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Abstract

Background: Hyperlipidemia animal models have been established, but complete gene expression profiles of the transition
from normal lipid levels have not been obtained. Miniature pigs are useful model animals for gene expression studies on
dietary-induced hyperlipidemia because they have a similar anatomy and digestive physiology to humans, and blood
samples can be obtained from them repeatedly.

Methodology: Two typical dietary treatments were used for dietary-induced hyperlipidemia models, by using specific
pathogen-free (SPF) Clawn miniature pigs. One was a high-fat and high-cholesterol diet (HFCD) and the other was a high-
fat, high-cholesterol, and high-sucrose diet (HFCSD). Microarray analyses were conducted from whole blood samples during
the dietary period and from white blood cells at the end of the dietary period to evaluate the transition of expression
profiles of the two dietary models.

Principal Findings: Variations in whole blood gene expression intensity within the HFCD or the HFCSD group were in the
same range as the controls provide with normal diet at all periods. This indicates uniformity of dietary-induced
hyperlipidemia for our dietary protocols. Gene ontology- (GO) based functional analyses revealed that characteristics of the
common changes between HFCD and HFCSD were involved in inflammatory responses and reproduction. The correlation
coefficient between whole blood and white blood cell expression profiles at 27 weeks with the HFCSD diet was significantly
lower than that of the control and HFCD diet groups. This may be due to the effects of RNA originating from the tissues
and/or organs.

Conclusions: No statistically significant differences in fasting plasma lipids and glucose levels between the HFCD and
HFCSD groups were observed. However, blood RNA analyses revealed different characteristics corresponding to the dietary
protocols. In this study, whole blood RNA analyses proved to be a useful tool to evaluate transitions in dietary-induced
hyperlipidemia gene expression profiles in miniature pigs.
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Introduction

Hyperlipidemia is well recognized as a risk factor for

cardiovascular disease (CVD). As diet represents the most

important determinant of hyperlipidemia, dietary animal models

can be useful for the study of CVD progression [1]. High-fat, high-

cholesterol, and high-sugar diets have been shown to induce

hyperlipidemia, obesity, and insulin resistance in humans and

rodents [2–4]. Dietary-induced hyperlipidemia pig models have

also been established [5–11].

Compared to rodents, pigs are a useful animal model for

elucidating the molecular mechanisms underlying the transition

from a healthy state to the progression of diseases caused by

hyperlipidemia because they are able to breed stably over a long

period, and have a similar anatomy and digestive physiology to

humans [12,13]. In addition, miniature pigs are easier to breed

and to handle than other non-primates are, making them a

convenient species for preclinical tests [14]. In September 2003,

the Swine Genome Sequencing Consortium (SGSC) was formed

to promote pig genome sequencing under international coordina-

tion [15]. The swine research environment has been enhanced
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since members of the SGSC announced a completed swine

genome map in November 2009 [16].

To evaluate temporal changes in gene expression profiles with

the progression of dietary-induced alterations, minimally invasive

blood sampling, which allows for the direct measurement of

immune-responsive blood cells, excels over other invasive biopsy

techniques for disease diagnostics and assessment of drug

responses, as well as health monitoring. If biomarker candidate

genes can be identified from blood analyses, these may be useful

for diagnosis in humans. Use of whole blood is preferable to other

specimens on two accounts. Firstly, RNA expression and

degradation are susceptible to artificial manipulations such as cell

separation and extraction. Whole blood manipulation can reduce

these risks via the use of RNA blood collection tubes. Secondly,

whole blood is an attractive prime tissue due to its critical role in

immune responses, metabolism, and communication with cells

and the extracellular matrix in almost all body tissues and organs.

Whole blood will depart from the normal state when a

considerable alteration occurs in some blood cell subpopulations,

tissues, or organs. Moreover, blood samples can be obtained

repeatedly from miniature pigs, and blood RNA contains an

enormous amount of information on the expression of messenger

RNA and non-coding functional RNA molecules that are not

translated into proteins. Thus, analysis of blood RNA provides an

opportunity to detect subtle changes in physiological state. We

consider it particularly important to identify gene expression

characteristics in whole blood. Microarray techniques allow the

detection of genome-wide perturbations in response to different

treatments and the measurement of various responses using a

multitude of gene probes. Toxicogenomics, in which microarray

techniques are specifically used in toxicology tests, has been widely

recognized as one of the standard safety procedures for chemicals

[17–19]. Gene expression microarrays have been used particularly

for the screening of genes involved in specific biological processes

of interest. Microarrays also allow the clustering of genes

according to similar patterns of expression or functions. In this

study, we conducted a series of whole blood microarray

experiments to evaluate long-term alterations during 27-week

feeding periods using specific pathogen-free (SPF) miniature pigs.

There are two main types of dietary protocols for hyperlipide-

mia pig models, one with cholesterol and animal lipids [5–9], and

the other with cholesterol, animal lipids, and sucrose [10,11].

Some studies have focused primarily on a subset of genes, but this

approach cannot elucidate whole blood RNA profiles during the

process of change. We selected two typical dietary protocols. One

was a high-fat and high-cholesterol diet (HFCD) containing 15%

lard and 2% cholesterol; the other was a high-fat, high-cholesterol,

and high-sucrose diet (HFCSD) containing 15% lard, 2%

cholesterol, and 37% sucrose. The present microarray analyses

of whole blood were conducted according to the following aspects.

The first analysis dealt with similarity among individuals based on

the correlation coefficient. Variation among individuals of the

same dietary group and between the different dietary periods was

examined. The second analysis addressed the function of genes.

Up- or down-regulated genes for each dietary protocol were

examined by functional categorization. While whole blood RNA

derives from white blood cell RNA, whole blood gene expression

profiles may not entirely correspond to those of white blood cells

[20]. White blood cell microarray analyses conducted at the end of

each dietary period are greatly influenced by diet, and the

variations between the expression profiles of white blood cells and

whole blood were assessed for each dietary group.

Results

Characteristics of study subjects
Temporal changes in mean body weights for the 3 dietary

groups are shown in Figure 1. One-way ANOVA analysis for

dietary-related variation revealed no significant difference at any

feeding period except at week 12. In this study, the term ‘‘week’’

refers to the dietary period and not to the period since birth, unless

otherwise stated. Table 1 lists the fasting plasma triglyceride

concentrations for the group fed the high-fat, high-cholesterol diet

(HFCD) and the group fed the high-fat, high-cholesterol, and

high-sucrose diet (HFCSD). Almost no changes were observed in

fasting plasma triglyceride levels. Fasting plasma total cholesterol

concentrations had increased in the HFCD group and the

HFCSD group by week 5 of the feeding period (P,0.001) and

were maintained between 350 and 1150 mg/dL from weeks 10–

27 (Table 2). Fasting plasma high-density lipoprotein cholesterol

(HDL-C) concentrations increased and showed significant differ-

ences (P,0.001) from weeks 10–27 between two dietary treatment

groups and control (Table 3). Fasting plasma low-density

lipoprotein cholesterol (LDL-C) concentrations also increased

and showed significant differences from weeks 5–27 between two

dietary treatment groups and control (Table 4). Fasting plasma

glucose concentrations remained unchanged (Table 5). The

number of white blood cells and the ratios of granulocytes

(basophiles, eosinophils, neutrophils, lymphocytes, and monocytes)

to white blood cells were not statistically significant among the

three test groups (Table 6–11). The liver (P,0.001) and spleen

(P,0.01) weights were increased significantly compared to the

controls in both the HFCD and HFCSD groups. In contrast, the

heart, kidney, and stomach weights remained unchanged

(Table 12).

Microarray gene expression profiles – Correlation of gene
expression

RNA analyses were conducted on blood samples obtained at

weeks 10, 19, and 27 of the feeding periods to characterize the

dietary effects on gene expression profiles in whole blood and

white blood cells of miniature pigs. Each RNA sample was

analyzed by aporcine gene expression microarray consisting of

43603 oligonucleotide probes.

We evaluated variation in correlation coefficients among

individuals on the same diet and between different diet groups.

Figure 1. Subject body weights.N represents control, X represents
HFCD, and m represents HFCSD. Values correspond to means (SD).
doi:10.1371/journal.pone.0037581.g001
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Pearson correlation coefficients were used for the correlation

analysis. Correlation coefficients for 45 microarrays in total were

obtained for a normalized signals log-scale after excluding

‘‘absent’’ spots, definition of ‘‘absent’’ were described in Materials

and Methods. A color-coded pairwise correlation matrix is

displayed in Figure 2.

Figure 3 illustrates the mean correlation coefficients for gene

expression profiles among individuals within the same dietary

group, showed the individual difference of the gene expression

profiles within the dietary groups during dietary period. Figure 4

presents the mean correlation coefficients for gene expression

profiles among different diet groups. The correlation coefficients of

whole blood expression profiles within the same diet groups were

0.97 (0.01) (mean (standard deviation; SD)), 0.94 (0.05), and 0.97

(0.01) for the control, HFCD, and HFCSD whole blood at 10

weeks, 0.94 (0.03), 0.93 (0.06), and 0.95 (0.01) at 19 weeks, and

0.95 (0.02), 0.95 (0.03), and 0.98 (0.01) at 27 weeks, respectively.

The correlation coefficients of white blood cell expression profiles

within the same dietary groups were 0.94 (0.05), 0.95 (0.03), and

0.96 (0.02) for the control, HFCD, and HFCSD groups at 27

weeks, respectively. Using Fisher’s Z-transformation to normalize

the correlation distributions, no significant differences in correla-

tion coefficients among dietary groups were observed at any

period during the treatments. This indicates uniformity of dietary-

induced hyperlipidemia for our protocols.

Next, we analyzed expression profile correlations among the

different diet groups. In Figure 4, ‘‘control vs. HFCD’’ represents

the mean correlation coefficient between control and HFCD

group individuals. The whole blood correlation coefficients among

the different diet groups were 0.95 (0.04), 0.97 (0.01), and 0.96

(0.04) for control vs. HFCD, control vs. HFCSD, and HFCD vs.

HFCSD at 10 weeks, 0.93 (0.03), 0.94 (0.02), and 0.95 (0.03) at 19

weeks, and 0.95 (0.03), 0.91 (0.03), and 0.95 (0.03) at 27 weeks,

respectively. The white blood cell correlation coefficients among

the different diet groups were 0.94 (0.04), 0.94 (0.03), and 0.96

(0.02) for control vs. HFCD, control vs. HFCSD, and HFCD vs.

HFCSD at 27 weeks, respectively. Correlations of whole blood

expression profiles were statistically significant according to an

ANOVA test among all groups at 27 weeks, as a low correlation

coefficient was obtained for the control vs. HFCSD groups. This

indicates HFCSD differs much from control group and slightly

from HFCD 27 weeks in whole blood gene expression profiles.

Figure 5 displays the average correlation coefficients between

whole blood and white blood cell expression profiles within the

same dietary group. The correlation coefficients were 0.83 (0.04),

0.79 (0.07), and 0.74 (0.05) for control, HFCD, and HFCSD at 27

weeks, respectively. Significant differences were observed between

the control and HFCSD groups according to an ANOVA analysis

using Fisher’s Z-transform (P,0.01).

Assigning known functions to gene expression - Gene
ontology annotation

We identified up- and down-regulated genes and classified these

according to function using information from the Gene Ontology

(GO) Database to understand the observed differences in whole

blood gene expression profiles for the different dietary groups.

Top-ranked genes with fold changes in expression greater than 2.0

Table 1. Fasting plasma triglyceride levels (mg/dL).

Time point (weeks) Control HFCD HFCSD P{

0 44.5616.9 42.4614.4 37.8621.4 NS

5 25.367.2 22.0622.0 19.569.3 NS

10 21.062.3 30.4618.9 30.2614.7 NS

14 10.865.6 7.465.0 6.063.2 NS

19 10.263.6 14.2614.0 15.667.2 NS

23 16.867.6 8.263.6 8.663.2 ,.05

27 8.062.3 7.263.4 12.0613.5 NS

Values are mean 6 SD. NS; not significant.
{P values were calculated using a one-way factorial ANOVA.
doi:10.1371/journal.pone.0037581.t001

Table 2. Fasting plasma total cholesterol levels (mg/dL).

Time point
(weeks) Control HFCD HFCSD P{

0 99.0621.3 117.4622.2 100.4622.5 NS

5 103.864.8 620.06292.6 605.06131.2 ,.001

10 81.2611.1 780.06239.3 619.06205.3 ,.001

14 54.4612.4 646.76141.4 480.3643.3 ,.001

19 54.6611.9 745.46172.7 874.66208.4 ,.001

23 54.2616.9 562.66144.9 654.46219.2 ,.001

27 53.068.8 541.46148.5 689.46267.3 ,.001

Values are mean 6 SD. NS; not significant.
{P values were calculated using a one-way factorial ANOVA.
doi:10.1371/journal.pone.0037581.t002

Table 3. Fasting plasma HDL cholesterol levels (mg/dL).

Time point
(weeks) Control HFCD HFCSD P{

0 39.3611.8 50.3614.8 41.9611.5 NS

5 50.363.1 81.166.3 70.7619.8 NS

10 41.165.9 105.2630.2 96.2619.6 ,.001

14 36.265.4 99.3621.4 106.3614.9 ,.001

19 30.667.6 100.3622.7 117.9619.8 ,.001

23 31.468.7 122.368.2 110.7614.2 ,.001

27 29.164.5 119.2612.1 106.6614.6 ,.001

Values are mean 6 SD. NS; not significant.
{P values were calculated using a one-way factorial ANOVA.
doi:10.1371/journal.pone.0037581.t003

Table 4. Fasting plasma LDL cholesterol levels (mg/dL).

Time point
(weeks) Control HFCD HFCSD P{

0 56.8611.1 68.4620.6 56.4612.9 NS

5 54.065.0 318.86141.7 283.8649.5 ,.01

10 39.267.5 339.26146.5 259.26107.5 ,.01

14 21.865.6 212.06138.4 152.3643.3 ,.05

19 22.866.3 236.46102.7 248.2678.6 ,.001

23 20.869.4 220.66102.2 186.8646.7 ,.001

27 20.665.8 201.4685.2 193.4686.2 ,.01

Values are mean 6 SD. NS; not significant.
{P values were calculated using a one-way factorial ANOVA.
doi:10.1371/journal.pone.0037581.t004
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(p,0.05; HFCD, Table 13; HFSCD, Table 14) and less than 0.5

(p,0.05; HFCD, Table 15; HFSCD, Table 16) were selected at

10, 19, and 27 weeks. Genes TC440907, TC448587 (ABCA1),

and TC438339 were ranked highest in HFCD and HFCSD

during the dietary period. These genes were analyzed using the

Database for Annotation, Visualization and Integrated Discovery

(DAVID; Table 17, HFCD; Table 18, HFCSD). As a result, the

GO categories of many genes up-regulated at the end of the 19-

week dietary period in both HFCD and HFCSD groups were

related to nucleotide binding (GO: 0000166, GO: GO: 0005524,

0005525, GO: 0017076, GO: 0019001, GO: 00032553, GO:

00032555, GO: 0032561). The GO categories of gene up-

regulated after 19 weeks in the HFCD group only were related

to catabolic processes (GO: 0009057, GO: 0019941, GO:

0030163, GO: 0043632, GO: 0044257, GO: 0044265,). Many

genes down-regulated after 27 weeks in both HFCD and HFCSD

groups were in the GO categories related to biological adhesion

(GO: 0007155, GO: 0022610). In addition, many genes down-

regulated at the end of the 27-week dietary period in the HFCSD

group only were related to steroid metabolism and lipid

biosynthesis (GO: 0006694, GO: 0008202, GO: 0008203, GO:

0008610, GO: 0016125, GO: 0016126).

To investigate potential reasons for the differences in gene

expression among the diet groups during the dietary period, Chi-

square tests were performed to identify whole blood GO categories

for each treatment group vs. the control group. The expected

values represented the number of up- and down-regulated genes

bearing all GO annotations at each period of the diet, and the

observed values represented the number of up- and down-

regulated genes bearing each specific GO term. A difference of

p,0.05 between groups was considered significant. To identify

up- and down-regulated genes, we compared levels of expression

for each gene between the control vs. HFCD groups and between

the control vs. HFCSD groups at each period using Student’s t-

tests. As the lowest number of genes for which the expectation

frequency reached 1 or higher was 140 according to the conditions

of observed value, the GO terms, which involve more than 140

genes, were used for the Chi-square tests. The results of the Chi-

square tests for up- and down-regulated genes are listed in

Tables 19–22. The correlation coefficients of constituent gene

between whole blood and white blood cells at 27 weeks were

calculated for each GO term.

Table 19 lists the GO terms for which significant differences

were observed in the HFCD and HFCSD groups relative to the

expected values. Inflammatory response elements (GO:0006954)

were repressed in the HFCD group, and were both induced and

repressed in the HFCSD group. The correlation coefficients

between whole blood and white blood cells for expression levels of

inflammatory response genes were 0.92 (0.03), 0.97 (0.02), and

0.95 (0.02) for the control, HFCD, and HFCSD groups,

respectively. Genes involved in reproduction (GO:0000003) were

induced in the HFCD group, and were both induced and

repressed in the HFCSD group. The correlation coefficients for

expression levels of genes involved in reproduction between whole

blood and white blood cells were 0.91 (0.02), 0.93 (0.03), and 0.88

(0.03) for the control, HFCD, and HFCSD groups, respectively.

Table 5. Fasting plasma glucose levels (mg/dL).

Time point
(weeks) Control HFCD HFCSD P{

0 111.8612.0 122.6648.5 119.2621.9 NS

5 98.6617.2 100.5612.0 100.0623.2 NS

10 93.8615.7 91.8627.0 83.0611.1 NS

14 116.4632.2 104.6615.6 108.6630.5 NS

19 92.4610.5 95.0613.1 88.8625.5 NS

23 87.6619.8 77.267.2 92.0619.2 NS

27 81.667.7 89.6614.6 101.0613.0 NS

Values are mean 6 SD. NS; not significant.
{P values were calculated using a one-way factorial ANOVA.
doi:10.1371/journal.pone.0037581.t005

Table 6. White blood cell count (102/mL).

Time point
(weeks) Control HFCD HFCSD P{

0 45.8611.4 61.8617.1 65.0616.3 NS

5 68.6615.5 85.7614.6 90.0619.9 NS

10 67.6612.5 70.8623.0 78.4611.1 NS

14 69.465.2 87.2625.9 85.2613.3 NS

19 68.0614.8 69.6612.4 83.4613.7 NS

23 86.0621.6 90.2632.0 100.6626.1 NS

27 61.8615.2 75.8618.6 62.6634.4 NS

Values are the mean 6 SD. NS; not significant.
{P values were calculated using a one-way factorial ANOVA.
doi:10.1371/journal.pone.0037581.t006

Table 7. The ratio of basophils to white blood cells (%).

Time point (weeks) Control HFCD HFCSD P{

0 0.060.0 0.360.5 0.060.0 NS

5 0.260.4 0.060.0 0.260.4 NS

10 0.360.4 0.260.4 0.360.4 NS

14 0.260.4 0.060.0 0.460.5 NS

19 0.060.0 0.060.0 0.060.0 NS

23 0.260.4 0.060.0 0.060.0 NS

27 0.160.2 0.560.5 0.460.5 NS

Values are the mean 6 SD. NS; not significant.
{P values were calculated using a one-way factorial ANOVA.
doi:10.1371/journal.pone.0037581.t007

Table 8. The ratio of eosinophils to white blood cells (%).

Time point (weeks) Control HFCD HFCSD P{

0 2.862.6 2.861.5 2.062.2 NS

5 3.661.9 3.061.0 3.061.4 NS

10 3.161.4 3.261.3 4.161.7 NS

14 3.061.9 3.361.3 2.461.7 NS

19 5.062.7 4.160.7 5.661.8 NS

23 4.661.7 6.262.7 4.460.9 NS

27 2.860.8 3.161.9 3.461.1 NS

Values are the mean 6 SD. NS; not significant.
{P values were calculated using a one-way factorial ANOVA.
doi:10.1371/journal.pone.0037581.t008
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Table 20 lists the GO terms for which significant differences

were observed in the HFCD group compared to the expected

values. Muscle contraction (GO:0006936) and locomotor behavior

(GO:0007626) elements were both induced and repressed. Muscle

organ development (GO:0007517) and metabolic processes

(GO:0008152) were repressed.

Table 21 lists the GO terms for which significant differences

were observed in the HFCSD group compared to the expected

values. Translation (GO:0006412), embryonic development end-

ing in birth or egg hatching (GO:0009792), electron transport

(GO:0006118), and transcription from the RNA polymerase II

promoter (GO:0006366) elements were both induced and

repressed. Positive regulation of growth rates (GO:0040010),

nematode larval development (GO:0002119), intracellular protein

transport (GO:0006886) and growth (GO:0040007) elements were

induced. A cell surface receptor-linked signaling pathway

(GO:0007166) and responses to hypoxia (GO:0001666) were

repressed.

Table 22 lists the GO terms for which ratios to the expected

values were unchanged in the HFCD and HFCSD groups. In

addition, the ratios of up- and down-regulated genes to the each

observed values were unchanged at 27 weeks.

Figure 6 depicts a scatter plot of correlation coefficients between

whole blood and white blood cells for each GO term, selected for

the Chi-square tests, at 27 weeks of each dietary treatment group

relative to the control group. The slope of the HFCD to the

controls regression line was 1.007 (p,0.001). The slope of the

HFCSD to the controls regression line was 1.097 (p,0.001),

indicating that the correlation coefficients between whole blood

and white blood cell expression levels for many GO terms were

low. The predominant GO terms with low correlation coefficients

in the HFCSD group were nervous system development

(GO:0007399), biological processes (GO:0008150), signal trans-

duction (GO:0007165), regulation of transcription, DNA-depen-

dent (GO:0006355), and cell proliferation (GO:0008283). In

contrast, the predominant GO terms with high correlation

coefficients in the HFCSD group were skeletal system develop-

ment (GO:0001501), small GTPase mediated signal transduction

(GO:0007264), synaptic transmission (GO:0007268), cell surface

receptor linked signaling pathway (GO:0007166), and transcrip-

tion from the RNA polymerase II promoter (GO:0006366).

The intensity ratio of white blood cells to whole blood is a

contribution indicator of the white blood cell RNA to whole blood

gene expression. To focus on obesity-related organs, i.e., the liver,

adipose tissue, and muscle, the relative numbers of ESTs for these

organs to blood ESTs for each gene were calculated using EST

profiles from the Unigene NCBI database of the transcriptome.

The normalized EST values increase when the contribution

indicator is small, as shown in Figure 7.

Discussion

This study aimed to evaluate the transition of gene expression

profiles caused by dietary-induced hyperlipidemia through blood

microarray analyses of miniature pigs during a 27-week dietary

period.

Dietary-induced hyperlipidemia miniature pig models have

previously been established. There are 2 main types of dietary

protocol, one containing cholesterol and animal lipids [5–9], and

Table 9. The ratio of neutrophils to white blood cells (%).

Time point
(weeks) Control HFCD HFCSD P{

0 52.8616.0 59.661.8 54.0615.5 NS

5 53.869.8 55.061.0 60.263.8 NS

10 43.1610.3 41.266.3 45.562.6 NS

14 44.867.4 53.0611.9 51.466.1 NS

19 52.267.0 48.165.4 44.864.1 NS

23 56.269.2 51.663.0 50.669.9 NS

27 58.8613.8 60.164.4 48.0618.5 NS

Values are the mean 6 SD. NS; not significant.
{P values were calculated using a one-way factorial ANOVA.
doi:10.1371/journal.pone.0037581.t009

Table 10. The ratio of lymphocytes to white blood cells (%).

Time point
(weeks) Control HFCD HFCSD P{

0 37.5611.0 31.164.0 36.8613.1 NS

5 34.8610.5 36.363.5 30.462.9 NS

10 45.267.4 45.866.0 44.763.0 NS

14 44.669.3 36.2610.7 39.266.4 NS

19 36.966.9 42.064.9 43.463.8 NS

23 33.667.6 34.062.9 39.6610.2 NS

27 32.3613.5 29.565.0 41.2619,5 NS

Values are the mean 6 SD. NS; not significant.
{P values were calculated using a one-way factorial ANOVA.
doi:10.1371/journal.pone.0037581.t010

Table 11. The ratio of monocytes to white blood cells (%).

Time point
(weeks) Control HFCD HFCSD P{

0 7.063.4 6.361.5 7.363.9 NS

5 7.663.1 5.762.5 6.261.8 NS

10 8.063.2 9.661.8 5.462.1 NS

14 7.461.5 7.560.9 6.662.3 NS

19 6.062.1 5.861.1 6.261.8 NS

23 5.461.3 8.261.9 5.262.1 N ,.05

27 6.061.9 6.861.0 7.061.2 NS

Values are mean 6 SD. NS; not significant.
{P values were calculated using a one-way factorial ANOVA.
doi:10.1371/journal.pone.0037581.t011

Table 12. Effect of diet on organ weight of miniature pigs (g).

Organ Control HFCD HFCSD P{

Heart 149.765.5 163.364.2 153.7622.9 NS

Liver 328.0633.2 667.7680.9 682.3621.6 ,.001

Kidney 86.367.5 99.0612.5 97.764.9 NS

Stomach 169.3615.2 181.7613.8 180.0626.5 NS

Spleen 36.363.1 72.0612.2 74.7613.3 ,.01

Values are mean 6 SD. NS; not significant.
{P values were calculated using a one-way factorial ANOVA.
doi:10.1371/journal.pone.0037581.t012
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the other containing cholesterol, animal lipids, and sucrose

[10,11]. Some studies have focused their attention on certain

kinds of candidate genes with specific functions, but this has not

clarified a complete projection of whole blood RNA profiles of the

transitions caused by diet-induced hyperlipidemia. Excessive

exposure to dietary fats and/or sugars is an essential factor in

the initiation of obesity and metabolic syndrome-associated

pathologies, two typical conditions associated with diet-induced

hyperlipidemia. The fasting plasma total cholesterol level in-

creased within a month, and then, either remained high or

decreased in the high-fat and high-cholesterol diet (HFCD) models

[5,6,9]. In contrast, fasting plasma total cholesterol levels increased

throughout the dietary period in the high-fat, high-cholesterol, and

high-sucrose diet (HFCSD) models [11]. Therefore, in the present

study, hyperlipidemia was induced by the administration of a high-

fat and high-cholesterol diet or a high-fat, high-cholesterol, and

high sucrose diet to Clawn miniature swine.

Fasting plasma lipid values increased rapidly and were

maintained at a high level during the 27-week feeding period

under both feeding treatments. However, fasting plasma glucose

concentrations remained unchanged. The liver and spleen weights

increased significantly after the 27 weeks, and fatty livers were

reported based on autopsies of individuals from both treatment

groups. There was no significant difference in body weight,

hematology, or other biochemical aspects of blood between

individuals from the 2 dietary treatments.

Gene expression profiles of dietary-induced
hyperlipidemia for whole blood RNA

We used whole blood to evaluate the transition of gene

expression profiles. Whole blood RNA is easy to handle compared

to isolated white blood cell RNA. In addition, whole blood

contains a heterogeneous mixture of subpopulations of blood cells.

Associated changes will be reflected on whole blood RNA once a

Figure 2. Correlation matrix of dietary-related gene expression profiles of whole blood and white blood cells. This color-coded
correlation matrix illustrates pairwise correlations between the levels of gene expression in individuals. Probe sets with normalized signals (log-
transformed and scaled) were used to calculate correlations between 45 arrays using Pearson correlation coefficient; signals flagged as ‘‘absent’’ were
excluded. The color scale at the bottom indicates the strengths of the correlations.
doi:10.1371/journal.pone.0037581.g002
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Figure 3. Summary of dietary-related correlation coefficients within the same diet groups. (A) Whole blood after 10 weeks. (B) Whole
blood after 19 weeks. (C) Whole blood after 27 weeks. (D) White blood cells after 27 weeks. The bottom and top of the boxes represent the 25th and
75th percentiles respectively. The lower and upper whiskers denote the minimum and maximum values of the data. Using Fisher’s Z-transform for
normalization the correlation distribution, continuous variables were analyzed by one-way factorial ANOVA followed by Tukey-Kramer multiple
comparisons test for multiple groups. Correlations were considered to be statistically significant when ANOVA test among all groups and t-test
between 2 groups should p,0.05. NS; not significant.
doi:10.1371/journal.pone.0037581.g003

Figure 4. Summary of dietary-related correlation coefficients among different diet groups. (A) Whole blood after 10 weeks. (B) Whole
blood after 19 weeks. (C) Whole blood after 27 weeks. (D) White blood cells after 27 weeks. The bottom and top of the boxes represent the 25th and
75th percentiles respectively. The lower and upper whiskers denote the minimum and maximum values of the data. Comparisons of the groups were
made with the ANOVA test. NS; not significant.
doi:10.1371/journal.pone.0037581.g004
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great change has occurred in the composition and expressing

condition of subpopulations, tissues, or organs. We previously

evaluated the ‘‘healthy state’’ gene expression profile by whole

blood microarray analyses of miniature pigs of different age

groups, and identified characteristics of age-related gene expres-

sion by taking into account the change in the number of expressed

genes by age and the similarities of gene expression intensity

between individuals [21]. The report on the healthy state of

miniature pigs found that the correlation coefficients within the

same age groups were 0.87 (0.04), 0.93 (0.03), 0.98 (0.01), and 0.96

(0.02), for the fetal stage, and for 12-, 20-, and 30-week-old male

pigs, respectively. Variation in gene expression was greatest for

younger subjects and diminished with age. These results indicate

that uniformity of laboratory animals can be expected in miniature

pigs after 20 weeks of age.

In this study, feeding treatments commenced when the pigs

were 12 weeks old, RNA analysis was conducted on whole blood

sampled after 10, 19, and 27 weeks of the feeding period, and on

white blood cell RNA after 27 weeks. Variation in whole blood

gene expression intensity among individuals within either the

HFCD or the HFCSD group was in the same range as that of the

controls at any period, indicating uniformity of dietary-induced

hyperlipidemia expression profiles in miniature pigs.

Effects of white blood cells on whole blood gene
expression profiles in dietary-induced hyperlipidemia

Most of the nucleated cells in blood are white blood cells such as

neutrophils, T cells, B cells, and monocytes. Min et al. reported

highly correlated results (r2 = 0.85) for 8,273 genes expressed in

both whole blood RNA and peripheral blood mononuclear cell

(PBMCs) RNA samples from healthy volunteers [20]. Other

researchers have conducted a large-scale genome-wide expression

analysis of white blood cell subpopulations [22]. That study

indicated that correlation coefficients for T cells and monocytes

among different healthy subjects were 0.98 (0.01) and 0.97 (0.01),

respectively. However, the correlation coefficient between T cells

Figure 5. Correlation coefficients between whole blood and
white blood cells within the same diet groups. Correlation
coefficients were calculated between whole blood and white blood
cells within the same diet group at 27 weeks feeding period. The
bottom and top of the boxes represent the 25th and 75th percentiles
respectively. The lower and upper whiskers denote the minimum and
maximum values of the data. Comparisons of the groups were made
with the ANOVA test. NS; not significant.
doi:10.1371/journal.pone.0037581.g005
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and monocytes for the same subjects (n = 5) was 0.88 (0.01),

indicating varied correlations between white blood cell subpopu-

lations [22]. We believe that no effects of composition ratio of

white blood cell subpopulations were observed in our study,

because the ratios of granulocytes (neutrophils, eosinophils, and

basophils), lymphocytes, and monocytes to white blood cells were

statistically insignificant among the three test groups.

In previous studies, tumor-derived RNA was detected in the

circulation of cancer patients [23,24]. It has also been demon-

strated that fetal RNA can be detected in maternal plasma [25].

These results indicate that whole blood RNA may contain RNA

originating from the tissues and/or organs. Hyperlipidemia is one

of the risk factors associated with atherosclerosis. Atherosclerosis

was induced by the administration of a high-fat and high-diet to

Göttingen miniature swine for a 6-month period [5]. The liver and

spleen weights were increased significantly compared to the

controls in both the HFCD and HFCSC groups in our experiment

at the end of each dietary period. Thus white blood cell

microarray analyses were conducted at the end of each dietary

period, as the tissues and/or organs, such as the liver, spleen, and

blood vessels, were presumed to be influenced by dietary

treatment.

The average white blood cell correlation coefficients within the

HFCD and HFCSD groups were in the same range as that of the

controls after the 27-week feeding period. However, variation in

whole blood gene expression intensity between the HFCSD group

and the control group was statistically significant, whilst variation

in white blood cell gene expression intensity between the HFCSD

group and the control group was not significant after the 27-week

feeding treatments. In addition, the HFCSD correlation coefficient

between whole blood and white blood cells after 27 weeks was

significantly lower than that of the control and HFCD groups.

The intensity ratio of white blood cell gene expression to that of

whole blood shows the contribution of white blood cell RNA to

whole blood RNA samples. The intensity ratio of white blood cells

to whole blood is, therefore, considered as the contribution

indicator. We assume that the low intensity ratio of white blood

cell to whole blood gene expression indicates a greater contribu-

tion of tissues and/or organs RNA to whole blood RNA. We then

compared the EST numbers of the tissue or organ with the

contribution indicator, focusing on obesity-related organs such as

the liver, adipose tissue, and muscle. The number of gene ESTs for

each tissue or organ normalized to blood ESTs becomes greater

when the contribution indicator is small. As a result, we suggest

that RNAs originating from tissues and/or organs are present in

whole blood.

Characteristics of gene expression profiles in dietary-
induced hyperlipidemia

It is generally acknowledged that excessive exposure to dietary

lipids disrupts the homeostasis of cellular metabolism and triggers

an inflammatory response in adipose tissue [26]. An enhanced

inflammatory response has been observed in the livers of mice fed

on high-fat diets and in skeletal muscles of Otsuka Long-Evans

Tokushima Fatty (OLETF) rats using microarrays [27]. We

examined dietary-induced transitions of gene expression profiles

for genes bearing GO terms. Major changes included an induction

of proteins involved in catabolic processes and protein metabolism

after a 19-week dietary period, especially in the HFCD group, and

a reduced expression of proteins involved in steroid metabolism

and lipid biosynthesis after a 27-week dietary period, especially in

the HFCSD group.

In whole blood samples, some genes involved in inflammatory

responses (GO: 0006954) were down-regulated in the HFCD
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Table 17. Functional classes of up- or down-regulated genes between HFCD and control.

Weeks Induction/Repression Category Accession Term % P-value

10 Induction GO MF GO:0003924 GTPase activity 28.6 1.9e202

10 Induction KEGG complement and coagulation cascades 28.6 2.2e202

19 Induction GO MF GO:0032555 purine ribonucleotide binding 13.6 3.9e203

19 Induction GO MF GO:0032553 ribonucleotide binding 13.6 3.9e203

19 Induction GO MF GO:0000166 nucleotide binding 15.3 4.0e203

19 Induction GO MF GO:0003924 GTPase activity 5.1 4.7e203

19 Induction GO MF GO:0017076 purine nucleotide binding 13.6 6.2e203

19 Induction GO BP GO:0019941 modification-dependent protein catabolic process 5.1 1.9e202

19 Induction GO BP GO:0043632 modification-dependent macromolecule catabolic process 5.1 1.9e202

19 Induction GO BP GO:0044257 cellular protein catabolic process 5.1 2.5e202

19 Induction GO BP GO:0051603 proteolysis involved in cellular protein catabolic process 5.1 2.5e202

19 Induction GO MF GO:0032561 guanyl ribonucleotide binding 6.8 2.6e202

19 Induction GO MF GO:0019001 guanyl nucleotide binding 6.8 2.6e202

19 Induction GO MF GO:0005525 GTP binding 6.8 2.6e202

19 Induction GO BP GO:0030163 protein catabolic process 5.1 2.7e202

19 Induction GO BP GO:0044265 cellular macromolecule catabolic process 5.1 3.5e202

19 Induction GO BP GO:0009057 macromolecule catabolic process 5.1 4.9e202

27 Induction KEGG Toll-like receptor signaling pathway 14.3 1.4e202

10 Repression GO MF GO:0004857 enzyme inhibitor activity 11.1 1.6e202

10 Repression GO MF GO:0004866 endopeptidase inhibitor activity 8.3 4.8e202

19 Repression GO BP GO:0002684 positive regulation of immune system process 7.9 1.3e202

27 Repression GO BP GO:0007155 cell adhesion 11.1 9.6e203

27 Repression GO BP GO:0022610 biological adhesion 11.1 9.6e203

27 Repression KEGG steroid biosynthesis 5.6 4.0e202

GO MF; GO molecular function, GO BP; GO biological process, Kegg; Kegg pathway.
doi:10.1371/journal.pone.0037581.t017

Table 18. Functional classes of up- or down-regulated genes between HFCSD and control.

Weeks Induction/Repression Category Accession Term % P-Value

19 Induction GO MF GO:0000166 nucleotide binding 13 3.7e204

19 Induction GO MF GO:0032555 purine ribonucleotide binding 9.8 5.1e203

19 Induction GO MF GO:0032553 ribonucleotide binding 9.8 5.1e203

19 Induction GO MF GO:0017076 purine nucleotide binding 9.8 8.2e203

19 Induction GO MF GO:0005524 ATP binding 6.5 4.8e202

27 Repression GO BP GO:0016125 sterol metabolic process 8.5 4.9e204

27 Repression KEGG steroid biosynthesis 6.4 1.7e203

27 Repression GO BP GO:0008202 steroid metabolic process 8.5 2.3e203

27 Repression GO BP GO:0016126 sterol biosynthetic process 6.4 2.4e203

27 Repression KEGG ECM-receptor interaction 8.5 4.0e203

27 Repression GO BP GO:0008203 cholesterol metabolic process 6.4 9.9e203

27 Repression GO BP GO:0006694 steroid biosynthetic process 6.4 1,1e202

27 Repression GO BP GO:0055114 oxidation reduction 12.8 1.5e202

27 Repression GO BP GO:0007155 cell adhesion 8.5 1.7e202

27 Repression GO BP GO:0022610 biological adhesion 8.5 1.7e202

27 Repression GO BP GO:0008610 lipid biosynthetic process 6.4 4.8e202

GO MF; GO molecular function, GO BP; GO biological process, Kegg; Kegg pathway.
doi:10.1371/journal.pone.0037581.t018
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group, whilst some genes involved in inflammatory responses were

up-regulated and others were down-regulated in the HFCSD

group.

It has been established that skeletal muscle is an obesity-related

organ, such as the liver and adipose tissue, in association with

insulin resistance [26,28,29]. Indeed, 2 out of 4 GO terms (muscle

contraction, GO: 0006936, muscle organ development, GO:

0007517) that were statistically significant in the HFCD group

were related to muscle function. Genes involved in reproduction

(GO: 000003) were induced in the HFCD group, and were either

induced or repressed in the HFCSD group. Asexual reproduction

is the process by which an organism creates a genetically similar or

identical copy of itself without the contribution of genetic material

from another individual, and some genes involved in asexual

reproduction are linked to the repair of damaged organs. Genes

involved in translation (GO: 0006412), positive regulation of

growth rate (GO: 0040010), and growth (GO: 004007) were

induced in the HFCSD group, and these processes are also linked

to organ repair. Meanwhile, GO terms that were statistically

significant in the HFCSD group were mainly associated with

cellular volatility, such as cellular activity, cell growth, or cellular

responses.

We examined correlations between whole blood and white

blood cells for genes bearing GO terms. The correlation

coefficients for each GO term were calculated for the control,

HFCD, and HFCSD groups after the 27-week feeding treatments.

As a result, GO terms related to white blood cell function,

including inflammatory responses (GO: 0006954), and cell surface

receptor-linked signaling pathways (GO: 0007166) show high

correlation coefficients in the control and dietary groups. In

contrast, GO terms related to the repair of damaged organs,

including translation (GO: 0006412), positive regulation of growth

rate (GO: 0040010), and growth (GO: 004007), show low

correlation coefficients in the HFCSC group.

The differences in the scatter plot regression slopes between the

HFCD and control treatments and between the HFCSD and

control treatments did not indicate a decrease in the extraction

efficiency of RNA due to inhibitory substances in blood. In a

previous study of microarray cDNA expression profiles using 23

healthy porcine tissue specimens, a large portion of the genes

exhibited tissue-specific expression in agreement with mappings to

gene descriptions [30]. In our study, the minimum correlation

coefficient for each GO term was 0.737 (0.038), while the

maximum was 0.989 (0.004), indicating different values related to

functions. The reason for the lower correlation may be due to the

differences in gene expression between blood cells and organs, and

because a stronger tendency for a decrease in correlation strength

was observed in the HFCSD group as compared to the HFCD

group. Our EST profile analysis also supported this assumption.

Statistically significant differences in fasting plasma lipids and

glucose levels between the HFCD and HFCSD groups were not

observed. However, blood RNA analyses demonstrated differences

in the characteristics of dietary components between these groups.

By considering variation in the dietary-induced hyperlipidemia

gene expression profiles of miniature pigs, we have established that

whole blood RNA analyses can be used in practical applications.

The blood RNA diagnostics under development may eventually be

useful for monitoring human health.

Materials and Methods

Animals
Fifteen 12-week-old, male Clawn miniature pigs were housed

individually in cages of 1.5 m2 at the breeder’s specific pathogen-
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free (SPF) facility (Japan Farm Co., Ltd, Kagoshima, Japan) for 27

weeks. Body weights at the beginning of the experiment were 5.1

(2.6) kg (mean (standard deviation; SD)). During this period, 5 pigs

were fed with 450 g/day standard dry feed (Kodakara73,

Marubeni Nisshin Feed Co., Ltd., Tokyo Japan), and had

unlimited access to water (control group). Five pigs were fed a

high-fat, high-cholesterol diet containing 15% lard and 2%

cholesterol (HFCD group). The 5 remaining pigs were fed a

high-fat, high-cholesterol and high-sucrose diet containing 15%

lard, 2% cholesterol, and 37% sucrose (HFCSD group). During

dissections, the heart, liver, kidney, stomach, and spleen were

excised and weighed immediately.

Hematology and clinical chemistries
Blood samples were collected from the superior vena cava after

5, 10, 14, 19, 23, and 27 weeks of the feeding period. Blood

(EDTA), plasma (EDTA), and serum samples for hematology and

biochemical tests were collected 24 hours after fasting. Hematol-

ogy and biochemical tests were conducted by Clinical Pathology

Laboratory, Inc. (http://www.patho.co.jp/index.html) (Ka-

goshima, Japan) using standard clinical methods.

MIAME compliance and data availability
The microarray experiments described in this manuscript were

MIAME compliant and the raw data have been deposited in the

Gene Expression Omnibus (GEO) database (Accession number

GSE 32616, http://www.ncbi.nlm.nih.gov/geo/query/acc.

cgi?acc = GSE32616.

Preparation of samples and microarray assays
Whole blood samples for microarray analyses were collected

from each subject in PAXgeneTM tubes (Qiagen/BD GmbH,

UK), incubated at room temperature for 4 hours for RNA

stabilization, and then stored at 280uC. RNA was extracted from

whole blood using the PAXgeneTM Blood RNA System Kit

(Qiagen GmbH, Germany) according to the manufacturer’s

guidelines. RNA from white blood cells was extracted from whole

blood samples using a LeukoLOCK Total RNA Isolation kit

(Ambion, Austin, TX). Isolations were performed according to the

manufacturer’s protocol. The quality of the purified RNA was

verified using an AgilentH 2100 Bioanalyzer (Agilent Technolo-

gies, Santa Clara, CA). RNA concentrations were determined

using a NanoDropH ND-1000 spectrophotometer (NanoDrop

Table 20. Predominant GO terms for which the ratio changed in HFCD.

Correlation coefficients between whole blood and white
blood cells at 27 weeks

Accession GO term
Number of
genes Induction/Repression Control HFCD HFCSD

GO:0006936 muscle contraction 212 Induction/Repression 0.9160.03 0.9160.02 0.9160.02

GO:0007626 locomotory behavior 207 Induction/Repression 0.8860.04 0.9260.05 0.8660.04

GO:0007517 muscle organ
development

199 Repression 0.9460.05 0.9560.02 0.9460.02

GO:0008152 metabolic process 145 Repression 0.9360.02 0.9260.05 0.9660.03

Values are mean 6 SD.
doi:10.1371/journal.pone.0037581.t020

Table 21. Predominant GO terms for which the ratio changed in HFCSD.

Correlation coefficients between whole blood
and white blood cells at 27 weeks

Accession GO term
Number of
genes Control HFCD HFCSD

GO:0006412 Translation 253 Induction/Repression 0.9060.02 0.9260.03 0.8760.03

GO:0009792 embryonic development ending
in birth or egg hatching

432 Induction/Repression 0.9260.02 0.9360.03 0.9060.02

GO:0006118 electron transport 200 Induction/Repression 0.8260.07 0.7760.09 0.8360.11

GO:0006366 transcription from RNA polymerase II
promoter

209 Induction/Repression 0.9660.02 0.9860.01 0.9760.01

GO:0040010 positive regulation of growth rate 207 Induction 0.9260.02 0.9260.04 0.8660.04

GO:0007166 cell surface receptor linked signaling
pathway

185 Repression 0.9760.01 0.9360.06 0.9760.01

GO:0002119 nematode larval development 374 Induction 0.9160.02 0.9360.03 0.8860.03

GO:0006886 intracellular protein transport 191 Induction 0.9160.06 0.8660.08 0.8660.07

GO:0001666 response to hypoxia 189 Repression 0.9560.02 0.9560.03 0.9260.02

GO:0040007 Growth 332 Induction 0.9160.02 0.9360.03 0.8860.03

Values are mean 6 SD.
doi:10.1371/journal.pone.0037581.t021

Hyperlipidemia Gene Expression in Miniature Pigs

PLoS ONE | www.plosone.org 13 May 2012 | Volume 7 | Issue 5 | e37581



Technologies, Wilmington, DE). Fluorescent cyanine 3-CTP–

labeled cRNA was used for hybridization onto porcine oligo

microarray slides (#G2519F#20109, Agilent Technologies) con-

taining 43,603 oligonucleotide probes at 65uC for 17 h. The

hybridized microarray slides were washed according to the

manufacturer’s instructions and were scanned with an Agilent

DNA Microarray Scanner (#G2565BA, Agilent Technologies) at

5-mm resolution. The scanned images were analyzed numerically

using Agilent Feature Extraction Software version 9.5.3.1. (Agilent

Technologies).

Table 22. Predominant GO terms for which the ratio unchanged in HFCD or HFCSD.

Correlation coefficients between whole blood and
white blood cells at 27 weeks

Accession GO term
Number of
genes Control HFCD HFCSD

GO:0007165 signal transduction 527 0.8960.04 0.8960.07 0.8060.05

GO:0008283 cell proliferation 353 0.9160.03 0.8760.07 0.8360.05

GO:0007267 cell-cell signaling 321 0.9460.02 0.9560.03 0.9260.02

GO:0008285 negative regulation of cell proliferation 288 0.9560.03 0.8760.08 0.8360.06

GO:0006468 protein amino acid phosphorylation 266 0.9560.01 0.9460.02 0.9060.03

GO:0008284 positive regulation of cell proliferation 262 0.9260.04 0.9660.02 0.9060.03

GO:0006916 anti-apoptosis 224 0.9160.03 0.9360.03 0.8960.02

GO:0042493 response to drug 218 0.9360.03 0.9360.05 0.8560.04

GO:0007399 nervous system development 210 0.8260.06 0.8260.08 0.7460.04

GO:0006508 Proteolysis 210 0.9060.04 0.9360.03 0.9460.04

GO:0006470 protein amino acid dephosphorylation 198 0.9160.07 0.9060.09 0.8460.06

GO:0000122 negative regulation of transcription from RNA polymerase II
promoter

193 0.9360.03 0.9160.04 0.8960.03

GO:0015031 protein transport 190 0.9560.03 0.9660.02 0.9460.03

GO:0009887 organ morphogenesis 186 0.9360.03 0.9360.05 0.9260.01

GO:0006357 regulation of transcription from RNA polymerase II promoter 179 0.9360.04 0.9460.04 0.8960.03

GO:0001764 neuron migration 174 0.9660.01 0.9560.02 0.9360.01

GO:0007264 small GTPase mediated signal transduction 157 0.9760.01 0.9460.05 0.9960.00

GO:0007275 multicellular organismal development 151 0.9560.03 0.9360.04 0.9160.02

GO:0007420 brain development 150 0.8960.10 0.8960.09 0.8860.09

GO:0043066 negative regulation of apoptosis 145 0.9460.04 0.9560.02 0.9360.01

Values are mean 6 SD.
doi:10.1371/journal.pone.0037581.t022

Figure 6. Scatter plot of dietary-related correlation coefficients. (A) Control vs. HFCD. (B) Control vs. HFCSD. The correlation coefficient
between whole blood and white blood cells after 27 weeks of each GO tem was plotted for each spot. The solid line represents the regression line.
The dashed line represents the slope equal to 1.
doi:10.1371/journal.pone.0037581.g006
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Microarray data analysis
Normalized data using quantile normalization were analyzed

using GeneSpring GX software version 10.0.1 (Agilent Technol-

ogies). The Gene Ontology (GO) Database (http://www.

geneontology.org/) was used to categorize gene expression profiles

functionally. GO terms were obtained from the TIGR pig gene

indices, Porcine version 14.0 3-11-10 (http://compbio.dfci.

harvard.edu/cgi-bin/tgi/gimain.pl?gudb = pig). The TC Annota-

tor List includes the gene number and the GO terms. Out of the

43,603 probes used in the Agilent porcine microarray

(#G2519F#20109), GO annotations were available for 6,019

genes. Microarray cDNA probes were classified according to GO

terms for different biological processes.

For the microarray data analyses, we focused particularly on the

variation of dietary-related gene expression profiles. Initially,

microarray spots of interest were divided into 2 groups: ‘‘absent’’

and ‘‘present,’’ using the flag values provided by the scanner.

Background levels were determined from the spots outside of the

gene probing area. ‘‘Absent’’ was assigned to spots with a signal

intensity that was less than that of the background level, while the

rest were marked ‘‘present.’’ Only data for ‘‘present’’ spots were

used for the analyses.

The intensity ratio of white blood cell gene expression to that of

whole blood is a contribution indicator for white blood cell RNA

to whole blood RNA. The relation of tissues or organs ESTs to the

white blood cell contribution indicator was examined. To focus on

obesity-related organs, i.e., the liver, adipose tissue, and muscle,

the relative EST numbers of these organs to blood ESTs for each

gene were calculated using EST profiles from the Unigene NCBI

database of the transcriptome. An EST profile breakdown of

22,000 porcine genes by body site is available, comprising 40

organ types, such as the lung, ovary, liver, adipose tissue, muscle,

and blood. The profiles show gene expression patterns inferred

from EST counts and cDNA library sources (http://www.ncbi.

nlm.nih.gov/UniGene/).

Statistical analysis
Continuous variables were analyzed using a 1-way factorial

ANOVA followed by a Tukey-Kramer multiple comparisons test

for multiple groups. After excluding the unexpressed genes from

each set of array data, Pearson correlation coefficients were

calculated to identify similarities in gene expression among

individuals. Pearson correlation coefficients were analyzed by a

1-way factorial ANOVA using Fisher’s Z-transform to normalize

the correlation distribution.

Correlations were considered statistically significant for AN-

OVA tests among all groups and t-tests between 2 groups when

p,0.05. All values were expressed as non-transformed mean

(standard deviation (SD)). Genes with a fold change greater than

2.0 (p,0.05) and less than 0.5 (p,0.05) after 10, 19, and 27 weeks

were identified. These genes were mapped to the Gene Ontology

and KEGG pathway in the Database for Annotation, Visualiza-

tion and Integrated Discovery (DAVID Bioinformatics Resources

6.7, National Institute of Allergy and Infectious Diseases, http://

david.abcc.ncifcrf.gov/) [31,32]. Chi-square tests were performed

for feature extractions of GO terms. The expected values were the

number of up- and down-regulated genes bearing all GO

annotations, and the observed values were specific to each GO

term. Simple linear regressions were performed for the scatter

plots to obtain the slopes and intercepts, and the significance of

each regression slope was verified.
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