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Abstract
Flavonoids and flavonoid derivatives, which have significant biological and pharmacological

activities, including antitumor and anti-inflammatory activities, have been widely used in

human healthcare. To design a more effective flavonoid antitumor agent, we altered the fla-

vonoid backbone with substitutions of piperazine and methoxy groups to synthesize a novel

flavonoid derivative, LZ-207. The anticancer effect of LZ-207 against HCT116 colon cancer

cells and the underlying mechanism of this effect were explored in this study. Specifically,

LZ-207 exhibited inhibitory effects on growth and viability in several human colon cancer

cell lines and induced apoptosis in HCT116 cells both in vitro and in vivo. LZ-207 treatment

also suppressed the nuclear translocation of NF-κB and the phosphorylation of IκB and

IKKα/β in a dose-dependent manner in both HCT116 cells and human acute monocytic leu-

kemia THP-1 cells. Moreover, LZ-207 also reduced the secretion of the pro-inflammatory

cytokine interleukin-6 (IL-6) in LPS-induced THP-1 cells, and this effect was confirmed at

the transcriptional level. Furthermore, LZ-207 significantly inhibited HCT116 cell prolifera-

tion that was elicited by LPS-induced THP-1 cells in a co-culture system. These findings

elucidated some potential molecular mechanisms for preventing inflammation-driven colon

cancer using the newly synthesized flavonoid LZ-207 and suggested the possibility of fur-

ther developing novel therapeutic agents derived from flavonoids.

Introduction
Each year, more than 600,000 people die from colorectal cancer (CRC) and 1.25 million people
are diagnosed with this disease. The surgical removal of cancer by operation is the traditional
therapy for all stages of CRC; however, many patients have unresectable tumors and go on to
develop metastases [1]. Therefore, novel therapeutic agents for treating CRC are urgently
required.
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Accumulating evidence has demonstrated that inflammation is a critical component of
tumor progression [2]; sites of infection, chronic irritation and inflammation could be high
risk areas to develop into cancer. The close connection between Inflammatory bowel diseases
(IBDs) and colon cancer has been proposed since 1925 and is still a powerful case to prove the
relationship between inflammation and cancer [3, 4]. Previous studies have reported that pro-
inflammatory factors of the innate and adaptive immune systems, including IL-6 [5] and TNF-
α [6], could contribute to the development and growth of colon neoplasia. NF-κB, which is one
of many downstream targets of TNF receptor 1 activation, is likely to play a prominent role in
colitis-associated tumorigenesis because aberrant NF-κB activation was detected in> 50% of
colorectal and colitis-associated tumors and mouse studies [7]. Taken together, these findings
suggest a compelling role for inflammation in colon carcinogenesis.

Natural flavonoids are widespread in the human diet and plants, include all citrus fruits,
blueberries, parsley, onions, black tea, green tea, red wine and bananas [8]. These compounds
are low molecular weight substances that are based on a common three-ring structure with dif-
ferent substitutions [9]. Since the French paradox left the impression that much of France’s
lower incidence of cardiac disease associated with the country’s high levels of red wine con-
sumption, flavonoids from red wine have become a focus of cancer research studies [10]. The
potential beneficial properties of flavonoids include antioxidant, antiatherosclerotic, anti-in-
flammatory, antithrombogenic, antiosteoporotic, and antiviral effects [10]. Recently, the anti-
tumor effects of flavonoids have also been recognized [11]. Many flavonoids, such as quercetin
[12], silymarin [13] and luteolin [14], exert antitumor activity against various cancer cell lines,
suggesting that these flavonoids are promising agents for cancer prevention and warrant fur-
ther study. Flavonoids are phenyl-substituted chromones (benzopyran derivatives) that consist
of a 15-carbon basic skeleton (C6-C3-C6) (Fig 1A) with a chroman (C6-C3) nucleus (the
benzo ring A and the heterocyclic ring C) and with a phenyl group (the aromatic ring B) nor-
mally substituted at the 2-position [15]. In recent years, wogonin, which is a flavonoid, has re-
ceived increasing attention for its antitumor activities in hepatoma [16], breast carcinoma [17],
gastric cancer [18], cervical carcinoma [19], and leukemia [20, 21]. Many wogonin derivatives
have been synthesized to have better water solubility and druggability, and some of these syn-
thesized derivatives have shown potential antitumor effects. For example, LYG-202, which is a
wogonin derivative, induces apoptosis in human hepatocellular carcinoma HepG2 cells via in-
ducing the ROS-mitochondria pathway [22]. LYG-202 also induces cell cycle arrest and apo-
ptosis in human colorectal carcinoma HCT116 cells via its regulation of p53 and p21WAF1/
Cip1 [23]. Another wogonin derivative, LW-214, has potent antitumor activity in human
breast cancer MCF-7 cells by down-regulating Trx-1 and by activating the JNK pathway, ulti-
mately inducing mitochondria-mediated apoptosis [24]. In this work, we focused on LZ-207,
which is a newly synthesized flavonoid with a structure similar to that of wogonin. A methoxy
group in LZ-207 is substituted at the 6’-position, and a piperazine substitution occurs at the 7’-
position (see Fig 1B). These substitutions improve the water solubility (Table 1) and druggabil-
ity of LZ-207 compared with other flavonoid family members. Therefore, we were interested
in examining the antitumor effects of LZ-207 on colitis-associated cancers and in revealing the
interactions between inflammatory cells and tumor cells. In this paper, we studied the growth-
inhibitory effects of LZ-207 in HCT116 cells and the inhibitory effects of LZ-207 on inflamma-
tory processes in THP-1 monocytes. We also examined the inhibitory effects of LZ-207 on the
inflammatory response elicited by culturing HCT116 cells with LPS-induced human monocyte
THP-1 cells.
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Materials and Methods

Reagents
LZ-207 (purity> 99%), which was obtained from Dr. Zhiyu Li (China Pharmaceutical Univer-
sity, China), was dissolved in DMSO to 0.1 M as a stock solution and stored at -20°C. LZ-207
was freshly diluted with cell culture medium to different final concentrations before each

Fig 1. The chemical structures of flavone and LZ-207. (A) Chemical structure of the 15-carbon flavone backbone. (B) Chemical structure of LZ-207
(C26H32N2O6, MW = 468.5421).

doi:10.1371/journal.pone.0127282.g001

Table 1. The water solubility of wogonin and LZ-207.

Determine wavelength (nm) Solubility (μg/ml)

Wogonin 277 0.665

LZ-207 277 83.828

doi:10.1371/journal.pone.0127282.t001

LZ-207 Suppresses Inflammation-Related Colon Cancer

PLOS ONE | DOI:10.1371/journal.pone.0127282 May 29, 2015 3 / 19



experiment. The final DMSO concentration did not exceed 0.1% and had no effects on cell
growth and differentiation.

Lipopolysaccharides(LPSs), 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide
(MTT) and 4’,6-diamidino-2-phenylindole dihydrochloride (DAPI) were purchased from
Sigma-Aldrich (St. Louis, MO, USA). An annexin V-FITC apoptosis detection kit, a chemilu-
minescent electromobility shift assay (EMSA) kit, and human IL-1β and IL-6 enzyme-linked
immunosorbent assay (ELISA) kits were purchased from Bender MedSystems Co., Ltd. (Bur-
lingame, CA, USA), Beyotime Institute of Biotechnology (Nanjing, China), and KeyGen Bio-
tech Co., Ltd. (Nanjing, China), respectively.

Primary β-actin antibody was obtained from Boster Biological Technology, Ltd. (Wuhan,
China) and used at a 1:20,000 dilution. Primary Akt, Bax, caspase-3, caspase-8, caspase-9,
ERK, IκBα, NF-κB, JNK, p38, p-Akt, p-ERK, p-JNK, p-p38 antibodies were obtained from
Santa Cruz Biotechnology (Santa Cruz, CA, USA) and were all used at a 1:500 dilution. Prima-
ry Bcl-2, IKKα/β, PARP, p-IKKα/β, p-IκBα antibodies were obtained from Cell Signaling
Technology (Beverly, MA, USA) and were all used at a 1:1,000 dilution. IRDye 800-conjugated
secondary antibodies were obtained from Rockland, Inc. (Philadelphia, PA, USA) and used at a
1:15,000 dilution.

Cell culture
Human colon carcinoma HCT116 cells, human colorectal cancer SW1116 and HT29 cells,
human umbilical vein endothelial HUVEC cells, normal human lung fibroblasts MRC5 cells
and human acute monocytic leukemia THP-1 cells were obtained from the cell bank of the
Chinese Academy of Sciences (Shanghai, China). HCT116, HT29, SW1116, HUVEC, MRC5
and THP-1 cells were cultured in either McCoy’s 5A medium or DMEMmedium (Gibco, Invi-
trogen Corporation, NY, USA). All the media were supplemented with 10% heat-inactivated
fetal bovine serum (FBS) (Gibco, Invitrogen Corporation, NY, USA), 100 U/ml benzyl penicil-
lin, and 100 μg/ml streptomycin at pH 7.4, and cells were maintained in a CO2 incubator
(Thermo Forma, Thermo Fisher Scientific, Inc., MA, USA) with a humidified atmosphere of
5% CO2 at 37°C [25, 26].

Cell viability assay
The SW1116 cells, HT29 cells, HCT116 cells, HUVEC cells, MRC5 cells and THP-1 cells were
plated in 96-well plates with 100 μl of the appropriate medium at an optimal density. The cells
were treated with different concentrations of LZ-207 and incubated at 37°C with 5% CO2 for
24, 48 and 72 h. Subsequently, 20 μl of MTT solution (5 mg/ml) was added to each well and in-
cubated at 37°C with 5% CO2 for another 4 h. Then, the supernatants were discarded, and
100 μl of DMSO was added to each well. The plates were shaken for 2 min to ensure total solu-
bility of the formazan crystals, and cell viability was determined based on the mitochondrial
conversion of MTT to formazan. The absorbance (A) was measured at 570 nm using a Univer-
sal Microplate Reader (EL800, BioTek Instruments Inc.). The inhibition ratio (%) and survival
rate (%) were calculated using the following equations:

Inhibitory ratio ð%Þ ¼ AControl � ATreated

AControl

� 100%

Survival ratio ð%Þ ¼ ATreated

AControl

� 100%
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ATreated and AControl were the average absorbance values of three parallel experiments from
the treated and control groups, respectively.

The IC50, which is the concentration that caused 50% inhibition of cell viability, was calcu-
lated using the logit method [24].

DAPI staining assay
Cell nuclei were visualized with DAPI staining, which emits blue fluorescence upon binding to
AT regions of DNA, to detect any morphological evidence of apoptosis. After LZ-207 treat-
ment for 24 h, HCT116 cells were fixed with cold 4% paraformaldehyde for 30 min, washed
twice with phosphate-buffered saline (PBS), and then permeabilized with 0.3% Triton X-100
for 20 min at room temperature. After being washed twice with PBS, the cells were incubated
with DAPI (1 μg/ml) for 10 min and then observed using fluorescence microscopy (Olympus,
Japan) with a peak excitation wavelength of 340 nm [27].

Annexin V/PI double staining assay
Apoptosis-mediated tumor cell death was examined using a double staining method with a
FITC-labeled Annexin V/PI Apoptosis Detection Kit according to the manufacturer’s instruc-
tions. HCT116 cells in McCoy’s 5A medium containing 10% FBS were cultured in 6-well plates
at a comfortable density for 24 h. After LZ-207 (5, 10, or 20 μM) treatment for another 24 h,
the cells were harvested, washed twice with cold PBS, and then resuspended in 500 μl of bind-
ing buffer. Next, 5 μl of Annexin V and 5 μl of PI were successively added to each tube, mixed
gently and kept on ice for 10 min in the dark. Data acquisition and analysis were performed
using a Becton Dickinson FACS Calibur flow cytometer with FlowJo 7 software with excita-
tion/emission at 488/530 nm. The left lower section of the fluorocytograms (An−, PI−) repre-
sents normal cells, the right lower section of the fluorocytograms (An+, PI−) represents early
and mid-apoptotic cells, and the right upper section of the fluorocytograms (An+, PI+) repre-
sents late apoptotic cells [28, 29].

Mitochondrial transmembrane potential (ΔΨm) assessment
Mitochondrial transmembrane potential (ΔCm) changes could be indicated by JC-1, a fluores-
cent dye from KeyGEN JC-1 Apoptosis Detection Kit (China). After LZ-207 (5, 10, or 20 μM)
treatment for 24 h, HCT116 cells were harvested, washed with PBS, resuspended in JC-1 work-
ing buffer. After incubating at 37°C with 5% CO2 for 30 min, the cells were washed twice with
incubation buffer and analyzed by flow cytometry and software FlowJo 7 with settings of FL1
(FITC, green) and FL2 (PI, red) [30].

Preparation of mitochondrial and cytosolic fractions
The mitochondrial and cytosolic fractions from cells were prepared using KeyGEN mitochon-
dria isolation kit (China) according to the manufacturer’s instructions. After LZ-207 (5, 10, or
20 μM) treatment for 24 h, the HCT116 cells were harvested, washed with PBS, resuspended in
cold lysis buffer, and homogenized on ice water with a tight pestle. Then the cells were trans-
ferred to medium buffer and centrifuged for 10 min at 4°C (1200 g). The supernatant was col-
lected and centrifuged again for 10 min at 4°C (7000 g) to obtain the mitochondria (pellet) and
cytosol (supernatant) fractions. Mitochondria and cytosol fractions of HCT116 cells were
stored at -80°C [31].
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Immunofluorescence
HCT116 cells were seeded onto glass coverslips in 6-well plates for 24 h and treated with LZ-
207 (5, 10, or 20 μM) with or without LPS (10 μg/ml) for another 24 h. Then, the cells were
rinsed three times with PBS for 5 min each, fixed with cold 4% paraformaldehyde for 30 min,
rinsed three times with PBS for 5 min each, permeabilized with 0.3% Triton X-100 for 20 min,
blocked with 5% BSA for 60 min and incubated with primary NF-κB antibody (diluted 1:200)
overnight at 4°C. After rinsing three times with PBS containing 0.01% Tween 80 for 5 min
each, the cells were stained with FITC-labeled secondary goat anti-mouse IgG antibody (1:100)
at 37°C for 1 h in the dark. Then, the cells were rinsed three times with PBS for 5 min each and
stained with DAPI. The images were captured with an Olympus FV1000 confocal microscope
[32].

Preparation of whole cell lysates and cytosolic and nuclear extracts
Briefly, the cells were cultured to approximately 80–90% confluence and treated with LZ-207
at the indicated concentrations with or without LPS (10 μg/ml) for 24 h. The whole cell lysates
were prepared as previously described [33]. Nuclear and cytosolic protein extracts were pre-
pared using a Nuclear/Cytosol Fractionation Kit according to the modified manufacturer’s
protocol below. After washing twice with PBS, the cells were collected in tubes with PBS by
scraping with a cell scraper and centrifuged for 5 min at 4°C (600 g). Then, we removed the su-
pernatant, gently resuspended the cell pellet with cytosolic extraction buffer and incubated this
suspension on ice for 15 min, followed by a 15 min centrifugation at 4°C (14,000 g). The super-
natant (cytoplasmic fraction) was carefully transferred to a clean, pre-chilled tube and stored at
-80°C for later use. Then, the same volume of cytosolic extraction buffer was added to the pellet
again, and the same steps were repeated as before, except the supernatant was discarded last.
The nuclear pellet was resuspended in nuclear extraction buffer, kept on ice for 30 min, and
then centrifuged for 15 min at 4°C (12,000 g). The supernatant (nuclear protein extract) was
carefully transferred to a clean, pre-chilled tube and stored at -80°C [33].

EMSA
HCT116 cell nuclear proteins were extracted as described previously. EMSA was performed
using a non-radioactive (biotin labeled) gel shift assay according to the manufacturer’s instruc-
tions. Briefly, oligonucleotide probes were synthesized, annealed, and labeled using a biotin 3’-
end DNA labeling kit (Pierce). Following the manufacturer’s protocol, prepared DNA-protein
complexes were resolved on a 6% non-denaturing polyacrylamide gel in a 0.5× Tris-borate-
EDTA buffer at 380 mA for 1 h and then transferred to a nylon membrane. Finally, the gel
shift of biotin-labeled DNA was visualized by chemiluminescence using a Bio-Rad infrared sys-
tem and a chemiluminescent EMSA kit [34].

Western blot analysis
The whole cell lysates and cytosolic and nuclear extracts from treated cells were prepared as de-
scribed above, and the protein concentration was measured using a BCA assay with a Varios-
kan multimode microplate spectrophotometer (Thermo Fisher Scientific, Inc., Waltham, MA,
USA) at 562 nm. Equal amounts of protein samples were prepared, separated by SDS-PAGE
and transferred onto nitrocellulose (NC) membranes. The membranes were blocked with 1%
BSA in PBS at 37°C for 1 h and then incubated with the indicated primary antibodies overnight
at 4°C, followed by incubation with IRDye 800-conjugated secondary antibodies for 1 h at
37°C. Detection was performed using the Odyssey Infrared Imaging System (LI-COR Inc.,

LZ-207 Suppresses Inflammation-Related Colon Cancer

PLOS ONE | DOI:10.1371/journal.pone.0127282 May 29, 2015 6 / 19



Lincoln, NE, USA). All blots were stripped and reprobed with polyclonal anti-β-actin antibody
to ascertain equal loading of proteins [35].

Cytokine quantification by ELISA
Human IL-6 and IL-1β ELISA kits were used according to the manufacturer’s instructions to
quantify the expression of secreted IL-6 and IL-1β cytokines in the supernatants of treated
THP-1 cells. The THP-1 cells were treated with LZ-207 (5, 10, or 20 μM) with or without LPS
(10 μg/ml). Each experiment was repeated three times. The cytokine levels are expressed in
pg/ml. The cytokines were not detected in the fresh medium used to culture these cells [36].

RNA extraction and quantitative real-time PCR (qPCR) assay
Total RNA from treated THP-1 cells was extracted using a phenol/chloroform method with
TRIzol reagent (Invitrogen). Reverse transcription (RT) was performed using equal amounts of
mRNA, and quantitative real-time PCR (qPCR) was performed following the Takara kit proto-
col (Takara, Takara Bio Inc., Otsu, Shiga, Japan). cDNA was also collected for real-time quanti-
tative reverse transcription-PCR (qRT-PCR), which was performed using a
Chromo4instrument (Bio-Rad, Berkeley, CA, USA) with SYBR Green Master Mix (Applied
Biosystems, CA, USA). The relative amount of target mRNA was determined using the com-
parative threshold cycle (Ct) method by normalizing target mRNA Ct values to those values
for β-actin (4Ct) [37]. The primer sequences used were as follows:
IL-6-sense: 5’-TGTAGTGAGGAACAAGCCAGAG-3’;
IL-6-antisense: 5’-TACATTTGCCGAAGAGCC-3’;
IL-1β-sense: 5’-AGGCTGCTCTGGGATTC-3’;
IL-1β-antisense: 5’-GCCACAACAACTGACGC-3’;
β-actin-sense: 5’-CTGTCCCTGTATGCCTC T-3’;
β-actin-antisense: 5’-ATGTCACGCACGATTTCC-3’

Co-culture of HCT116 cells with THP-1 cells
HCT116 cells were seeded in 6-well plates at 4 × 104 cells per well and were allowed to grow to
approximately 80% confluence. THP-1 cells were collected by centrifugation (600 g for 10 min,
washed, and resuspended at a final concentration of 2 × 105 cells/ml) and added to HCT116
cells. Then, the co-culture system was left untreated, activated with LPS, or treated with LZ-207
together with LPS. After 24 h, the co-culture system was stopped, and the cell culture media
were removed. The HCT116 cells were washed twice with cold PBS (pH = 7.4), and cell viabili-
ty was measured using MTT assays as described above [38, 39].

Antitumor effects on HCT116 nude mice xenografts
The animal experiment was performed on the basis of standard operation procedure estab-
lished by the State Food and Drug Administration (SFDA) in China. Athymic BALB/c nude
mice, female, 35–42 days old with weight ranging from 18 to 22 g were obtained from Shanghai
Institute of Materia Medica, Chinese Academy of Sciences. The specific pathogen free nude
mice were raised in a controlled environment (23 ± 2°C, 55 ± 5% humidity, 12h light + 12h
dark / day) and fed with standard laboratory food and water. 1 × 106 HCT116 cells were in-
jected into the right axilla of each nude mice to establish the animal model. After 12 days, mi-
crometer calipers were used to determine tumor size. Nude mice with similar tumor volume
were selected and randomly separated into 5 groups: 0.9% saline control group (12 nude mice),
5-Fu 30 mg/kg positive group (6 nude mice), LZ-207 20 mg/kg group (6 nude mice), LZ-207
10 mg/kg group (6 nude mice) and LZ-207 10 mg/kg group (6 nude mice). The nude mice
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received intravenous injection every three days. Tumor volume and body weight were mea-
sured also every three days. After 21 days treatment, all nude mice were sacrificed, peripheral
blood was collected; tumors were removed and weighted; hearts, livers, spleens, lungs and kid-
neys were separated. Tumor volume (TV) was calculated using the following equation: TV
(mm3) = D/2 × d2, where D and d are the longest and the shortest diameters of tumor, respec-
tively [27].

Statistical analysis
All data are presented as the mean ± standard deviation (SD) from triplicate experiments per-
formed in a parallel manner, unless otherwise indicated. All data comparisons were made
using Student’s t-tests and were considered statistically significant at �P< 0.05 and ��P< 0.01.

Results

LZ-207 inhibits tumor cell viability
MTT assays were used to examine the effect of various concentrations of LZ-207 on cell viabili-
ty of tumor cell lines (SW1116, HT29 and HCT116 cells), benign cell lines (HUVEC and
MRC5 cells) and THP-1 cells. After a 48 h treatment, LZ-207 effectively inhibited the viability
of SW1116, HT29, and HCT116 cells (Fig 2A), with IC50 values of 25.1 ± 0.86, 39.5 ± 1.13, and
13.2 ± 1.49 μM, respectively (Fig 2B). As shown in Fig 2C, HCT116 cells exhibited time- and
dose-dependent sensitivity to LZ-207. The IC50 values for 24, 48 and 72 h LZ-207 treatments in
HCT116 cells were 19.81 ± 0.75, 14.58 ± 0.42, and 9.32 ± 0.50 μM, respectively (Fig 2D).

Fig 2. LZ-207 inhibits the viability of various cancer cell lines. (A) The inhibitory effect of a 48 h treatment
with LZ-207 on SW1116, HT29 and HCT116 cells. (B) IC50 values of a 48 h treatment with LZ-207 in
SW1116, HT29 and HCT116 cells. (C) HCT116 cells were treated with different concentrations of LZ-207 for
24, 48 and 72 h. (D) IC50 values of 24, 48 and 72 h LZ-207 treatments in HCT116 cells. (E) The survival rate
of a 48 h treatment with LZ-207 on HUVEC and MRC5 cells. (F) The survival rate of a 48 h treatment with LZ-
207 on THP-1 cells. The data are presented as the mean ± SD (n = 3).

doi:10.1371/journal.pone.0127282.g002
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Therefore, the HCT116 cell line was chosen for all subsequent experiments using 5, 10 and
20 μM LZ-207 treatments for 24 h. Three dosages of LZ-207 also showed no obvious effect on
the survival rate of benign cells and THP-1 cells which will be used in the co-culture system
below.

LZ-207 induces apoptosis in HCT116 cells
The morphology of HCT116 cells was severely altered after 24 h of treatment with LZ-207. To
examine whether LZ-207 induced apoptosis in HCT116 cells, DAPI staining was used to detect
nuclear changes. Fluorescence microscopy showed that control cells were uniformly stained
with blue fluorescence, demonstrating the typical homogeneous distribution of chromatin in
the nucleolus. By contrast, HCT116 cells treated with LZ-207 emitted a brighter fluorescence,
which is indicative of early apoptosis because of chromatin condensation and nucleolus pykno-
sis (Fig 3A).

LZ-207-induced apoptosis in HCT116 cells was further confirmed using Annexin V/PI
staining assays. Following treatment with 5, 10, or 20 μM LZ-207 for 24 h, the early apoptotic
rates in control and treated HCT116 cells were 4.35, 10.21, 14.76, and 22.14%, respectively, and
the late apoptotic rates were 3.76, 9.75, 21.78, and 26.79%, respectively (Fig 3B and 3C). These
results demonstrated that LZ-207 treatment induces both early and late apoptosis in a concen-
tration-dependent manner.

Western blots showed that the protein level of cleaved PARP increased with increasing con-
centrations of LZ-207, whereas the protein level of intact PARP decreased, confirming the

Fig 3. LZ-207 induces apoptosis in HCT116 cells.HCT116 cells were treated with 5, 10 or 20 μM LZ-207
for 24 h. (A) Morphologic changes of the nucleolus were observed using fluorescence microscopy (400×).
Cells were examined for the presence of apoptotic bodies and nuclear pyknosis. (B) Annexin V/PI double
staining assay of HCT116 cells. The Y-axis shows the PI-labeled population, and the X-axis shows the FITC-
labeled Annexin V-positive cells. (C) The apoptotic rates of HCT116 cells induced by LZ-207. (D) Western
blotting analysis of PARP, Bax, Bcl-2, procaspase-3, procaspase-9, and procaspase-8 in HCT116 cells
treated with LZ-207. (E-G) Densitometric analysis represents the relative fold change in protein expression.
(H-I) The change of ΔΨmwas detected by using JC-1 staining and analyzed by flow cytometry in LZ-207
treated HCT116 cells. (J-K) Western blot analysis of Cytochrome c in mitochondria and cytosol in LZ-207
treated HCT116 cells. The data are presented as the mean ± SD (n = 3). *P < 0.05, **P < 0.01, significant
difference compared with the control.

doi:10.1371/journal.pone.0127282.g003
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ability of LZ-207 to induce apoptosis as part of its antitumor effect on HCT116 cells (Fig 3D
and 3E). We also found that Bcl-2 expression decreased after HCT116 cells were treated with
LZ-207 for 24 h, whereas Bax expression increased, leading to a significant increase in the Bax/
Bcl-2 ratio (Fig 3F). We further detected that procaspase-3 and procaspase-9 expression signifi-
cantly decreased after LZ-207 treatment, indicating that this mitochondrial pathway may be in-
volved in LZ-207-induced apoptosis (Fig 3G). During the mitochondria-mediated apoptosis,
depolarization of the mitochondrial transmembrane potential (ΔCm) accompanied by releas-
ing cytochrome c from mitochondrial into the cytosol, which triggers a caspase-dependent ap-
optosis. There was an obvious increase in green fluorescence of JC-1 monomers in LZ-207
treated HCT116 cells, indicating depolarization of the mitochondrial transmembrane potential
(ΔCm) (Fig 3H and 3I). We also found that the expression of Cyt-c decreased in mitochondria
while increased in cytosol in LZ-207 treated HCT116 cells (Fig 3J and 3K). Meanwhile, the
slight degradation of procaspase-8 suggested that an extrinsic apoptosis pathway might also
correlate with LZ-207-induced apoptosis (Fig 3G).

Inhibitory effect of LZ-207 on LPS-induced NF-κB p65 activation in
HCT116 cells
The NF-κB family of transcription factors regulates the expression of multiple genes, including
inflammation-associated genes. Thus, the dysregulation of NF-κB signaling is a marker of can-
cer development. Using immunofluorescence confocal microscopy (Fig 4A), we observed that
LZ-207 treatment inhibited NF-κB p65 nuclear translocation in HCT116 cells. We quantified
the amount of NF-κB p65 in the nuclear fraction of LZ-207-treated HCT116 cells via Western
blot analysis, the expression of nuclear NF-κB increased with 10 μg/ml LPS treatment in
HCT116 cells, as shown in Fig 4B and 4C; however, this LPS-induced NF-κB nuclear transloca-
tion was suppressed by LZ-207 treatment. Using EMSA assays, we also demonstrated that LZ-
207 suppressed LPS-induced NF-κB DNA binding activity in a dose-dependent manner in
HCT116 cells (Fig 4D).

Because NF-κB activation results from the rapid phosphorylation, ubiquitination, and ulti-
mately proteolytic degradation of IκB, we examined the effect of LZ-207 on the expression of
phosphorylated IκBα in LPS-induced HCT116 cells via Western blot. LZ-207 significantly in-
hibited IκBα phosphorylation compared with the control but had no effect on IκBα protein ex-
pression (Fig 4E and 4F). Because IκB degradation is primarily dependent on IKK activation,
next, we examined the effect of LZ-207 on IKK activation and found that LZ-207 significantly
suppressed LPS-induced IKKα/β phosphorylation in HCT116 cells (Fig 4G and 4H).

LZ-207 inhibits signaling pathways upstream of NF-κB in HCT116 cells
Cells sense changes in their environment via the activation of signal transduction pathways
that direct biochemical programs to mediate proliferation and survival. The mitogen-activated
protein kinase (MAPK) family and Akt signaling pathways can regulate these fundamental cel-
lular processes through the induction of IKK-dependent NF-κB activation. We examined the
expression of factors upstream of NF-κB activation, including p38 MAPK, ERK1/2, JNK and
Akt, following LZ-207 treatment in LPS-induced HCT116 cells. As shown in Fig 5A and 5B,
LZ-207 inhibited the LPS-induced phosphorylation of p38 MAPK, ERK1/2, JNK and Akt,
whereas the expression levels of p38 MAPK, ERK1/2, JNK, and Akt were not changed.
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LZ-207 suppresses pro-inflammatory cytokines in LPS-induced THP-1
cells
We examined the paracrine secretion of IL-6 and IL-1β in the culture media of LPS-induced
THP-1 cells following LZ-207 treatment using ELISA assays. As shown in Fig 6A and 6B, LZ-
207 significantly inhibited the LPS-induced increased expression of IL-6 but had no effect on
the expression of IL-1β.

The inhibitory effect of LZ-207 on the expression of pro-inflammatory cytokines in LPS-in-
duced THP-1 cells was also confirmed at the transcriptional level using qPCR assays. As shown
in Fig 6C and 6D, the expression of IL-6 mRNA was significantly suppressed by LZ-207 in
LPS-induced THP-1 cells, whereasLZ-207 showed no effect on the expression of IL-1βmRNA.

Fig 4. Effect of LZ-207 on NF-κB expression in LPS-treated HCT116 cells.HCT116 cells were treated
with or without LZ-207 in the presence of LPS for 1 h. After isolating the nuclear and cytoplasmic extracts, (A)
NF-κB p65 levels were determined by immunofluorescence, and (B-C) NF-κB p65 translocation was
measured via Western blotting. (D) LZ-207 suppressed LPS-induced NF-κB DNA binding activity in a
concentration-dependent manner, as detected via EMSA assay. (E-H) Western blotting analysis of the
phosphorylation of IκB and IKK in HCT116 cells treated with or without LZ-207 in the presence of LPS for 1 h.
The data are presented as the mean ± SD (n = 3). *P < 0.05, **P < 0.01, significant difference compared with
the control.

doi:10.1371/journal.pone.0127282.g004
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Inhibitory effect of LZ-207 on LPS-induced NF-κB p65 activation in THP-
1 cells
We examined the effect of LZ-207 on NF-κB activation in LPS-induced THP-1 cells via West-
ern blot. As shown in Fig 7A and 7B, LZ-207 significantly inhibited the LPS-induced NF-κB
nuclear translocation in THP-1 cells. We also found that incubating THP-1 cells with LPS in-
duced IκBα phosphorylation but that this induction was significantly inhibited by LZ-207
(Fig 7C and 7D). In addition, IKKα/β phosphorylation was also inhibited by LZ-207 in LPS-in-
duced THP-1 cells (Fig 7E and 7F).

LZ-207 inhibits the proliferation of HCT116 cells co-cultured with THP-1
cells
To study the association between inflammation and tumor promotion in colon cancer, we estab-
lished a co-culture system using HCT116 cells and THP-1 cells to provide an approximation of
physiological conditions. As shown in Fig 8A, LZ-207 significantly inhibited the THP-1-induced

Fig 5. Effect of LZ-207 on the signaling pathway upstream of NF-κB in LPS-treated HCT116 cells.
HCT116 cells were treated with or without LZ-207 in the presence of LPS for 1 h. (A) Western blotting
analysis of p38, p-p38, ERK, p-ERK, JNK, p-JNK, Akt, p-Akt protein expression. (B) Densitometric analysis
represents the relative fold change in protein expression. The data are presented as the mean ± SD (n = 3).
*P < 0.05, **P < 0.01, significant difference compared with the control.

doi:10.1371/journal.pone.0127282.g005
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proliferation of HCT116 cells. The expression of proliferating cell nuclear antigen (PCNA) was
increased in HCT116 cells co-cultured with THP-1 cells; however, this increase was inhibited by
LZ-207 treatment (Fig 8B and 8C). Meanwhile, LZ-207 showed no effect on PCNA expression
in THP-1 cells (Fig 8B and 8C). These findings suggest that LZ-207 directly suppresses the in-
flammation-mediated proliferation of HCT116 cells interacting with THP-1 cells in co-culture
microenvironments.

LZ-207 exhibits antitumor effect and low toxicity in vivo
To further evaluate the antitumor effect of LZ-207 in vivo, the nude mice xenografts tumors
model bearing inoculated HCT116 cells was established. After 21 days treatment, the tumor vol-
ume of control group was 954 ± 272 mm3, while the tumor volume of 5-Fu group (30 mg/kg)
and LZ-207 groups (20, 10, and 5 mg/kg) were 245 ± 63 mm3, 390 ± 134 mm3, 488 ± 132 mm3,
and 592 ± 86 mm3, respectively (Fig 9A). As shown in Fig 9B, the tumor weight of control
group was 1.01 ± 0.26 g, while the tumor weight of 5-Fu group (30 mg/kg) and LZ-207 groups
(20, 10, and 5 mg/kg) were 0.28 ± 0.05 g, 0.41 ± 0.17 g, 0.49 ± 0.15 g, and 0.61 ± 0.12 g, respec-
tively. Both tumor volume and tumor weight measurement exhibited the antitumor effect of
LZ-207 in vivo, which was also visually shown in Fig 9C. TUNEL assay was used to examine the
apoptotic cells in tumor tissues. As shown in Fig 9D, LZ-207 20 mg/kg group showed enhanced
staining intensities compared with control group, indicating LZ-207 treated tumors were going
through programmed cell death by apoptosis. Taken together, LZ-207 exhibited antitumor ef-
fect through inducing apoptosis in vivo.

To assess the toxicity of LZ-207 in vivo, the nude mice were weighted every three days dur-
ing the experimental period. There was no obvious variation in the body weight of LZ-207

Fig 6. Effect of LZ-207 on the expression of inflammation-related genes in THP-1 humanmonocyte
cells. (A-B) The levels of IL-6 and IL-1β in the culture medium were measured using ELISA kits following
treatment with LPS in the presence or absence of different concentrations of LZ-207 in THP-1 cells. (C-D)
Total RNA was obtained from THP-1 cells stimulated with LPS in the presence or absence of LZ-207 using a
TRIzol reagent kit. The mRNA levels of IL-6 and IL-1β were measured using RT-PCR. β-actin was used as an
internal control. The data are presented as the mean ± SD (n = 3). *P < 0.05, **P < 0.01, significant
difference compared with the control.

doi:10.1371/journal.pone.0127282.g006
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Fig 7. Effect of LZ-207 on the nuclear translocation of NF-κB p65 and on the phosphorylation of IκB
and IKK in LPS-treated THP-1 cells. (A-B) The nuclear and cytoplasmic extracts were separated and
analyzed for NF-κB expression via Western blot. (C-F) Western blotting analysis of the phosphorylation of IκB
and IKK in THP-1 cells treated with or without LZ-207 in the presence of LPS. The data are presented as the
mean ± SD (n = 3). *P < 0.05, **P < 0.01, significant difference compared with the control.

doi:10.1371/journal.pone.0127282.g007

Fig 8. Effect of LZ-207 on HCT116 cell growth when co-cultured with LPS-induced THP-1 cells. (A)
HCT116 cells were seeded at a density of 4 × 104 cells/well with or without THP-1 cells stimulated with LPS in
the presence or absence of LZ-207. After 24 h, the co-culture was stopped, and the viability of the HCT116
cells was measured via MTT assay. (B-C) Western blotting analysis of PCNA protein levels in co-cultured
HCT116 cells. The data are presented as the mean ± SD (n = 3). *P < 0.05, **P < 0.01, significant difference
compared with the control.

doi:10.1371/journal.pone.0127282.g008
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treated nude mice groups compared with control group (Fig 9E). H&E staining of hearts, livers,
spleens, lungs and kidneys also showed no significant morphological change between LZ-207
treated groups and control group (Fig 9F). Meanwhile, hematological parameters obtained
from blood routine examination of nude mice were almost in the standard range which showed
low toxicity of LZ-207 in vivo (Table 2).

Discussion
In this study, we found that the newly synthesized wogonin derivative LZ-207 showed potential
antitumor activity in HCT116 human colon cancer cells by inducing mitochondrial-mediated
apoptosis and by suppressing pro-inflammatory cytokine secretion from THP-1 human acute

Fig 9. LZ-207 exhibites antitumor effect and low toxicity in vivo. (A) In the nude mice model bearing
inoculated HCT116 cells, tumor volume of control, 5-Fu (30 mg/kg) and LZ-207 (20, 10, 5 mg/kg) groups
were measured every three days. (B) Tumors from control, 5-Fu (30 mg/kg) and LZ-207 (20, 10, 5 mg/kg)
groups were separated and weighted after 21 days treatment. (C) Images of separated tumors from control,
5-Fu (30 mg/kg) and LZ-207 (20, 10, 5 mg/kg) groups. (D) Immunofluorescent TUNEL staining of tumors
from control and LZ-207 20 mg/kg groups. (E) Nude mice weight from control, 5-Fu (30 mg/kg) and LZ-207
(20, 10, 5 mg/kg) groups were measured every three days.(F) H&E staining of main organs from control
and LZ-207 20 mg/kg groups. The data are presented as the mean ± SD (n = 3). *P < 0.05, **P < 0.01,
significant difference compared with the control.

doi:10.1371/journal.pone.0127282.g009
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monocytic leukemia cells in vitro and in vivo. Specifically, the apoptotic rate reached a maxi-
mum value of 48% after LZ-207 (20 μM) treatment. Furthermore, we observed an increase in
the Bax/Bcl-2 ratio, activation of caspase-9 and caspase-3, cleavage of PARP, collapse of mito-
chondrial transmembrane potential (ΔCm) and release of Cyt-c from mitochondria into cyto-
sol in HCT116 cells suggesting that the intrinsic mitochondrial pathway was involved in
mediating LZ-207-induced apoptosis. Together, these results indicated that LZ-207 has a re-
markable antitumor activity in HCT116 colon cancer cells.

Increasing evidence suggests that inflammation may contribute to all stages of tumorigene-
sis [40]. In the stage of tumor initiation, inflammatory microenvironment has been found to
promote mutation rates through inducing DNA damage and genomic instability. In the stage
of tumor promotion, tumor promoting cytokines secreted by inflammatory cells can stimulate
cell proliferation and reduce cell death is considered to be a major mechanism in inflamma-
tion-driven tumor promotion. In the stage of tumor metastasis, inflammation is also involved
in this critical step through the production of mediators which can promote angiogenesis and
cancer cell migration [41, 42]. From this perspective, the inflammatory microenvironment be-
comes an integral part of the cancer and a potential target for cancer therapy. NF-κB is a key
endogenous factor involved in inflammation-induced tumor promotion and progression [43]
and has been reported in various human disease and animal models [44]. In the present study,
we found that LZ-207 decreased the expression of nuclear NF-κB in a dose-dependent manner
in HCT116 cells via inhibiting the phosphorylation of IκBα and IKKα/β. Because the mitogen-
activated protein kinase (MAPK) family and Akt signaling pathways can regulate fundamental
cellular processes through the induction of IKK-dependent NF-κB activation, we examined the
expression of these important upstream factors and found that LZ-207 inhibited LPS-induced
phosphorylation of p38 MAPK, ERK1/2, JNK and Akt but that the expression levels of p38
MAPK, ERK1/2, JNK, and Akt were not changed. Therefore, we propose that LZ-207 inhibits
cell growth at least partly through suppressing the NF-κB signaling pathway.

Dann et al reported that inhibiting NF-κB activation leads to the repression of the recruit-
ment and activation of immune cells and pro-inflammatory cytokines, such as IL-6 and IL-1β;
this repression helps to maintain chronic inflammation and ensure the continuous production
of cytokines and growth factors required for the survival and growth of cancer cells [45]. In
this study, we found that LZ-207 significantly decreased the expression of IL-6, but not IL-1β,
in LPS-induced THP-1 cell culture media. Notably, LPS treatment increased IL-1β secretion;
however, this up-regulation was not inhibited by LZ-207 treatment. Further studies are re-
quired to elucidate the mechanism of this selective interaction to better understand the relation
between inflammation and cancer. Moreover, we found that LZ-207 could suppress the

Table 2. Hematological parameters of nudemice injected with HCT116 cells.

Hematological parameters Control 5 mg/kg 10 mg/kg 20 mg/kg Standard

White blood cells (103/μl) 5.54/6.51 4.43/5.73 3.95/4.37 4.82/5.23 3.5–9.5

Red blood cells (103/μl) 7.63/7.53 7.91/7.71 7.83/7.58 7.64/7.92 7.51–16.1

Hemoglobin (g/L) 136/129 136/141 141/139 146/130 128–161

Platelet (103/μl) 330/263 280/300 175/255 312/227 125–350

Neutrophils (%) 53.4/49.0 40/47.7 41.3/31.2 33.0/56.2 40–75

Lymphocytes (%) 40.4/56.8 47.9/35.2 52.7/52.8 44.1/25.3 20–50

Monocytes (%) 5.24/4.04 1.94/4.54 5.54/5.34 2.65/3.48 3–10

Eosinophils (%) 0.24/0.04 0.24/0.14 0.04/0.24 0.03/0.26 0.4–8.0

Basophils (%) 0.44/0.24 0.14/0.24 0.34/0.24 0.24/0.31 0–1

doi:10.1371/journal.pone.0127282.t002
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proliferation of HCT116 cells co-cultured with LPS-stimulated THP-1 cells under approximate
physiological conditions. Therefore, the inhibition of HCT116 cell growth elicited by LPS-in-
duced THP-1 cells may result from the suppression of IL-6 stimulated proliferation.

In addition, the antitumor effect of LZ-207 in vivo was evaluated in a nude mice model
bearing inoculated HCT116 tumor. The results showed that LZ-207 inhibited tumor growth
significantly with tumor inhibition rates of 60.07%, 51.12%, 39.69% at the dose of LZ-207 20,
10, 5 mg/kg, respectively. Meanwhile, there was no significant toxicity of LZ-207 in vivo since
no obvious changes in the body weight, main organs and hematological parameters were ob-
served between LZ-207 treated groups and control group nude mice. Our study also showed
LZ-207 treated groups exerted antitumor effect through inducing apoptosis by TUNEL assay.

In summary, we demonstrated that LZ-207, which is a newly synthesized flavonoid, exhib-
ited an antitumor effect against inflammation-related colon cancer in vitro and in vivo. An un-
derstanding of the underlying mechanisms of LZ-207 antitumor activity holds promise for the
further development of potential antitumor agents for treating inflammation-related colon
cancer.
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