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ABSTRACT
Coronavirus disease 2019 (COVID-19) is a viral respiratory disease which caused global health emer-
gency and announced as pandemic disease by World Health Organization. Lack of specific drug mole-
cules or treatment strategy against this disease makes it more devastating. Thus, there is an urgent
need of effective drug molecules to fight against COVID-19. The main protease (Mpro) of SARS CoV-2,
a key component of this viral replication, is considered as a prime target for anti-COVID-19 drug devel-
opment. In order to find potent Mpro inhibitors, we have selected eight polyphenols from green tea,
as these are already known to exert antiviral activity against many RNA viruses. We have elucidated
the binding affinities and binding modes between these polyphenols including a well-known Mpro
inhibitor N3 (having binding affinity �7.0 kcal/mol) and Mpro using molecular docking studies. All
eight polyphenols exhibit good binding affinity toward Mpro (�7.1 to �9.0 kcal/mol). However, only
three polyphenols (epigallocatechin gallate, epicatechingallate and gallocatechin-3-gallate) interact
strongly with one or both catalytic residues (His41 and Cys145) of Mpro. Molecular dynamics simula-
tions (100ns) on these three Mpro–polyphenol systems further reveal that these complexes are highly
stable, experience less conformational fluctuations and share similar degree of compactness.
Estimation of total number of intermolecular H-bond and MM-GBSA analysis affirm the stability of
these three Mpro–polyphenol complexes. Pharmacokinetic analysis additionally suggested that these
polyphenols possess favorable drug-likeness characteristics. Altogether, our study shows that these
three polyphenols can be used as potential inhibitors against SARS CoV-2 Mpro and are promising
drug candidates for COVID-19 treatment.
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Abbreviations: COVID-19: corona virus disease 2019; SARS CoV-2: severe acute respiratory syndrome
corona virus-2; Mpro: main protease; MD: molecular dynamics; RMSD: root mean square deviation;
RMSF: root mean square fluctuation; Rg: radius of gyration; SASA: solvent accessible surface area
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1. Introduction

The novel corona virus disease (COVID-19) is spreading in
the whole world causing deaths of 308,962 people till the
16th of May 2020 (https://www.worldometers.info/corona-
virus/). The World Health Organization (WHO) has already
declared COVID-19 as a pandemic disease (Cucinotta &
Vanelli, 2020). Symptoms of this disease mainly include fever,
cough, sore throat, runny nose and difficulty in breathing
(Chen et al., 2020; Ren et al., 2020; Zhu et al., 2020). The dis-
ease was initially originated from Wuhan, China and
expanded to nearly 215 countries (Zhu et al., 2020). USA,
Spain and UK are among the most affected countries due to
COVID-19 disease. In the USA alone, a total number of
1,484,287 people are infected and 88,507 people died due to
COVID-19. In Spain and UK, 274,367 and 236,711 people are
infected and 27,459 and 33,998 people have died there,
respectively. This viral disease has not only challenged
human health but also enormously affected the glo-
bal economy.

The etiological agent of COVID-19 is severe acute respira-
tory syndrome corona virus-2 (SARS CoV-2) which belongs to
the genus b-coronavirus (Zheng, 2020). Before SARS CoV-2,
two more epidemic diseases were caused by corona viruses
namely severe acute respiratory syndrome (SARS) and middle
east respiratory syndrome (MERS) (Drosten et al., 2003; Zaki
et al., 2012). In 2003, SARS had killed �750 people, whereas
MERS was the reason behind the death of �860 people in
2012 (Mahase, 2020). On the contrary, the mortality rate due
to SARS CoV-2 is exceptionally high (Mahase, 2020). SARS
CoV-2 is a non-segmented enveloped positive-sense single-
stranded RNA virus with �29.9 kb genome size (Wu et al.,
2020; Zhu et al., 2020). The virus is thought to be originated
from the bat and transmitted to humans by other sources
(Zheng, 2020). Later on, human to human transmission of
this disease is confirmed (Chan et al., 2020). Till date, no
drug molecules or specific therapies have been developed to
combat COVID-19. Considering the risk factors associated
with this viral infection, an effective drug molecule is
urgently required for effective treatment and to limit the
transmission of this disease.

Many efforts involve the targeting of nonstructural pro-
tein, spike protein, the RNA-dependent RNA polymerase
(RdRp) and the angiotensin-converting enzyme II (ACE2)
entry receptor for the anti-COVID-19 drug development
(Abdelli et al., 2020; Babadaei et al., 2020; Basit et al., 2020;
Elfiky, 2020a, 2020b; Hasan et al., 2020; Nejadi Babadaei
et al., 2020; Sinha et al., 2020; Wahedi et al., 2020). Targeting
the components responsible for replication of SARS CoV-2
may be also a good strategy to identify effective drugs for
the treatment of COVID-19. Like SARS and MERS corona
viruses, the SARS CoV-2 genome also contains two open
reading frames namely ORF1a and ORF1ab (Boopathi et al.,
2020). These two ORFs help in translating two overlapping
viral polyproteins pp1a and pp1ab required for viral replica-
tion and transcription (Grum-Tokars et al., 2008; Marra et al.,
2003; Thiel et al., 2003). The functional polypeptides are
released from the pp1a and pp1ab polyproteins by proteo-
lytic processing by the papain-like proteinase (PLpro) and

the 3C-like protease (3CLpro) (Grum-Tokars et al., 2008;
Marra et al., 2003; Thiel et al., 2003). PLpro and 3CLpro are
responsible for the cleaving of three sites and 11 sites,
respectively within the viral genome (Harcourt et al., 2004;
Thiel et al., 2003). As 3CLpro cleaves most of the sites of the
polypeptide, it is also known as the main protease or Mpro.
Different studies have identified Mpro as a cysteine protease
with a Cys-His catalytic dyad (His41 and Cys145) in the active
site of the protease (Blanchard et al., 2004; Dai et al., 2020;
Jin et al., 2020; Osman et al., 2020). As Mpro plays a vital
role in polyprotein processing and virus maturation, it is con-
sidered to be an important target for designing antiviral
drugs against SARS CoV-2 (Anand et al., 2003; Yan et al.,
2003). In addition, there is no human homolog of Mpro
which makes it an ideal antiviral target (Kim et al., 2016).
Apart from this, the high-resolution crystal structure of Mpro
protease along with its inhibitor is recently made available,
which has eased the way in designing structure-based Mpro-
specific inhibitors to combat this viral disease (Jin et al.,
2020; Yang et al., 2003). Utilizing computational approach,
investigators have identified many small molecules including
HIV and malaria drugs as SARS CoV-2 protease inhibitor
(Adeoye et al., 2020; Khan et al., 2020; Muralidharan et al.,
2020). Interestingly, many antiviral phytochemicals, bioactive
compounds from Moroccan medicinal plants (Crocin,
Digitoxigenin and b-Eudesmol) and chemical compounds
from Indian spices (Carnosol, Rosmanol and Arjunglucoside-I)
are proposed to be effective SARS CoV-2 Mpro inhibitors
(Aanouz et al., 2020; Das et al., 2020; Enmozhi et al., 2020;
Gyebi et al., 2020; Islam et al., 2020; Joshi et al., 2020; Umesh
et al., 2020).

Plant-derived natural polyphenols are well known in pre-
venting a wide range of diseases which include viral diseases
as well. Recently, Purohit and coworkers have revealed that
many bioactive molecules including a polymerized polyphe-
nol (Oolonghomobisflavan-A) from tea plant (Camellia sinen-
sis L.) act as effective SARS CoV-2 Mpro inhibitors (Bhardwaj
et al., 2020). Green tea (C. sinensis) also contains eight native
monomeric catechins or polyphenolic compounds and those
are epigallocatechin gallate (EGCG), epigallocatechin (EGC),
epicatechin gallate (ECG), epicatechin (EC), gallocatechin-3-
gallate (GCG), gallocatechin (GC), catechin gallate (CG) and
catechin (C) (Ai et al., 2019). These green tea polyphenols/
catechins are promising compounds in exhibiting antiviral
activities. They show antiviral activity against a wide range of
human viruses including influenza, hepatitis B, hepatitis C,
herpes simplex virus and HIV (Calland et al., 2012; Fassina
et al., 2002; Ide et al., 2016; Lyu et al., 2005; Xu et al., 2008).
These polyphenols are even active against dengue virus
(DENV), Chikungunya virus (CHIKV) and Zika virus (ZIKV)
(Carneiro et al., 2016; Ismail & Jusoh, 2017; Mahajan et al.,
2020; Weber et al., 2015). But whether these polyphenols
show any antiviral activity against SARS CoV-2 by inhibiting
the enzymatic activity of its Mpro is far from clear. In this
current study, we have undertaken a thorough attempt to
find out the potentiality of these eight green tea polyphe-
nols/catechins to inhibit the Mpro using in silico docking
studies, molecular dynamics (MD) simulations and binding
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free energy calculations. This study provides three green tea
polyphenols (EGCG, ECG and GCG) which may be served as
inhibitors against SARS CoV-2 Mpro.

2. Materials and methods

2.1. Preparation of the ligands

The structures of eight green tea catechins or polyphenols
[EGCG, EGC, ECG, EC, GCG, GC, CG and C] were downloaded
from PubChem crystal database server in SDF format
(https://pubchem.ncbi.nlm.nih.gov). Then all the sdf files were
converted to pdb files using pymol software and each of the
polyphenol structures were optimized with B3LYP/6-31G� type
of basis set by using Gaussian09 software (Frisch & Clemente).
Following optimization, each of these was loaded to AutoDock
Tools for the final preparation of ligands. Each of the optimized
polyphenol structure was then inserted to AutoDock Tools and
standard processes were used to obtain the pdbqt files.

2.2. Preparation of Mpro

The crystal structure of the SARS CoV-2 Mpro was taken
from the RCSB Protein Data Bank (http://www.rcsb.org) (PDB
ID: 6LU7) (Jin et al., 2020). Then we checked whether there
were any improper bonds, missing hydrogens, side chain
anomalies present or not. After correcting all those aspects
the structure file was inserted into AutoDock Tools and
standard procedures were followed to get pdbqt file format
of Mpro (Morris et al., 2008, 2009).

2.3. Molecular docking

The docking of Mpro with the eight polyphenols of green
tea was performed with the aid of AutoDock Vina, which is
now widely used as a successor of AutoDock Tools (Morris
et al., 2008, 2009). The binding affinities of polyphenols–
Mpro were determined and analyzed using the same soft-
ware. By seeing the position of active site region, the center
of the grid box was chosen to be at X: �11.75, Y: 15.135, Z:
68.856 with a suitable gridbox volume where the ligands can
easily be fitted and which covers the entire active site
pocket. The available crystal structure (PDB: 6LU7) with a
bound N3 molecule was used as a reference to calibrate and
optimize the docking procedures. Following calibration and
optimization, the same grid box size and other parameters
were used for docking studies of all the eight polyphenols
and the entire set up was run to obtain different docked
conformations. Amongst them, the best suited conformations
with lowest root mean square deviation (RMSD) values were
selected to calculate the binding energetic between Mpro
and green tea polyphenols. The output from AutoDock Vina
was rendered with PyMOL (DeLano, 2002).

2.4. MD simulation

All the MD simulations were carried out by the GROningen
MAchine for Chemical Simulations (GROMACS) version 5.1.2

(Abraham et al., 2015). The OPLS-AA/L force field and TIP3P
water model embedded in GROMACS were used for all the
MD simulations (Kaminski et al., 2001). The topology file of
Mpro protein was prepared by the GROMACS, while the lig-
and topologies were obtained from the LigParGen (a server
from the Jorgensen group to produce OPLS topologies). In
order to satisfy minimum image conventions the system was
initially accommodated in a cubic box with a distance of
1.4 nm between protein complex and the box. All bond
lengths of protein and polyphenols were constrained using the
LINCS algorithm while water molecules were restrained by
SETTLE algorithm (Hess et al., 1997; Miyamoto & Kollman, 1992).
A total of 30105, 30065, 30073 and 30073 water molecules
were added to a cubic simulation box containing the unligated
Mpro, Mpro–ECG, Mpro–EGCG, Mpro–GCG complexes, respect-
ively. Each system was energy-minimized using steepest descent
algorithm and equilibrated to achieve the appropriate volume.
Short- and long-range non-bonded interactions were calculated
by applying twin-range cutoffs of 0.9 and 1.4nm, respectively.
The leap frog algorithm with time step 2 fs was used for inte-
grating the equation of motion and the neighbor list was
updated at every five steps. Long-range electrostatics is treated
using the Particle Mesh Ewald method, with a Fourier grid spac-
ing of 0.16 (Darden et al., 1993). Periodic boundary conditions
were applied in all three directions. Equilibration of the systems
was carried out in two main stages. First, the system was
allowed to heat gradually to 300K in NVT ensemble using v-
rescale algorithm for 10ns. Then, NPT ensemble was used for
5ns by restraining the complexes (unligated Mpro, Mpro–ECG,
Mpro–EGCG, Mpro–GCG) while slowly allowing the solvent mol-
ecules to relax around it and finally another 10ns NPT equilibra-
tion was carried out by gradually removing the restraints on the
complexes. The pressure was maintained using Berendsen baro-
stat. For every system, the average temperature and pressure
values remained close to the desired values. The equilibrated
systems were then subjected to unrestrained production MD
simulations of 100ns each, maintaining target pressure (1bar)
and temperature (300K). Reproducibility of the results was
checked by five different repeating simulations with different
initial velocities and equilibration times. The overall trends in
the RMSD, root mean square fluctuation (RMSF), radius of gyr-
ation (Rg), solvent accessible surface area (SASA) and hydrogen
bond numbers remained the same. RMSD, RMSF, Rg, SASA and
total number of H-bond count were calculated from the MD
simulations (Purohit, 2014; Rajendran, 2016; Rajendran et al.,
2018; Sharma et al., 2020; Singh et al., 2020).

2.5. MM–GBSA

To predict the theoretical free energies of binding of ligands
to receptor, generally two most commonly used methods
are (a) the molecular mechanics generalized Born surface
area (MM-GBSA) and (b) molecular mechanics Poisson–
Boltzmann surface area (MM-PBSA). Both methods are
equally efficient to predict the correct binding affinities
(Chen, 2016; Chen et al., 2015; Hou et al., 2011; Venugopal
et al., 2020). Here, we used the MM-GBSA method to calcu-
late the relative binding free energies of green tea
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polyphenols to Mpro protein. The free energy of binding can
be calculated as DGbind¼DH� TDS.

DH¼DEelecþDEvdWþDGpolarþDGnon-polar, where Eelec and
EvdW are the electrostatic and van der Waal’s contributions,
and Gploar and Gnon-polar are the polar and non-polar solv-
ation terms, respectively. The non-polar energy is calculated
from the SASA while the polar contribution of the free
energy can be estimated using generalized Born model with
an external dielectric constant of 80 and internal dielectric
constant of 1. The entropic contribution is neglected here
due to similar type of ligands bind to the receptor.
Therefore, our calculated values are referred to as relative
binding free energies. The theoretical binding free energy of
the potent inhibitors of Mpro was identified using the prime
module of Schrodinger suit (Schr€odinger Release 2020-1:
Prime, Schr€odinger, LLC, New York, NY, 2020). MM-GBSA is a
popular method to calculate binding energy, which uses
energy properties of free ligand, free receptor and receptor–-
ligand complex for binding affinity calculation. Binding ener-
gies were estimated for the three polyphenols selected
based on the binding affinity of AutoDock Vina docking and
three complex structures were selected. Then with these
docking structures MM-GBSA were calculated.

2.6. Pharmacokinetic properties analysis

Various pharmacokinetic properties of these eight polyphe-
nols and N3 (chosen as model inhibitor) were predicted
using pkCSM-pharmacokinetics and Swiss ADME online soft-
wares (Daina et al., 2017; Pires et al., 2015). The drug-likeness
properties such as absorption, distribution, metabolism and
excretion parameters of these polyphenols along with the
toxicity were mainly analyzed.

3. Result and discussion

The theoretical study of SARS CoV-2 found a new horizon
when Yang and coworkers solved the crystal structure of
Mpro with N3 complex (Jin et al., 2020). The crystal structure

revealed that Mpro is a cysteine protease which is a homo-
dimer consisting of two identical protomers. Each protomer
has three distinct domains (domain I, II and III) along with a
specific substrate-binding site as shown in Figure 1. This sub-
strate-binding site mainly consists of a cysteine–histidine
dyad (His41 and Cys145) which controls the catalytic activity
of SARS CoV-2 Mpro. The substrate-binding pocket is located
between domains I (magenta) and domain II (cyan) of each
protomer (Figure 1). The compound N3 is reported to be a
potential inhibitor of Mpro which mainly binds to the active/
catalytic site of the protease Mpro. Docking of N3 compound
with Mpro protease revealed that the structural orientation
of N3 helps its binding to the catalytic cleft or substrate-
binding region of Mpro (Figure 1 and Table 1).

3.1. Molecular docking studies

Once the crystal structure of N3 inhibitor bound to Mpro
was elucidated, many such theoretical studies commenced in
order to find other suitable inhibitors for Mpro to control
COVID-19 (Elmezayen et al., 2020; Huynh et al., 2020; Islam
et al., 2020; Mahanta et al., 2020; Mittal et al., 2020). In the
current study, we used this N3 complex as a standard inhibi-
tor of Mpro and docked this complex with the protease. The
binding energy of this particular binding was found to be
�7.0 kcal/mol which is identical to the previously published
estimation by other investigators (Huynh et al., 2020).
Analysis of N3 docked complex suggested that this complex
is stabilized by multiple hydrophobic and hydrogen bond
interactions (particularly with His41 and Cys145) (Tables 2
and 3). Thus, we can also conclude like others that binding
of N3 to both the catalytic residues (His41 and Cys145) of
Mpro may be an important factor behind the inhibition of its
protease activity. But the pharmacokinetics analysis revealed
that N3 shows hepatotoxicity which makes it carcinogenic
for humans (Table 4). Data presented in this table also
reflected a negative tolerance dose of this compound for
human. All these adverse pharmacokinetic behaviors make
N3 an unsafe drug for COVID-19 treatment.

Figure 1. Surface representation of SARS CoV-2 Mpro with N3 inhibitor. The protomer of Mpro from SARS CoV-2 has been shown with its domains – Domain I (col-
ored with magenta), Domain II (colored with cyan) and Domain III (colored with yellow) while blue color represents the linker. The inhibitor N3 (represented by the
red stick) is attached to the substrate-binding pocket of Mpro.
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Table 1. Structure and binding energy of green tea polyphenols with Mpro along with N3 inhibitor as standard.

Complex Structure Binding energy (kcal/mol)

N3 �7.0

Epigallocatechin (EGC) �7.0

Gallocatechin (GC) �7.1

Catechin (C) �7.1

Epicatechin (EC) �7.2

Catechin gallate (CG) �7.2

Epigallocatechin gallate (EGCG) �7.6

Epicatechingallate (ECG) �8.2

(continued)
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In search of effective drugs for COVID-19 treatment, we
hypothesized that green tea catechins or polyphenols (struc-
ture given in Table 1) may be suitable drug candidates by
exerting inhibitory effects like N3. Their antiviral activity
against diverse viruses including RNA viruses further
strengthens our hypothesis (Calland et al., 2012; Carneiro
et al., 2016; Ide et al., 2016; Ismail & Jusoh, 2017; Weber
et al., 2015). But, before testing our hypothesis, first, we

analyzed the pharmacokinetic and the drug-likeness proper-
ties of these eight green tea polyphenols. All the polyphe-
nols exhibited negative AMES toxicity and hepatotoxicity
which suggested that these compounds are not carcinogenic
in nature (Table 4). Besides these, the oral rat acute toxicity
(LD50) also supports this phenomenon (Table 4). All the poly-
phenols show good absorption in the human intestine as
well as good excretion out (except catechin gallate and

Table 1. Continued.

Complex Structure Binding energy (kcal/mol)

Gallocatechin-3-gallate (GCG) �9.0

Table 2. Hydrogen bond interactions of N3 and different green tea polyphenols with the SARS CoV-2 Mpro.

Complex Number of H-bonds
Amino acids of Mpro i
nvolved in H-bonding

Hydrogen bond
distance (Å)

N3 8 His41 2.3
Glu166 2.8
Cys145 2.1
Phe140 3.2
Thr190 2.8
His164 2.0
Gly143 2.9
Gln189 2.9

Epigallocatechin (EGC) 4 Ser144 2.5
His163 2.9, 3.3
Gln192 2.6

Gallocatechin (GC) 4 Phe140 2.4
Glu166 2.3
Arg 188 2.0
Gln192 2.7

Catechin (C) 5 Leu141 2.
Ser144 2.5
His163 3.0, 3.3
Gln192 2.6

Epicatechin (EC) 5 Ser 144 2.4
His163 2.9, 3.3
Thr190 2.2
Gln192 2.6

Catechin gallate (CG) 5 Ser144 2.4
His163 3.1
Arg188 2.8
Thr190 2.5, 1.9

Epigallocatechin gallate (EGCG) 9 Thr26 2.2, 1.9
His41 2.8
Cys145 2.6
Ser144 2.3, 2.7
Glu166 2.9
Gln189 2.1
Gly143 2.7

Epicatechingallate (ECG) 8 Ser144 2.4, 2.7
Gly143 2.1
Cys145 2.1
Thr26 2.3, 1.9
His41 2.8
Glu166 2.9

Gallocatechin-3-gallate (GCG) 9 Phe140 2.1, 2.1
His163 2.9
Ser144 2.2, 2.5, 2.7
Cys145 2.7
Gly143 2.3, 2.7
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epicatechin gallate) from the body. Also, these polyphenolic
compounds have a maximum tolerance dose (expressed in
terms of log mg/kg/day) ranging from 0.438 to 0.506 which
makes them suitable for human use. Altogether this valuable
information indicated that green tea polyphenols/catechins
can be safely used as drugs.

Once we understood that these polyphenols are safe, we
studied their inhibition potency against SARS CoV-2 Mpro
using molecular docking study. Amongst them, five polyphe-
nols (EGC, GC, C, EC and CG) bound to Mpro having binding
energy comparable to that of ‘Mpro–N3 binding’ (Table 1).
However, these four polyphenols fitted within the substrate-
binding pocket of Mpro having slightly different binding
mode(s). For EGC–Mpro complex, two polar interactions
(with Ser46 and Asn142 of Mpro), four hydrophobic interac-
tions (with Leu141, Met165, Glu166 and Ala191 of Mpro) and

four hydrogen bonds [with Ser144 (2.5 Å), His163 (2.9 Å &
3.3 Å) and Gln192 (2.6 Å) of Mpro] were observed
(Supplemental Figure 1, Tables 2 and 3). When GC was
docked into the active site of Mpro, we observed a similar
number of polar, hydrophobic and hydrogen bond interac-
tions, that is, two polar interactions (with Ser46, and Asn142
of Mpro), four hydrophobic interactions (with Met49, Leu141,
Met165 and Gln189 of Mpro) and four hydrogen bonds [with
Phe140 (2.4 Å), Glu166 (2.3 Å), Arg188 (2.0 Å) and Gln192
(2.7 Å) of Mpro] (Supplemental Figure 2, Tables 2 and 3).
When the other three polyphenols (C, EC and CG) were
docked individually to Mpro, these complexes were stabilized
by more number of hydrogen bond interactions (5 nos.) and
many non-covalent (polar and hydrophobic) interactions
(Supplemental Figures 3–5, Tables 2 and 3). Leu141, Ser144,
His163 and Gln192 are the four amino acid residues of Mpro

Table 3. Binding interactions of N3 and different polyphenols of green tea with the active site of SARS CoV-2 Mpro.

Complex

Non-covalent interactions (other than H-bonding)

Polar Hydrophobic

N3 Ser144, Asn142, Phe140, Leu141, Met165, Glu166, Leu167, Pro168, His172, Ala191, Gln192
Epigallocatechin (EGC) Ser46, Asn142 Leu141, Met165, Glu166, Ala191
Gallocatechin (GC) Ser46, Asn142 Met49, Leu141, Met165, Gln189
Catechin (C) Thr24, Thr25, Thr45, Ser46 Leu27, Met49
Epicatechin (EC) Thr45, Ser46, Gln189 Met49, Leu141, Met165
Catechin gallate (CG) Gln189 Phe140, Leu141, Met165, Glu166, His172
Epigallocatechin gallate (EGCG) Thr24, Thr25, Ser46, Asn142, Gln192 Met49, Leu141, His163, Met165
Epicatechingallate (ECG) Thr24, Thr25, Thr45, Ser46, Asn142, Gln189 Met49, Leu27, Leu141, Met165
Gallocatechin-3-gallate (GCG) Asn142, Gln189, Thr190, Gln192 Met49, Leu141, Met165, Glu166, Arg188

Table 4. Pharmacokinetic properties of N3 and green tea polyphenols.

Compound MW H-Ac H-Do Nrot TPSA LogP IA TC LD50 HT AT MTD NLV

N3 684.82 10 5 23 196.88 2.1352 62.162 0.843 4.355 Yes No 20.341 2
Epigallocatechin (EGC) 306.27 7 6 1 130.61 1.2517 54.128 0.328 2.492 No No 0.506 1
Gallocatechin (GC) 306.27 7 6 1 130.61 1.2517 54.128 0.328 2.492 No No 0.506 1
Catechin (C) 290.27 6 5 1 110.38 1.5461 68.829 0.183 2.428 No No 0.438 0
Epicatechin (EC) 290.27 6 5 1 110.38 1.5461 68.829 0.183 2.428 No No 0.438 0
Catechin gallate (CG) 442.37 10 7 4 177.14 2.5276 62.096 �0.169 2.558 No No 0.449 1
Epigallocatechin gallate (EGCG) 458.37 11 8 4 197.37 2.2332 47.395 0.292 2.522 No No 0.441 2
Epicatechin gallate (ECG) 442.37 10 7 4 177.14 2.5276 62.096 �0.169 2.558 No No 0.449 1
Gallocatechin-3-gallate (GCG) 458.37 11 8 4 197.37 2.2332 47.395 0.292 2.522 No No 0.441 2

MW, molecular weight (g/mol); H-Ac, no. of hydrogen bond acceptor; H-Do, no. of hydrogen bond donors; Nrot, no. of rotatable bonds; TPSA, topological polar
surface area (Å2); LogP, predicted octanol/water partition coefficient; IA, intestinal absorption (% absorbed); TC, total clearance (log ml/min/kg); LD50, oral rat
acute toxicity; HT, hepatotoxicity; AT, AMES toxicity; MTD, maximum tolerated dose for human (log mg/kg/day); NLV, no. of Lipinski rule violation.

Figure 2. Molecular docking of EGCG with Mpro. Stereoview of the docked conformation of the Mpro–EGCG complex showing the possibility of hydrogen bonding
interactions with the amino acid residues of Mpro (panel A). Surface representation showing the interaction of EGCG (green stick) at the substrate-binding region
of Mpro (panel B). EGCG forms hydrogen bonding with many amino acid residues including His41 and Cys145 of Mpro.
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involved in hydrogen bonding with C (Supplemental Figure 3,
Table 2). However, EC formed hydrogen bonds with Ser 144,
His163, Thr190 and Gln192 of Mpro and the amino acid resi-
dues of Mpro engaged in the hydrogen bonding with CG are
Ser144, His163, Arg188 and Thr190, respectively
(Supplemental Figures 4 and 5, Table 2). Critical analysis of
docking results revealed that none of these five polyphenols
have any interaction with the two key catalytic residues of
Mpro (His41 and Cys145). Therefore, it can be concluded that
these five polyphenols (EGC, GC, C, EC and CG) may not inhibit
the catalytic/proteolytic activity of Mpro and thus may be inef-
fective towards the treatment of COVID-19 disease.

On the contrary, three other polyphenols (EGCG, ECG and
GCG) interacted with one or both of the catalytic residues
(His41 and Cys145) of Mpro by hydrogen bonding (Figures
2–4, Table 2). Both EGCG and ECG formed hydrogen bond

with His41 and Cys145 amino acid residues of Mpro (Figures
2 and 3, Table 2). Besides these two key residues, several
other amino acid residues from the active site of Mpro were
involved in hydrogen bonding as well as different non-cova-
lent interactions (Figures 2 and 3, Tables 2 and 3).
Additionally, we noticed that ‘Mpro–GCG docked complex’
was stabilized by nine hydrogen bond interactions [with
Phe140 (2.1 Å & 2.1 Å), His163 (2.9 Å), Ser144 (2.2 Å, 2.5 Å &
2.7 Å), Cys145 (2.7 Å) and Gly143 (2.3 Å & 2.7 Å) of Mpro] and
multiple non-covalent interactions (polar, hydrophobic, etc.)
(Figure 4, Tables 2 and 3). The binding energy of these three
polyphenols are higher than that of ‘Mpro–N3 docked com-
plex’ (�7.6 to �9.0 kcal/mol) (Table 1). Since, these three pol-
yphenols (EGCG, ECG and GCG) interacted with the catalytic
residue(s) of the Mpro protease and exhibited higher binding
affinity than a well-known Mpro protease inhibitor (N3); we
can say that they may possibly inhibit the catalytic activity of
Mpro protease and maybe the good drug candidates for the
treatment of COVID-19 disease.

In order to consolidate this conclusion, we selected
Mpro–EGCG, Mpro–ECG and Mpro–GCG complex for
MD study.

3.2. MD simulation

The MD simulations for the Mpro–EGCG, Mpro–ECG and
Mpro–GCG complexes along with unligated Mpro/Mpro (unli-
gated) and Mpro–N3 complex were performed for 100 ns.
MD trajectories were initially analyzed with the aid of RMSD
and RMSF so as to understand the stability and the fluctua-
tions of these Mpro–polyphenol complex structures. The

Figure 3. Molecular docking of ECG with Mpro. The docked conformation of the Mpro–ECG complex depicting the possible hydrogen bonding interactions with
various amino acids of Mpro (panel A). Surface representation showing the binding of ECG (red) with Mpro (panel B). ECG forms hydrogen bonding with many
amino acid residues including His41 and Cys141 of Mpro.

Figure 4. Molecular docking of GCG with Mpro. Various hydrogen bonds with different amino acid residues of Mpro with GCG are shown in panel A as docked
stereoview conformation. Binding of GCG (orange) at the active site of Mpro is illustrated in panel B as surface representation. GCG interacts with nine amino acid
residues including Cys145 of Mpro via H-bonds.

Figure 5. Determination of RMSD of unligated Mpro and Mpro–N3/ECG/EGCG/
GCG complex. The MD simulations for each system were performed for 100 ns.
These MD trajectories were analyzed with the aid of RMSD.
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RMSD values of Mpro (unligated) and Mpro–ECG complex
from 2 to 30 ns remained almost constant (�1.3 Å) (Figure
5). After that RMSD values of these two systems increased
gradually till 60 ns and thereafter it converged to a con-
stant value (Figure 5). On the other hand, the RMSD val-
ues of Mpro–N3, Mpro–EGCG and Mpro–GCG complexes
at 2 ns were 1.50, 1.55 and 1.45, respectively and these
values remained almost the same till 30 ns. Afterward,
RMSD values for these three complexes experienced a
slight deviation (decrease for two Mpro–polyphenol com-
plexes and increase for Mpro–N3 complex) up to 45 ns
and beyond this time period, it converged to a constant
value (Figure 5). The average RMSD values of Mpro (unli-
gated), Mpro–N3, Mpro–ECG, Mpro–EGCG, Mpro–GCG
complexes are 1.68, 1.56, 1.61, 1.53, 1.43 Å, respectively.
Such low RMSD value (<2 Å) clearly suggested that all
these three Mpro–polyphenol complexes are stable. From
these data, it can be further inferred that the Mpro–GCG
complex is more stable than the other two
Mpro–polyphenol complexes. These findings additionally
indicated that the stability of these three
Mpro–polyphenol complexes are comparable or relatively
more than that of Mpro–N3 complex.

The RMSF of alpha-carbon atoms of all system were ana-
lyzed and represented in Figure 6. All the five systems [Mpro
(unligated), Mpro–N3 and three Mpro–polyphenol com-
plexes] exhibited a similar kind of fluctuation pattern across
all three domains (Figure 6, Supplemental Figures 6–8). In all
these systems, the fluctuations for the amino acid residues
corresponding to domain I was lowest (Figure 6,
Supplemental Figure 6). Whereas, the same for the amino
acid residues corresponding to domain III was highest
(Figure 6, Supplemental Figure 8). The average RMSF values
of Mpro (unligated), Mpro–N3, Mpro–ECG, Mpro–EGCG,
Mpro–GCG complexes are 1.28, 1.15, 1.22, 1.15, 1.17 Å,
respectively. These values indicated that all the
Mpro–polyphenol complexes as well as Mpro–N3 complex
experienced relatively less conformational fluctuation than
Mpro (unligated) system. The fluctuation of various specific
amino acid residues (Thr25, Thr26, Leu27, His41 in domain I
and Phe140, Leu141, Gly143, Ser144, Cys145, His163, His164,
Glu166 of domain II) in these three Mpro–polyphenol sys-
tems were less than that in Mpro (unligated) system. Such
less fluctuations of these residues in these three
Mpro–polyphenol complexes further indicated that these res-
idues within the active site of Mpro interact with ECG/EGCG/

Figure 6. Determination of RMSF of unligated Mpro and Mpro–N3/ECG/EGCG/GCG complex. The RMSF values for Mpro (unligated) and Mpro–N3/ECG/EGCG/GCG
complex were estimated from the respective 100 ns MD trajectories. The values were then plotted separately for the domain I (amino acid residues 8–101) as
shown in panel A, domain II (amino acid residues 102–184) as shown in panel B and domain III (amino acid residues 201–303) as shown in panel C.
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GCG. Moreover, these findings suggested that the two
Mpro–polyphenol complexes (Mpro–EGCG and Mpro–GCG)
and Mpro–N3 complex experienced comparable conform-
ational fluctuation.

MD trajectories corresponding to three Mpro–polyphenol
and Mpro (unligated) systems were further analyzed with the
aid of Rg, SASA and the existence of total number of inter-
molecular hydrogen bonds. Rg, which indicates the compact-
ness of the system, was determined (Supplemental Figure
9(A)) and the calculated average Rg values are listed in Table
5. The obtained average Rg value for Mpro (unligated) was
2.5 Å. Interestingly, the Rg value for all these three
Mpro–polyphenol complexes were slightly lower
(2.20–2.24 Å) than that of Mpro (unligated) system. Therefore,
it can be suggested that these Mpro–polyphenol complexes
are relatively more rigid than the Mpro (unligated) system.
Subsequently, the degree of expansion of protein volume in
each system was assessed by estimating the SASA from indi-
vidual MD trajectories (Supplemental Figure 9(B)) and the
determined average SASA values are listed in Table 5. The
SASA value corresponding to the ‘Mpro-ECG complex’
(14208.34Å2) was slightly higher than that of Mpro (unli-
gated) system (14124.45 Å2), suggesting a slight expansion of
Mpro during the interaction with ECG. Whereas, the obtained
SASA value for the ‘Mpro–EGCG complex’ and ‘Mpro–GCG
complex’ 14113.53 and 13954.64 Å2, respectively, were a little
lower compared to that of Mpro (unligated) system
(14124.45Å2) which indicated that Mpro suffers less expan-
sion upon binding with EGCG and GCG.

The conformational stability of these three
Mpro–polyphenol complexes was analyzed by estimating the
total number of intermolecular hydrogen bonds formed dur-
ing the entire simulation time span (Table 5). The average
number of intermolecular hydrogen bonds in Mpro (unli-
gated) and Mpro–ECG complex was almost equal suggesting
similar conformational stability in these two systems (Table
5). However, more number of intermolecular hydrogen
bonds was evidenced in other two Mpro–polyphenol com-
plexes. Between these two complexes, the lowest number of
intermolecular hydrogen bonds (528) was observed when
EGCG was complexed with Mpro. Whereas, in the Mpro–GCG
complex, the average number of hydrogen bonds was found
to be 540 suggesting the highest conformational stability of

this complex. These findings are in agreement with the bind-
ing energy data obtained from molecular docking studies.

3.3. MM-GBSA

Drugs that showed a high binding score in AutoDock Vina
are further selected to calculate binding energy using the
MM-GBSA method. The MM-GBSA free energy values of
ECG–Mpro, EGCG–Mpro and GCG–Mpro are calculated from
the MD trajectories. The MM-GBSA free energy values of
GCG–Mpro, EGCG–Mpro and ECG–Mpro complexes are
�53.5, �48.9 and �43.56 kcal/mol, respectively. From the
MM-GBSA values (Table 6) it is clear that GCG–Mpro complex
shows higher free binding energy than other complexes
which is also supported by our AutoDock Vina binding
energy values. Higher number of hydrogen bonds and
hydrophobic interactions may play the key component in
MM-GBSA value for GCG–Mpro complex system. Even lower
SASA value in case of GCG–Mpro complex also indicated
that the non-polar residues are buried in the solvent which
may favor the stability of the complex through the synergis-
tic effects of hydrogen bonding and hydrophobic
interactions.

4. Conclusion

In summary, our molecular docking study revealed that five
polyphenols [EGC, GC, C, EC and CG] which do not interact
with the His41 and Cys145 from catalytic dyad of Mpro, has
binding energy more than �7.0 kcal/mol. Other three poly-
phenols [EGCG, ECG and GCG] has the interaction with one
or both of these residues. The binding of these three poly-
phenols ranges between �7.6 and �9.0 kcal/mol with the
lowest affinity for GCG and the highest affinity for EGCG.
RMSD, RMSF, Rg and SASA investigations strongly support
these findings. Even, binding free energy estimations using
the MM-GBSA method also reveal that Mpro–GCG complex
(�53.54 kcal/mol) is relatively more stable than Mpro–ECG
(�48.92 kcal/mol) and Mpro–EGCG complex (�43.56 kcal/
mol). Altogether, our findings reveal that green tea cate-
chins/polyphenols (especially EGCG, ECG and GCG) can be
potent anti-COVID-19 drug candidates. Additionally, this
study opens up futuristic testing (in vitro and in vivo) possi-
bilities of these three green tea polyphenols against
COVID-19.
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