenarios benefit most from the 
addition of CB data (Christensen et al., 2014; Esfandyari et al., 
2015; van Grevenhof and van der Werf, 2015; Wientjes and 
Calus, 2017). A key parameter that determines this benefit is 
the genetic correlation between the same traits recorded in 
the PB vs. CB populations (rpc). A  high rpc indicates that the 
additive genetic component of the trait is essentially the same 
in the two populations and that CB data may be of limited use. 
However, if rpc is lower than, e.g., 0.75, the use of CB data for 
genetic evaluation in the nucleus may improve the accuracy 
of selection for commercial CB performance substantially and 
be worth the extra costs (Dekkers, 2007; Iversen et  al., 2017; 
Wientjes et al., 2020).

Design of breeding programs to improve commercial CB 
performance requires estimates of the variance components 
and of rpc to make informed decisions about what data to 
collect, what estimates of genetic merit to be used for selection, 
and what models to use for the estimation of breeding values. 
Previous studies have evaluated various strategies to use CB 
data to improve selection for commercial CB performance in 
PB populations (Esfandyari et  al., 2015), such as exploring the 
impact of single-step genomic best linear unbiased prediction 
(ssGBLUP) (Legarra et  al., 2009) for total number born (Xiang 
et al., 2016), comparing breed-specific effect models for genomic 
selection for litter size and gestation length (Lopes et al., 2017), 
and the inclusion of CB data for carcass and production traits 
(Christensen et  al., 2019). Further studies included the use of 
metafounders, which provide the opportunity to connect the PB 
parental populations and the CB population through ancestral 
individuals when estimating covariance(s) between phenotypes 
collected on CB and PB populations (Xiang et  al., 2017; van 
Grevenhof et al., 2019).

Although multiple studies have reported estimates of 
rpc for the same phenotype between PB and CB populations, 
published estimates of rpc between different reproductive 
phenotypes in pigs are limited. Therefore, the objectives of this 
work were to 1)  estimate variance components, heritabilities, 
and rpc for reproductive traits for CB and their two parental PB 
populations both between the same and different phenotypes 
recorded on PB and CB animals, and 2)  evaluate the effect of 
using metafounders on estimates of variance components and 
of rpc. To achieve these goals, ssGBLUP was used to combine 
genomic and pedigree relationships for two- (one PB plus CB) 
and three-population (both PB plus CB) analyses. The three-
population analyses allow for information from both parental 
PB populations to be utilized.

Materials and Methods
The animals used in this study were cared for according to the 
Canadian Council on Animal Care (Olfert et al., 1993) guidelines.

Populations

Maternal reproduction phenotypes were collected on two 
maternal PB lines (Yorkshire and Landrace) and on CB produced 
from the two PB. The PB animals were housed in a single high-
health nucleus herd with 2,540 Landrace and 2,451 Yorkshire 
females with recorded data. The CB population was housed in 
a typical commercial production herd and consisted of 2,570 
CB females with records. Phenotypes were collected over a 3-yr 
period for CB individuals (2017–2020) and over an 8-yr period for 
the two PB populations (2011–2019). Sires and dams of the CB 
individuals were included in the PB data and pedigree, although 
not all purebred parents were included in the genotypic data, 
as some were not genotyped. Additionally, while the matings to 
produce CB females were primarily in one direction (Landrace 
sires and Yorkshire dams), some matings were in the opposite 
direction and, as such, most of those dams were also present in 
the PB populations.

Phenotypic data

Data were collected on PB and CB females across multiple 
parities of each sow’s productive lifetime (parities 1 to 7 
for CB; parities 1 to 4 for PB) for five economically important 
reproductive phenotypes (Table 1): Total Number Born (TNB), 
Number Born Alive (NBA), Number Born Alive with birth weight 
greater than 1  kg (NBA > 1  kg), Total Number Weaned (TNW), 
and Litter Weaning Weight (LWW) of piglets weaned by the sow. 
Not all measurements were collected on all individuals and 
not all parities were recorded for each individual. Number born 
alive was determined as the number of piglets alive at the first 
observation after farrowing (normally within 12  h). Lactation 
length and net number fostered (number of piglets fostered onto 
the sow minus the number of piglets fostered off the sow over 
the length of her lactation) were also recorded for each litter. 
Early weaning of some piglets within a litter was practiced in 
the CB population and the number of early weaned piglets and 
their weights were included in litter records for TNW and LWW. 
Phenotypic data were edited based on the following criteria: 
lactation length between 14 and 28 d; total number born > 6; 
average piglet wean weight ≥ 3 kg; total piglet differential +/− 1 
per parity [number of piglets weaned − (number of piglets born 
alive + net fostered − deaths)]. Phenotypes for TNW and LWW 

Abbreviations

CB crossbred
GBLUP genomic best linear unbiased 

prediction
PB purebred
ssGBLUP single-step genomic best linear 

unbiased prediction
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were set to missing if lactation length, average piglet wean 
weight, or total piglet differential were out of range, whereas all 
phenotypes for a sow’s parity were set to missing if TNB was out 
of range.

Genotypes and pedigree

Genotypes were available for 1,965 Landrace, 1,981 Yorkshire, 
and 2,060 CB individuals from the Illumina porcine SNP60 v2 
BeadChip (Illumina Inc., San Diego, CA) and from a custom 
Affymetrix Axiom Porcine Genotyping Array with approximately 
55k SNPs (Affymetrix, Santa Clara, CA). Genotyped females were 
from the same period of time as the period for which phenotypes 
were available and the majority of phenotyped animals were 
also genotyped (77% of Landrace, 81% of Yorkshire, and 80% of 
CB females). Genotyped animals were reduced to common SNPs 
and imputed to the custom Affymetrix genotyping array using 
FIMPUTE (Sargolzaei et al., 2014). A total of 53,079 SNPs remained 
after excluding SNPs with minor allele frequency less than 0.05 
across all three populations, call rate less than 0.90, and SNPs that 
were not mapped in Sus scrofa build 11.1 (https://www.ncbi.nlm.
nih.gov/genome/gdv/browser/genome/?id=GCF_000003025.6). 
The genomic relationship matrix across the three populations 
was generated using VanRaden method 1 (VanRaden, 2008; 
Wientjes et al, 2017), using within-population allele frequencies 
for relationships within a population and across-population 
allele frequencies for relationships of the CB with PB animals. 
The two PB populations were assumed to be genetically 
unrelated and their relationships were set to zero.

Pedigree was available only for the PB populations. Individuals 
with unknown parentage, including all CB sows, were assigned 
to an unknown parentage group based on year of birth, using 
the unknown parent group coding of REMLF90 (Misztal et  al., 
2018). The use of metafounders was also evaluated, with a single 
metafounder created for each PB population to allow a connection 
between purebred populations and CB offspring, as described in 
Xiang et  al. (2017). The use of metafounders, however, did not 
have a noticeable effect on estimates of variance components 
and genetic correlations. Therefore, only models and results 
without the use of metafounders will be presented.

Statistical models and analyses

Briefly, five maternal trait phenotypes were analyzed using 
either two-population (one PB plus CB) or three-population (both 
PB plus CB) models. Traits were considered to be population 

specific (i.e., CB TNB, Landrace TNB, and Yorkshire TNB). This was 
done for both the same trait phenotype and for different trait 
phenotypes between populations (e.g., between TNB in PB and 
LWW in CB). The two- and three-population models yielded very 
similar estimates of variance components and of rpc. Thus, only 
results from the three-population approach will be presented. 
Genetic correlations between traits within a population were 
estimated using bivariate models, considering only phenotypes 
for that population.

The following trait-level linear mixed model designates 
the appropriate matrices, fixed effects, and permanent 
environmental effects associated with each population-specific 
trait and was used as the basis for all analyses, allowing each 
population to express a different but correlated trait:

y = Xb+ Z1a+ Z2Sow+ e (1)

where y is the vector of phenotypic observations for the trait 
within a population; X, Z1, and Z2 are incidence matrices 
relating records to fixed, animal, and permanent environmental 
effects, respectively; b is the vector of fixed effects, a is 
the vector of random animal additive genetic effects, with 
a ∼ N (0,H⊗ Σg) , where H is the combined genomic and 
pedigree relationship matrix (Legarra et  al., 2014), and Σ g is 
the genetic co-variance matrix of dimension 2 and 3 for the 
bi-variate and three-variate analyses, respectively; Sow is the 
vector of permanent environmental effects of sow to account 
for repeated records, with Sow ∼ N(0, I⊗ Σpe), where Σpe is the 
appropriate permanent environmental co-variance matrix for 
the bi- or three-variate analyses; and e ∼ N(0, I⊗ Σe), where Σe 
is the appropriate residual co-variance matrix. For the three-
population analyses, variance-covariance matrices were as 

follows: Σg =




σ2
g1 σg1g2 σg1g3

σg1g2 σ2
g2 σg2g3

σg1g3 σg2g3 σ2
g3


, Σpe =




σ2
pe1 0 0

0 σ2
pe2 0

0 0 σ2
pe3


, 

Σe =




σ2
e1 0 0
0 σ2

e2 0
0 0 σ2

e3


, where subscripts 1, 2, and 3 represent 

the phenotype recorded on CB, Landrace, and Yorkshire, 
respectively. Covariances of permanent environmental and 
residual effects between populations were set to zero because 
sows only have observations in one population. Fixed effects 

Table 1. Summary statistics for phenotypes and covariates recorded in the two purebred populations (Landrace and Yorkshire) and their CB 
offspring1

Total records Average SD

Landrace Yorkshire CB Landrace Yorkshire CB Landrace Yorkshire CB

TNB 4483 4067 9671 13.37 14.83 14.5 3.2 3.54 3.08
NBA 4483 4067 9671 11.17 12.09 13.32 2.76 3.08 3.05
NBA > 1 kg 4483 4067 9173 10.44 10.92 11.25 2.58 2.9 2.87
LWW 4483 4067 7083 60.82 60.37 62.16 12.55 13.46 11.98
TNW 4483 4067 7083 10.28 10.35 11.66 1.53 1.68 1.65
LL 4483 4067 7083 19.91 20.61 19.35 2.3 2.14 1.89
#Repeated Records - - - 1.76 1.66 3.76 0.83 0.78 2.22
NF 4483 4067 7083 0.11 -0.66 -0.12 2.72 3.02 2.54
NEW N/A N/A 7083 N/A N/A 1.56 N/A N/A 0.88

1Number of records for each population by trait, average, and standard deviation.
TNB, Total Number Born, NBA, Number Born Alive, NBA > 1 kg, Number Born Alive > 1 kg, LWW, Litter Weight at Weaning (kg), TNW, Total 
Number Weaned, LL, Lactation Length (days), NF, Net fostered, NEW, Number of Early Weaned piglets per litter.

https://www.ncbi.nlm.nih.gov/genome/gdv/browser/genome/?id=GCF_000003025.6
https://www.ncbi.nlm.nih.gov/genome/gdv/browser/genome/?id=GCF_000003025.6
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included contemporary group (CG, year-week-herd of farrowing, 
with 112 to 342 levels depending on population and trait) and 
parity (1 to 4 for PB; 1 to 7 for CB). For TNW and LWW, linear 
covariates of lactation length (LL), net number fostered (NF), and 
number early weaned (NEW) were included as fixed effects (see 
Table 1 for general statistics on these covariates).

Two-population (one PB plus CB) analyses were run in 
ASReml 4.1 (Gilmour et al., 2015) to obtain priors for (co)variance 
components between the CB and each PB population. Final 
estimates were obtained from the three-population model using 
ssGBLUP of the BLUPF90 series of programs, including renumf90, 
remlf90, and airemlf90 (Misztal et al., 2018). EM-REML was used 
for the first 50 iterations and the convergence criterion was set 
to 10−9.

The bivariate model used to estimate variance components 
and genetic correlations between trait phenotypes within a 
population assumed a similar variance-covariance structure for 
Σg to the three-population model, whereas Σpe and Σe differed 
by having off-diagonal values as phenotypes were on the 
same animal.

Estimates of heritability were calculated as the ratio of the 
estimates of additive genetic to phenotypic variance, which was 
the sum of estimates of genetic, permanent environment, and 
residual variance. Estimates of repeatability were calculated as 
the sum of the estimates of additive genetic plus permanent 
environmental variances divided by the estimate of phenotypic 
variance.

Results

Descriptive statistics

The two PB populations had approximately equal numbers 
of records, whereas the CB population had about double the 
number of records (Table 1). The number of CGs was smaller 
for the CB than for the PB populations by a factor of 3, but the 
numbers of records per CG were higher for the CB than for the 
PB populations (average of 41 records per CG for CB and 13/12 for 
Landrace/Yorkshire). Parity ranged from 1 to 7 for CB sows, with 
all PB sows having between 1 and 4 parities. The frequency of 
CB records from parities 1 to 5 was relatively constant and then 
decreased sharply for parities 6 on.

All recorded PB litters had complete data for all five of the 
sow reproduction traits. All recorded litters on CB females had 
TNB and NBA data but not for NBA > 1  kg, TNW, and LWW 
(Table 1). A given phenotype had similar averages and standard 
deviations in the three populations. The lower number of 
records for LWW and TNW in the CB population was because 
phenotypes that were outside acceptable ranges were removed, 
as described in Materials and Methods.

Genetic parameter estimates

Estimates of variance components, heritabilities, and 
repeatabilities for each phenotype were obtained using three-
trait analyses, considering the phenotype to be a different trait 
in each population (Table 2). Heritability estimates were similar 
between the three populations, except for LWW and TNW, for 
which heritability estimates were approximately four times larger 
for the PB than for the CB populations (Landrace 0.16, Yorkshire 
0.21, and CB 0.04 for LWW, and Landrace 0.07, Yorkshire 0.07, and 
CB 0.02 for TNW). Standard errors of heritability estimates were 
consistently low across traits and populations.

Trends in estimates of genetic variance between populations 
for the five phenotypes were different from the trends in 
heritability estimates. The two PB populations had similar 
genetic variance estimates for all phenotypes, except for 
NBA > 1  kg and LWW, for which the Yorkshire population 
had approximately 75% higher estimates than the Landrace 
population. The CB population had the lowest numerical 
estimates of genetic variance of the three populations for TNB, 
LWW, and TNW, and the largest numerical estimates of genetic 
variation for NBA and the second largest for NBA > 1 kg, although 
high standard errors make these differences not significant. 
Similar to the estimates of heritability, the difference between 
the estimates for the PB and CB populations was again largest 
for LWW and TNW. Repeatability estimates were generally 
moderate, with low standard errors across all phenotypes and 
populations. Repeatability estimates were similar between the 
three populations for TNB, TNW, and LWW, but higher for NBA 
and NBA > 1 kg in the CB population.

Estimates of genetic correlations between phenotypes within 
the PB and CB populations (rg, Figure 1) ranged from low to high 
(0.14 to 0.76 for CB, −0.1 to 0.95 for Landrace, and 0.06 to 0.78 
for Yorkshire) and many had large standard errors. The genetic 

Table 2. Estimates of heritabilities, additive genetic variance, repeatability, and genetic correlation (SE) for traits recorded in the two purebred 
populations (Landrace and Yorkshire) and their CB offspring1

Heritability Genetic variance Repeatability

Landrace Yorkshire CB Landrace Yorkshire CB Landrace Yorkshire CB

TNB 0.12 (0.02) 0.1 (0.02) 0.09 (0.02) 1.23 (0.24) 1.21 (0.27) 0.84 (0.22) 0.25 (0.03) 0.21 (0.03) 0.23 (0.02)
NBA 0.09 (0.02) 0.08 (0.02) 0.08 (0.02) 0.7 (0.16) 0.73 (0.19) 0.79 (0.22) 0.19 (0.03) 0.19 (0.03) 0.26 (0.02)
NBA > 1kg 0.07 (0.02) 0.09 (0.02) 0.08 (0.02) 0.45 (0.13) 0.72 (0.17) 0.61 (0.19) 0.21 (0.03) 0.19 (0.03) 0.27 (0.02)
LWW 0.16 (0.03) 0.21 (0.03) 0.04 (0.02) 16.69 (3.01) 31 (5.01) 4.09 (2.43) 0.32 (0.03) 0.29 (0.03) 0.31 (0.02)
TNW 0.07 (0.02) 0.07 (0.02) 0.02 (0.02) 0.14 (0.04) 0.18 (0.05) 0.06 (0.05) 0.2 (0.03) 0.18 (0.03) 0.19 (0.02)

 CB/Landrace Genetic Correlation CB/Yorkshire Genetic Correlation    

TNB 0.88 (0.22) 0.68 (0.23)    
NBA 0.91 (0.26) 0.52 (0.27)    
NBA > 1 kg 0.24 (0.34) 0.52 (0.28)    
LWW 0.86 (0.37) 0.65 (0.3)    
TNW 0.67 (0.56) 0.69 (0.55)    

1Estimates (and standard errors) from three-trait ssGBLUP REMLF90 analysis per trait. TNB, Total Number Born, NBA, Number Born Alive, NBA 
> 1 kg, Number Born Alive > 1 kg, LWW, Litter Weight at Weaning (kg), TNW, Total Number Weaned.
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correlation between TNW and NBA > 1 kg could not be estimated 
in CB, possibly due to the low genetic variance of TNW in CB. 
Estimates of genetic correlations between phenotypes within 
a population were generally 50% to 100% larger for Landrace 
than for Yorkshire, although estimates that involved LWW 

were larger in Yorkshire. Estimates of phenotypic correlations 
between traits within a population were in general larger than 
the corresponding genetic correlation estimates, although not 
always, such as for LWW with TNB and LWW with TNW in 
Landrace (Figure 2).

Figure 1. Between trait genetic correlations within and between populations between trait genetic correlations within and between populations (1 purebred and 

crossbred). TNB: Total Number Born, NBA: Number Born Alive, NBA > 1 kg: Number Born Alive > 1 kg, LWW: Litter Weight at Weaning (kg), TNW: Total Number Weaned.

Figure 2. Between trait phenotypic correlations within a population between trait phenotypic correlations within a population. TNB: Total Number Born, NBA: Number 

Born Alive, NBA > 1 kg: Number Born Alive > 1 kg, LWW: Litter Weight at Weaning (kg), TNW: Total Number Weaned.
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Estimates of rpc for the same phenotype between the PB 
and CB populations (rpc, Table 2) ranged from moderate to high 
(0.52 to 0.91), depending on the trait and populations compared, 
except for an estimate of 0.24 for NBA > 1 kg between CB and 
Landrace, with many estimates having large standard errors. 
Estimates of rpc differed greatly for the two PB populations, 
although not significantly, and there was no general trend other 
than estimates being smaller for Yorkshire than for Landrace 
except for NBA > 1 kg.

Estimates of rpc for different phenotypes between the PB and 
CB populations ranged from highly negative to highly positive 
for Landrace with CB (−0.64 to 0.8) and from lowly negative to 
highly positive for Yorkshire with CB (−0.21 to 0.97; Figure 1) but 
with moderate to high standard errors. For Landrace, the largest 
estimates of rpc involved the NBA and NBA > 1 kg phenotypes, 
whereas for Yorkshire, estimates of rpc that involved CB LWW 
were consistently high.

Discussion
This study investigated estimates of variance components, 
heritabilities, repeatabilities, and genetic and phenotypic 
correlations for sow reproduction phenotypes for two PB 
populations (Landrace and Yorkshire) and their CB population. The 
ultimate goal of this project is to determine whether the use of CB 
phenotypes in genetic evaluation of PB selection candidates can 
improve the rate of genetic improvement of the PB populations for 
CB performance. Incorporating CB information in multiple-trait 
PB selection programs requires knowledge of genetic parameters 
between PB and CB populations, both for the same and different 
phenotypes. Especially the latter are not widely available in the 
literature. Substantial numbers of phenotypes were available on 
PB and CB animals, as well as SNP genotypes, which improves the 
accuracy of genetic parameter estimates. The ssGBLUP method 
was used to capitalize on both pedigree and genomic information.

Estimates of variance components and heritabilities were 
similar for two-population analyses (CB plus one PB population) 
compared to using all three populations together. Nevertheless, 
given adequate computational resources, it is recommended 
that analyses are conducted across the three populations to 
make full use of all information. The use of metafounders to 
better align genomic and pedigree relationships and allow 
relationships between PB populations was also investigated but 
was found to have negligible effects on estimates of variance 
components and genetic correlations.

The CB population had similar estimates of repeatability for 
LWW and TNW than the PB populations but noticeably lower 
estimates of heritability, a result of a larger sow permanent 
environmental effect variance in the CB population. This may be 
related to differences in management and environment in the 
nucleus vs. the multiplier herds; for example, CB sows had on 
average more than 3 records, whereas PB sows had on average 
less than 2 records. There may also be additional factors that 
were not accounted for, such as non-additive genetic effects that 
resulted in the greater permanent environmental effects for CB 
sows. Determining what these are may improve estimates of 
heritability for LWW and TNW, which are the only two traits that 
could be affected by adjustments in how piglets are managed 
during lactation and are important sow productivity traits.

The PB and CB populations differed in two ways in how piglets 
were managed, namely, cross-fostering between sows and early 
weaning of piglets. Cross-fostering, as a routine management 
practice, was discouraged in the PB nucleus and was used when 
sows were not capable of providing sufficient milk for their litter. 
In the CB herd, cross-fostering was also not routinely practiced. 

Instead, the two largest piglets were routinely weaned about 7 d 
earlier than the rest of the piglets for more than 85% of the litters. 
Phenotypes for LWW and TNW on CB litters included early-
weaned piglets. Both early weaning and cross fostering may bias 
LWW and TNW phenotypes and may result in them not be entirely 
accurate measures of a sow’s maternal capability. To account for 
the potential effects of cross-fostering and early weaning, the 
number of net fostered pigs and the number of early weaned 
piglets (only for CB phenotypes) were fitted as fixed covariates for 
TNW and LWW. There was no adjustment for the timing of early 
weaning and weight at early weaning was considered as the final 
weaning weight for those pigs. To obtain unbiased estimates of 
genetic parameters for LWW and TNW as measures of a sow’s 
maternal ability, net fostered and early weaning were fit as 
covariates to account for management practices.

With estimates of repeatability being nearly double the 
estimates of heritability for all traits except one, permanent 
environmental effects of the sow were found to have a large 
effect on the reproduction phenotypes analyzed here. Estimates 
of repeatability of NBA and NBA > 1 kg were higher in the CB than 
in both PB populations, although estimates of heritability were 
similar between the three populations. This may be indicative of 
differences in management. Identification of these management 
differences and their incorporation in the analysis models could 
alleviate some disparity between repeatability and heritability. 
Incorporation of non-additive genetic effects may also help us to 
bridge the gap between repeatability and heritability.

An estimate of rpc of 0.75 for a given trait has been suggested 
to be the threshold above which addition of CB phenotypes 
in genetic evaluation of PB selection candidates does not 
materially improve the selection response in CB animals 
compared to just using PB phenotypes (van Grevenhof et  al., 
2015; Iversen et al., 2017; Wientjes et al., 2020). Our findings show 
that none of the five traits fully meet this minimum threshold. 
Across populations, each trait had at least one rpc less than 0.75  
(Table 2). NBA > 1 kg and TNW would benefit from the inclusion 
of CB data for both PB populations, whereas TNB, NBA, and 
LWW may benefit from the inclusion of CB data for PB Yorkshire 
selection. The standard errors on these estimates of rpc, however, 
put substantial uncertainty on these assessments. As such, it 
would be beneficial to continue recording data from the CB 
population to improve estimates of rpc and increase the accuracy 
of selection for CB performance in the two PB lines.

Of particular interest are the high estimates of rpc between 
different phenotypes in a PB and the CB population, such as 
between LWW in the CB and TNB in Yorkshire, which was 0.97, 
though with a large standard error (0.49) (Figure 1). In contrast, the 
estimate of rpc for LWW for CB and Yorkshire was only 0.6 (+0.3). 
These results indicate that recording of CB traits may benefit more 
from across phenotype evaluations than from utilizing the same 
phenotype from the PB and CB populations. This may be because of 
differences in management practices between the nucleus and CB 
herds, which may lead to TNB in PB to be a better genetic indicator 
of LWW in the CB herd than PB records on LWW. Multiple-trait 
genetic evaluation methods, with multiple traits in the PB and 
the CB population, would allow these between phenotype rpc to 
be capitalized on. The large standard errors associated with these 
rpc, however, do require careful consideration. Additional data and 
records may help us to improve these rpc estimates.

Conclusions
This study estimated variance components, heritabilities, and 
genetic and phenotypic correlations for five economically 
important maternal phenotypes in pigs. It examined the 
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differences and similarities of these phenotypes in two PB 
populations and their CB offspring to determine if there is a 
potential benefit to using CB data for genetic evaluation of PB 
selection candidates in order to increase genetic improvement 
for CB performance. Heritability estimates ranged from low 
to moderate across phenotypes and populations, whereas 
estimates of rpc between the CB and the two purebred populations 
ranged from low to high. This range of rpc estimates indicates 
that there is the potential for improved accuracy of selection 
by using CB in addition to PB records, with all five phenotypes 
having at least one PB population that would benefit from the 
addition of CB data based on estimates of rpc < 0.75. Standard 
errors of estimates were, however, generally large. Furthermore, 
estimates of rpc between different phenotypes across the PB 
and CB populations indicated that selection for improvement 
of a given CB phenotype may be more effective when based on 
another, more highly correlated phenotype in the PB population, 
which can be accommodated by multi-trait genetic evaluation. 
Availability of additional populations and/or more extensive 
phenotyping and genotyping of the CB population is needed 
to further refine the estimates of heritability and rpc to better 
understand which traits could benefit from the inclusion of CB 
data in PB selection.
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