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The main function of the centromere is to promote kinetochore 
assembly for spindle microtubule attachment. Two additional func-
tions of the centromere, however, are becoming increasingly clear: 
facilitation of robust sister-chromatid cohesion at pericentromeres 
and advancement of replication of centromeric regions. The combi-
nation of these three centromere functions ensures correct chromo-
some segregation during mitosis. Here, we review the mechanisms 
of the kinetochore–microtubule interaction, focusing on sister-
kinetochore bi-orientation (or chromosome bi-orientation). We also 
discuss the biological importance of robust pericentromeric cohe-
sion and early centromere replication, as well as the mechanisms 
orchestrating these two functions at the microtubule attachment site.
Keywords: centromere; kinetochore; microtubule attachment; 
sister-kinetochore bi-orientation; sister-chromatid cohesion; 
DNA replication timing
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Introduction
The centromere is a specialized chromosome site that has essen-
tial roles in chromosome segregation. To maintain genetic integrity, 
eukaryotic cells must segregate their chromosomes properly to oppo-
site spindle poles before cell division, and the centromere is crucial 
to this process. It promotes the assembly of the multiprotein complex 
called the kinetochore that provides the major attachment site for 
spindle microtubules. This kinetochore–microtubule interaction pow-
ers the motion of chromosomes towards spindle poles to accomplish 
chromosome segregation in anaphase. This is, undoubtedly, the main 
function of the centromere. However, it is not the sole function; there 
are at least two additional features of the centromere that ensure high-
fidelity chromosome segregation. In this Review, we discuss these 
three roles and compare them to the proverbial three wise monkeys, 
who are three mystic apes, known as Mizaru, Kikazaru and Iwazaru 

in Japanese (see no evil, hear no evil, speak no evil in English; Fig 1A). 
Similarly to the three wise monkeys, the centromere has three ‘wise’ 
functions, all involved in ensuring correct chromosome segregation, 
which we interpret as see no error, hear no break and speak no delay.

Pericentromeres—the chromosomal regions around the centro
meres—are associated with robust sister-chromatid cohesion 
(Fig 1B; [1,2]), which facilitates the attachment of sister kinetochores 
to microtubules from opposite spindle poles, a status known as sis-
ter-kinetochore bi-orientation or chromosome bi-orientation [3]. 
Sister-kinetochore bi-orientation is at the heart of the chromosome 
segregation mechanism and must be established before the onset of 
anaphase. Second, centromeric regions, which include core centro
meres and pericentromeres, are replicated early during the S phase 
in many organisms, including several yeast species (Fig  1B). The 
early replication of centromeric DNA seems to be crucial for timely 
kinetochore assembly and microtubule attachment, at least in the 
budding yeast Saccharomyces cerevisiae [4]. Thus, in our analogy of 
the three wise monkeys, the centromere coordinates proper micro-
tubule attachment (see no error), robust sister-chromatid cohesion 
(hear no break) and early S‑phase replication (speak no delay) at the 
same chromosome site (Fig 1B).

The centromere in budding yeast is known as a point centromere 
because a small DNA region of about 130 bp suffices for its func-
tion [5,6]. Due to its small size, the centromere can be easily trans-
ferred to a new chromosome site and, remarkably, all the centromere 
features mentioned above are re-established [7–9]. This feature  
indicates that the centromere is sufficient to direct all these functions.

In this article, we focus on recent discoveries in two model eukary-
otic organisms, the budding yeast S. cerevisiae and the fission yeast 
Schizosaccharomyces pombe, and extend our arguments to meta-
zoan cells. For simplicity, we centre our discussion on mitosis and 
only briefly mention meiosis. Comprehensive reviews of chromosome 
segregation in meiosis are available [10,11].

Centromeres promote interaction with spindle microtubules
The main role of the centromere is to promote the assembly of the 
kinetochore, which attaches the chromosome to spindle microtubules 
[12–15]. At the start of mitosis (prometaphase), the kinetochore inter-
acts initially with the lateral surface of a single microtubule [16,17]. 
As the microtubule shrinks, its plus end eventually reaches the kine-
tochore, which is then tethered at the microtubule end—end-on 
attachment. Subsequently, its sister kinetochore establishes an end- 
on attachment with microtubules extending from the opposite spindle 
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pole, thus establishing sister-kinetochore bi-orientation before the 
onset of anaphase [3,18]. The kinetochore–microtubule interaction 
is monitored by the spindle assembly checkpoint, which prevents 
sister-chromatid separation and anaphase onset until all chromo-
somes successfully establish bi-orientation [19–21]. These topics are 
not discussed extensively in this article. Instead, we discuss the error- 
correction mechanism that ensures sister-kinetochore bi-orientation 
and focuses on the role of Aurora B kinase in this process. 

Error correction relies on the development of tension across sister 
kinetochores; when an aberrant attachment is made and no tension is 
applied, the kinetochore–microtubule attachment remains weak, and 
the connection is dissolved and reformed—that is, turned over [3,22]. 
If bi-orientation is established and tension is applied, turnover no 
longer occurs and kinetochore–microtubule attachment is stabilized. 
Thus, the error-correction mechanism removes aberrant attachments 
and promotes bi-orientation. A key regulator of this mechanism is 
Aurora B kinase, known as Ipl1 in budding yeast (Table 1; [3,23]), 
which forms the chromosome-passenger complex (CPC) together 
with INCENP, Survivin and Borealin (also called Dasra‑B) [24]. The 

CPC was so named because it localizes at the inner centromere until 
anaphase onset, but then re-localizes to the central spindle during 
anaphase. Budding yeast Aurora B kinase promotes the turnover of 
kinetochore–microtubule attachment when there is no tension, for 
example on syntelic attachment, in which both sister kinetochores 
attach to microtubules from the same spindle pole (Fig 2; [25,26]). 
Consistent with this finding, aberrant kinetochore–microtubule 
attachments accumulate in mammalian cells when the Aurora B 
kinase is defective [27,28]. The function of Aurora B is dependent on 
its phosphorylation of several kinetochore components that form the 
kinetochore–microtubule interface [23].

How, then, is kinetochore–microtubule attachment stabilized 
once bi-orientation is established and tension is applied (Fig 2)? In 
budding yeast, sister kinetochores were suggested to be pulled in 
opposite directions on establishment of bi-orientation, moving 
kinetochores away from Aurora B‑localizing sites [25]. This leads 
to the dephosphorylation of kinetochore components, which stabi-
lizes the kinetochore–microtubule attachment, and is known as the 
Aurora B spatial separation model. This model has been supported 
by the properties of INCENP mutants and by the Aurora B localiza-
tion pattern in budding yeast [25,29,30]. Further strengthening of 
this model also comes from results in budding yeast and mamma-
lian cells, as Aurora-B‑dependent phosphorylation of kinetochore 
components is reduced when tension is applied [31–33]. In addition, 
ectopic targeting of Aurora B to the outer kinetochores destabilizes 
kinetochore–microtubule attachment during metaphase in mam-
malian cells [32]. Relevant to this model, when the kinetochore 
becomes less phosphorylated, it recruits more protein phosphatase 1, 
thus establishing a positive feedback loop that promotes kinetochore 
dephosphorylation [34]. The Aurora B spatial separation model also 
explains why the CPC, which contains Aurora B, re-localizes to the 
spindle mid-zone during anaphase [24]. If this were not the case, 
Aurora B would localize with kinetochores again during anaphase, 
when tension is substantially reduced, which would once more 
destabilize kinetochore–microtubule attachment [35–37].

The Aurora B spatial separation model, however, has been chal-
lenged by the findings of two recent studies in budding yeast. In 
the first study, kinetochores were purified from yeast cells and their 
microtubule attachment was studied in vitro [38,39]. Optical twee-
zers were used to apply varying amounts of tension on the attach-
ment. Intriguingly, although Aurora B was absent from the purified 
kinetochores, kinetochore–microtubule interaction became more 
stable with increasing tension [38]. This finding raises the possi-
bility that tension stabilizes kinetochore–microtubule interaction 
independently of Aurora B spatial separation from kinetochores. 
The kinetochore detachment from a microtubule observed in this 
system was accompanied by microtubule depolymerization, the 
rate of which was enhanced when tension was reduced [38,39]. 
Whether depolymerization happens during error correction in vivo 
will be crucial to determine. In any case, tension could stabilize 
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Fig 1 | Three wise centromere functions. (A) The three wise monkeys, 
which are mystic apes known as Mizaru, Kikazaru and Iwazaru in Japanese. 
Together they symbolize the proverbial principle to see no evil, hear no evil, 
speak no evil. (B) The three wise functions of the centromere: orchestration 
of proper microtubule attachment (see no error), robust sister-chromatid 
cohesion (hear no break) and early S‑phase replication (speak no delay) at the 
same chromosome site.

Glossary
CPC	 chromosome passenger complex
CDE	 centromere DNA element
DDK	 Dbf4-dependent kinase
APC/C	 anaphase-promoting complex/cyclosome
H3K9m	 methylation of histone H3 at lysine 9
PP1/2A	 phosphatase 1/2A 
pre-RC	 pre-replicative complex
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kinetochore–microtubule interaction both by reductions in kineto
chore phosphorylation, which is dependent on Aurora B spatial 
separation from kinetochores, and through intrinsic properties of 
the kinetochore–microtubule interaction, which do not require 
Aurora B function [38].

The second study characterized mutants of INCENP—Sli15 
in budding yeast—that cannot interact with Survivin—Bir1 in 
yeast  [40]. In such mutants, Survivin could no longer target 
INCENP–Aurora B to the centromere and became dispensable for 
cell viability. Nevertheless, how can cells undergo error correc-
tion to establish bi-orientation without Survivin? One possibility is 
that there is a Survivin-independent mechanism for targeting CPC 
to the centromere, where Aurora B still promotes error correction 
in the absence of Survivin. An alternative, more radical, possibility is 
that as long as Aurora B is activated its localization at the centromere 
might not be essential for error correction. In such a scenario, the 
INCENP mutants could cause premature spindle localization of 
the CPC, leading to activation of Aurora B on the spindle instead 
of at the centromere [40]. Nevertheless, localization of Aurora B at 
the centromere could still enhance the fidelity of error correction—
even if it is not essential for it—and, if Aurora B is at the centromere, 
kinetochores could have to delocalize from it when bi-orientation is 
established. Both possibilities are interesting and, whichever is true, 
it would point to a novel regulation of Aurora B.

In summary, Aurora B kinase has a key role in promoting the  
turnover of kinetochore–microtubule interactions for error  
correction, leading to sister-kinetochore bi-orientation. How the 
kinetochore–microtubule interaction is stabilized when bi-orientation 

Table 1 | Orthologues of proteins in yeasts and humans
Budding yeast Fission yeast Human
DNA replication
DDK

Cdc7 Hsk1 Cdc7
Dbf4 Dfp1/Him1/Rad35 Dbf4/Ask, Drf1

Sld3 Sld3 Treslin
Sld7 N.F. N.F.
Cdc45 Cdc45/Sna41/Goa1 Cdc45
Mcm2–7

Mcm5/Cdc46/Bob1 Mcm5/Nda4 Mcm5
Sister-chromatid cohesion
Cohesin

Scc1/Mcd1 Rad21 Scc1/Rad21
Rec8 Rec8 Rec8
Scc3/Irr1 Psc3 SA1, SA2
Smc1 Psm1 Smc1A, Smc1B
Smc3 Psm3 Smc3

Cohesin loader
Scc2 Mis4 Nipbl
Scc4 Ssl3 KIAA0892/Mau2

Eco1/Ctf7 Eso1 Esco1, Esco2
Rad61/Wpl1 Wpl1 Wapl
N.F. N.F. Sororin/CdcA5
Cdc5 Plo1 Plk1
Kinetochore/centromere
Cse4 Cnp1 CENP-A
Ctf19 complex/COMA Sim4 complex CCAN

Ctf19 Fta2 CENP-P
Mcm21 Mal2 CENP-O
Ctf3 Mis6 CENP-I
Chl4 Mis15 CENP-N

Sgo1 Sgo1, Sgo2 Shugoshin
PP1 PP1 PP1
PP2A PP2A PP2A
Chromosome passenger complex 
Ipl1 Ark1 Aurora B
Sli15 Pic1 INCENP
Bir1 Bir1/Cut17 Survivin
Nbl1 Nbl1 Borealin/Dasra-B
Cell-cycle regulation
APC/C

Cdh1 Ste9 Cdh1
Chromatin regulation
N.F. Clr4 Suv39h1
N.F. Swi6 HP1
Rpd3 Clr6 HDAC1/2
Fkh1, Fkh2 Fhl1, Fkh2 Fox
Rif1 Rif1 Rif1
The following names are also used in the text as generic names across organisms: Scc1, 
Scc3, Smc1, Smc3, Eco1, Wapl, CENP-A, Shogoshin, Aurora B, INCENP and Survivin. 
N.F., no orthologue found or annotated in this organism.
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Fig 2 | Error correction promoted by Aurora B kinase. Aurora B kinase 
promotes error correction, leading to sister-kinetochore bi-orientation. When 
tension is not applied on a kinetochore–microtubule attachment, kinetochore 
phosphorylation by Aurora B causes its turnover (left). According to the 
Aurora B spatial separation model, on bi-orientation, kinetochores delocalize 
from Aurora B, which causes kinetochore dephosphorylation and stops the 
turnover (right). On bi-orientation, kinetochore–microtubule attachment 
could be stabilized also due to its intrinsic properties.
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is established and tension is applied is still a matter of debate 
(Sidebar A). Aurora B spatial separation from the kinetochore has 
been a popular explanation. However, more intrinsic properties of 
kinetochore–microtubule interaction might also be involved, and 
whether Aurora  B localization at the centromere is essential for  
bi-orientation remains unclear, at least in budding yeast.

Centromeres facilitate robust pericentromeric cohesion
Sister-chromatid cohesion relies on cohesins Scc1 (also called Mcd1 
or Rad21; Table 1), Scc3, Smc1 and Smc3, which form a tetrameric, 
ring-shaped complex that embraces the sister chromatids [41,42]. 
Cohesins are loaded onto chromatin in telophase in fission yeast and 
mammalian cells, and in G1 phase in budding yeast. This process is 
facilitated by the cohesin loader complex—Scc2–Scc4 in budding 
yeast—before sister chromatids are linked during DNA replication. 
The establishment of this linkage is coupled with Smc3 acetylation, 
catalysed by the Eco1 acetylase (also known as Ctf7) during S phase, 
which counteracts the activity of Wapl (also called Wpl1 and 
Rad61), which facilitates cohesin dissociation from chromosomes 
[43–46]. In budding yeast, cohesins are distributed along chromo
some arms at distinct sites, preferentially in intergenic regions 
between convergent genes, but show particularly high enrichment 
in the 20–50 kb surrounding centromeres [8,47–50]. As discussed 
below, the cohesins enriched at pericentromeric regions are crucial 
to the establishment of sister-kinetochore bi-orientation and, there-
fore, to ensure proper chromosome segregation.

How are cohesins enriched in the region around centromeres in 
budding yeast? The yeast point centromere has consensus sequences 
CDEI, CDEII and CDEIII that span only 130 bp, and is called a point 
centromere [5,6]. Pioneering studies that used minichromosomes and 
centromere translocation on a chromosome have demonstrated that 
the point centromere is necessary and sufficient for both recruitment 
of a high density of cohesin to pericentromeric regions and the result-
ing robust cohesion [8,51,52]. What feature(s) of the point centro
mere allows the recruitment of cohesins? The centromere promotes 
kinetochore assembly and distinct kinetochore components seem to 
have important roles in this process [8,53]. In fact, the Ctf19 kineto
chore complex (also called COMA) is important for the recruitment 
of the Scc2–Scc4 complex to the centromere, which in turn promotes 
cohesin enrichment at pericentromeric regions [54–56].

A recent study identified an effector of this process in budding 
yeast: the Ctf19 complex recruits the Dbf4–Cdc7 kinase (Dbf4-
dependent kinase; DDK) to the kinetochore during telophase to early 
G1 phase (Fig 3; [57]). Intriguingly, the majority of Dbf4 is targeted 
for degradation by the APC/C—with adaptor Cdh1—during this 
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Sidebar A | In need of answers
(i)	 How is the kinetochore–microtubule interaction stabilized when 
	 sister-kinetochore bi-orientation is established?
(ii)	 How does robust pericentromeric cohesion promote sister-kinetochore 
	 bi-orientation?
(iii)	 What is the advantage of early DNA replication of centromeric regions?
(iv)	 How evolutionarily conserved is the centromere function of advancing 
	 the DNA replication timing of centromeric regions?
(v)	 How does DDK promote pericentromeric cohesion and advance DNA 
	 replication timing in budding and fission yeast?
(vi)	 How have DDK and Shugoshin each acquired common functions 
	 in different contexts during evolution (in pericentromeric cohesion 
	 and replication timing)?

Fig 3 | Roles of DDK at kinetochores in budding yeast. DDK (Dbf4–Cdc7) 
promotes pericentromeric sister-chromatid cohesion and advances the 
replication of centromeric regions in budding yeast [57]. DDK is recruited 
to kinetochores during telophase to early G1 phase by the Ctf19 kinetochore 
complex. The DDK at kinetochores in turn recruits Sld3–Sld7 replication 
initiation proteins to pericentromeric replication origins in telophase to 
early G1 phase, as well as the Scc2–Scc4 cohesin loader to centromeres in the 
late G1 phase. pre-RC, pre-replicative complex.
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phase [58,59], but Dbf4 at kinetochores evades this degradation by 
an unknown mechanism. DDK at the kinetochore promotes the load-
ing of Scc2–Scc4 to the centromere, which leads to enrichment of 
cohesin at pericentromeres (Fig 4). This process requires Cdc7 kinase 
activity, but the relevant substrates are unknown. Phosphorylation of 
Scc2–Scc4 might enhance its affinity for centromeres, or phosphoryl-
ation of the Ctf19 complex could mark a landing pad for Scc2–Scc4. 
Notably, DDK loading on the kinetochore in telophase to early G1 
phase is required, but is not sufficient, for Scc2–Scc4 recruitment to 
the centromere [57]. Recruitment requires assembly of the cohesin 
ring, which is completed by Scc1 expression in the late G1 phase [60].

Once Scc2–Scc4 and cohesins are loaded onto the centromere in 
late G1 phase, the cohesin ring embraces the chromosomes. This pro-
cess requires the ATPase activity of the Smc1 and Smc3 heads [61], 
which are thought to interact with the Smc1–Smc3 hinge, where they 
open the cohesin ring to trap the chromosomal DNA inside [62]. 
On DNA replication, cohesin rings embrace both sister chromatids, 
which establishes sister-chromatid cohesion. In budding yeast, the 
S phase is followed immediately—with no G2 phase—by the estab-
lishment of a bipolar spindle, which promotes sister-kinetochore 
bi-orientation [4,63]. On bi-orientation, kinetochore-attached micro-
tubules pull sister centromeres apart, leading to sister-chromatid 
separation up to 10 kb around the centromere before the onset of 
anaphase  [64–67]. This pericentromeric sister-chromatid separation 
seems to cause translocation of cohesin rings from the centromere to 
the pericentromeric regions [54,68]. Accordingly, the cohesins at peri-
centromeric regions maintain robust sister-chromatid cohesion until 
anaphase onset, when separase cleaves Scc1 and opens the cohesin 
rings, triggering sister-chromatid separation and segregation [69,70]. 
By contrast, cohesins loaded at the centromere after DNA replica-
tion—and, therefore, not embracing both sister chromatids—seems 
to be less mobile and remain in the vicinity of the centromere [68]. 
Nevertheless, how cohesins interact topologically with centromeric 
chromatin is still a topic of debate [71].

The Ctf19 kinetochore complex has orthologues in fission yeast 
and in metazoan cells, known, respectively, as the Sim4 complex 
and CCAN [13,72]. Whether these orthologues are involved in 
enriching cohesins at pericentromeres, as they are in budding yeast, 
remains unknown. In fission yeast, however, pericentromeric hetero-
chromatin has an important role in enriching cohesins. The mecha-
nisms of pericentromeric heterochromatin formation in fission yeast 

have been reviewed [73–75]. Briefly, small RNAs transcribed from 
pericentromeric regions (known as outer repeats) are processed by 
the RNA interference (RNAi) pathway, which brings the methyl
transferase Clr4 to this region and promotes methylation of histone 
H3 at Lys 9 (H3K9m). H3K9m is recognized and bound by Swi6, 
which organizes heterochromatin. Heterochromatin is self-sustaining 
because H3K9m further activates the RNAi pathway. Notably, fission 
yeast pericentromeric heterochromatin facilitates cohesin accumu-
lation, and the interaction between Swi6 with Psc3 (an orthologue 
of budding yeast Scc3) has an important role in this context [76–
78]. A high density of cohesins at pericentromeres leads to robust  
sister-chromatid cohesion. In vertebrate cells, it is still unclear 
whether RNAi is involved in heterochromatin formation, but relevant 
RNA-mediated chromatin modifications have been suggested [74].

Interestingly, fission yeast DDK is recruited to heterochromatin 
by Swi6 and has an important role in cohesin enrichment and robust 
cohesion (Fig 5) [79]. By contrast, budding yeast has no Swi6 ortho-
logue or canonical heterochromatin. Rather DDK is recruited by 
kinetochore components [57], as discussed above. Notably, load-
ing of Scc2 and cohesins to chromosomes in Xenopus egg extracts 
also requires DDK [80] and the pre-replicative complex [81,82], 
which therefore seems to be a process active at replication origins 
rather than at centromeric regions. In summary, the roles of DDK 
in cohesin recruitment seem to be conserved among organisms, but 
DDK recruitment to chromosomes occurs in different contexts: in 
a kinetochore-dependent manner in budding yeast, to heterochro-
matin in fission yeast, and in a pre-replicative complex-dependent 
manner in Xenopus. In budding and fission yeast, DDK recruitment 
to the kinetochore and pericentromeric heterochromatin leads to 
cohesin enrichment at pericentromeres. Intriguingly, in both yeast 
species, DDK is also involved in advancing replication timing at 
centromeric regions, which is the focus of the next section.

In vertebrate cells, as in fission yeast, HP1 (an orthologue of fis-
sion yeast Swi6) binds to H3K9m, leading to heterochromatin forma-
tion [83]. In contrast to fission yeast, however, there is no evidence 
that the H3K9m–HP1 pathway and DDK are involved in cohesin 
enrichment at pericentromeric heterochromatin [84,85]. Yet, in ver-
tebrate cells, cohesins are removed from chromosome arms in pro-
phase [86,87] and must be protected at centromeric regions in the 
transition from prophase to metaphase. Cohesin removal from 
chromosome arms is dependent on phosphorylation of SA1 and SA2 
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Fig 4 | Cohesin distribution at pericentromeres in budding yeast. DDK at kinetochores enhances the amount of cohesins at centromeres and at pericentromeric 
regions (up to 20 kb from centromeres) in budding yeast [57]. The graph shows the amount of Scc1 along the indicated chromosome region around the 
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Natsume T et al (2013) Mol Cell 50: 661–674 [57].



EMBO reports  VOL 14 | NO 12 | 2013� ©2013 EUROPEAN MOLECULAR BIOLOGY ORGANIZATION1078  

review Three functions of the centromere

(orthologues of S. cerevisiae Scc3), which is catalysed by Aurora B 
and Plk1 kinases, and is known as the prophase pathway. Shugoshin 
has a key role in protecting centromeric cohesins from the prophase 
pathway [88] by recruitment of phosphatase  2A (PP2A), which 
reverses SA1/SA2 phosphorylation  [89,90]. Cohesin removal from 
chromosome arms is also facilitated by Wapl in prophase [91,92]. 
This is triggered by phosphorylation of Sororin, which abrogates its 
Wapl-counteracting function [93]. At centromeres, however, Sororin 
is dephosphorylated by Shugoshin–PP2A, and this contributes to  
protection of cohesins from prophase to metaphase [94,95].

Shugoshins are also found at the centromere during mitosis in bud-
ding and fission yeast, but here their role is not to protect cohesins 
but rather to achieve high-fidelity sister-kinetochore bi-orientation, 
probably by assistance of Aurora B function [96]. Nevertheless, during 
meiosis I, Shugoshin does protect cohesins at the centromere in yeast 
and vertebrates by recruitment of PP2A to the centromere [89,97,98], 
similarly to what happens in vertebrate mitosis. However, in meiosis 
I, Shugoshin–PP2A targets and protects Rec8 (meiotic paralogue of 
Scc1) from separase-dependent cleavage, rather than protecting Scc3 
from the prophase pathway, as occurs in vertebrate mitosis. Thus, the 
role of Shugoshin–PP2A in protecting cohesins at centromeric regions 
is conserved in evolution, although the mechanism is different in the 
contexts of mitosis and meiosis.

Robust sister-chromatid cohesion at pericentromeres is crucial 
for high-fidelity chromosome segregation in organisms from yeast to 
humans. For example, insertion of ectopic sequences into peri
centromeres reduces the levels of cohesins, leading to frequent chro-
mosome loss in budding yeast [54]. Several pieces of evidence 
suggest that pericentromeric cohesion facilitates sister-kinetochore 
bi-orientation, which is essential for chromosome segregation and 
must be established before anaphase onset. For example, if Scc1 is 
depleted in budding yeast, both sister centromeres often attach to 
microtubules from the same pole and, therefore, bi-orientation 
fails [66]. In addition, a specific reduction of pericentromeric cohesin 
leads to frequent failure in bi-orientation, and rescue of cohesion 
alleviates such bi-orientation defects [56].

Sister-kinetochore bi-orientation could be achieved by two kinds 
of mechanism: kinetochore geometry and tension-dependent error 
correction [3,99]. Aberrant kinetochore–microtubule attachment, 
such as syntelic attachment, might be avoided by reliance on the 

back-to-back geometry of sister kinetochores. When one kineto
chore attaches to a microtubule, constraints in its geometry make its 
sister kinetochore face the opposite direction, which allows attach-
ment only to a microtubule from the opposite pole. However, once 
an aberrant attachment is made, kinetochore geometry cannot cor-
rect it. Therefore, a second, error-correction mechanism is necessary. 
This error correction relies on differential stability of the kinetochore–
microtubule interaction in the presence and absence of tension 
across sister kinetochores. Both kinetochore geometry and tension-
dependent error correction could be facilitated by sister-chromatid 
cohesion at centromeric regions [8]. For example, sister-kinetochore 
geometry could be organized by robust cohesion at pericentromeres 
rather than at core centromeres, as found in fission yeast [100]. There 
is also evidence that kinetochore geometry is present in budding 
yeast [101], in which the point centromere is looped out from the 
pericentromere [71,102], and this configuration might contribute to 
kinetochore geometry. In addition, error correction would require 
centromeric cohesion. In budding yeast, tension across the two cen-
tromeres is sufficient for efficient bi-orientation of a non-replicated 
circular minichromosome carrying two centromeres [26]. This ability 
suggests that, in the context of authentic chromosomes, tension across 
sister centromeres should suffice for bi-orientation through error cor-
rection without the need to invoke kinetochore geometry. Such ten-
sion would be dependent on cohesin-dependent sister-chromatid 
cohesion at centromeric regions.

In budding yeast, only a single microtubule attaches to each 
kinetochore [103], whereas, in fission yeast and metazoan cells, 
there are multiple microtubules per kinetochore. In the latter case, 
an additional type of error is possible—that is, a single kinetochore 
could attach to microtubules from both spindle poles, which is 
called merotelic attachment. Such merotelic attachments could be 
discouraged by kinetochore geometry but could also be excluded 
through error correction [104]. Cohesion at centromeric regions 
could be important for both prevention and correction of mero-
telic attachments. Indeed, when cohesion is weakened at centro-
meric regions, merotelic attachment is formed frequently in fission 
yeast [76,105,106] and in mammalian cells [107,108].

In summary, eukaryotic cells accumulate cohesins at centro-
meric regions to establish robust sister-chromatid cohesion. Budding 
yeast, fission yeast and vertebrates use different mechanisms 
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to accumulate or protect cohesins at centromeric regions. 
Nevertheless, DDK and Shugoshin–PP2A have some common roles 
in these organisms, albeit in different contexts. Understanding how 
the roles of these factors have developed during evolution will be 
interesting  (Sidebar A). In all these organisms, robust cohesion at 
centromeric regions is important to establish sister-kinetochore bi-
orientation before anaphase onset, which is essential for proper 
chromosome segregation during the subsequent anaphase.

The centromere advances its replication timing
In eukaryotic cells, the duplication of chromosomal DNA is a tem-
porally regulated process and, crucially, the replication timing of a 
chromosome region is linked closely to its biological functions (see 
below). How, then, is DNA replication regulated temporally? DNA 
replication is initiated from multiple replication origins on a chromo
some, in a process often termed origin firing. Although initiation 
of replication is a stochastic process at each origin, its average tim-
ing is under temporal regulation—that is, some origins tend to fire 
early and others late during S phase [109,110]. The mechanisms of 
such temporal regulation in budding yeast, fission yeast and meta-
zoan cells have been reviewed [111,112]. For example, the roles 
of the histone deacetylase Rpd3 [113,114], forkhead box transcrip-
tion factors Fkh1 and Fkh2 [115] and the telomere-binding protein 
Rif1 [116–118] in the programme of genome-wide replication timing 
have been identified. Intriguingly, the timing of initiation of replica-
tion is set at each origin in telophase to early G1 phase in S. cerevisiae 
and mammalian cells [119,120]. For example, in the early G1 phase 
of budding yeast, some early-replicating but not late-replicating ori-
gins are loaded with DDK, Sld3–Sld7 and Cdc45, all of which are 
required for replication initiation at licensed origins—origins with 
pre-replicative complex—in the subsequent S phase [121–126].

Importantly, DNA replication at centromeric regions is under 
distinct temporal regulation. Indeed, centromeric regions are repli-
cated early in the S phase on all chromosomes of S. cerevisiae and 
other Saccharomyces species [127–129]. Centromeric regions in other 
yeast species, such as Candida albicans and S. pombe, and those 
in the protozoan parasite Trypanosoma brucei are also replicated 
early in the S phase [130–132]. Thus, replication of centromeric 
regions early in the S phase is a conserved feature in many yeast 
and protozoan species. Notably, the formation of a neocentromere 

in C. albicans advances the replication timing of its chromosomal 
site [131], which suggests that the presence of a centromere per se 
changes the timing of replication. Consistent with this finding, the 
point centromere of S. cerevisiae is sufficient to advance the initia-
tion of replication in its neighbouring replication origins. Indeed, 
when the point centromere is transferred to another chromosome 
locus, a late-S‑phase firing replication origin close to the new cen-
tromere site becomes an early-S‑phase firing origin [9]. S. pombe 
pericentromeric replication origins are embedded within hetero-
chromatin, which generally replicates in the late S phase in meta-
zoan cells [133]. However, S. pombe pericentromeric origins show 
early-S‑phase replication despite their location [130,131].

To advance the replication timing of the centromeric region, 
in budding yeast, DDK is recruited to the kinetochore by the Ctf19 
kinetochore complex in telophase to early G1 phase [57]. In turn 
the association of the Sld3–Sld7 complex—and probably other rep-
lication initiation proteins—with licensed replication origins within 
15–20 kb from the centromeres is facilitated, which leads to firing of 
these origins in the early S phase (Fig 3). Indeed, if DDK is removed 
from the kinetochore, but not from replication origins on chromo-
some arms, replication is delayed at the centromeric region and not 
along the chromosome arms (Fig 6; [57]). Although the effect of DDK 
in advancing pericentromeric origin firing requires its kinase activ-
ity, the DDK substrates for this effect are unknown. However, DDK 
phosphorylates several subunits of the Mcm2–7 complex—a replica-
tive helicase core and pre-replicative component—at each origin, and 
these are major substrates of DDK in the initiation of replication [134]. 
One possibility is that DDK at kinetochores advances replication ini-
tiation timing at pericentromeric origins by phosphorylating the same 
Mcm2–7 subunits at the same sites before the S phase. Consistent 
with this possibility, the mcm5/bob1‑1 mutation, which bypasses the 
essential role of DDK in initiation of DNA replication—phosphoryla-
tion of Mcm2–7 subunits—also enables otherwise late-firing origins 
to initiate replication early in the S phase [124]. Alternatively, other 
pre-replicative components, Sld3–Sld7, or other replication-initiation 
proteins, such as Cdc45, might be the relevant targets of kinetochore 
DDK for advancing replication timing at pericentromeres.

The same Ctf19 complex–DDK pathway, discussed above, is used 
for robust pericentromeric cohesion [57]. Although the replication 
timing and cohesion functions of DDK at the kinetochore both require 
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its kinase activity, they are independent of each other. That is, the situ-
ations in which one function is lost and the other still effective can be 
engineered [57]. This independence suggests that the two functions 
rely on phosphorylation of different DDK substrates. Intriguingly, fis-
sion yeast DDK is also recruited to centromeric regions to facilitate 
robust cohesion and to advance replication timing (Fig 5; [79,135]). 
Nonetheless, the mechanism for DDK recruitment is different in 
budding yeast and fission yeast, because in fission yeast the hetero
chromatin protein Swi6 binds to and recruits DDK to pericentromeric 
regions [79,135].

In metazoan cells, although pericentromeric heterochromatin 
replicates late in the S phase [133], the timing of replication of 
the core centromere is a topic of debate. For example, one report 
suggested that Drosophila cells show early-S-phase replication at 
core centromeres that are associated with a centromere-specific 
histone H3 variant CENP‑A [136], but another study concluded 
that the core centromere replicates during the mid-to-late S phase 
in this organism [137]. In mouse cells, the core centromere rep-
licates earlier than the surrounding heterochromatin [138] and, 
consistently, when neocentromeres are formed in human cells, 
the CENP‑A-binding core centromere replicates earlier than sur-
rounding sequences  [139]. Core centromeres, however, do not 
show this property when neocentromeres are formed in chicken 
DT40 cells  [140]. Thus, in metazoan cells, the situation might  
differ depending on the organism and context.

Are there any advantages to replicating the centromere early in 
S phase? We suggest four possibilities. First, early-S‑phase centromere 
replication has been proposed to be important for centromere iden-
tity, especially for the deposition of CENP‑A, which is an epigenetic 
marker of the centromere [141–143]. This theory is based on the 
centromere replication early in S phase in Drosophila and C. albicans 
[131,136], but remains controversial as a report has suggested that the 
core centromere replicates during mid-to-late S phase in Drosophila 
[137]. Moreover, the timing of centromere replication is unlikely to 
influence CENP‑A deposition in human cells, which seems to occur 
in the G1 phase rather than during S  phase [144]. Second, early-
S‑phase centromere replication could allow an early assembly of the 
kinetochore, providing more time to establish correct kinetochore– 
microtubule interactions. This possibility has been proposed for bud-
ding yeast and, indeed, a delay in centromere replication in this organ-
ism increases the importance of the spindle assembly checkpoint for 
high-fidelity chromosome transmission [57]. This possibility might be 
pertinent in organisms, such as budding yeast, in which kinetochore 
assembly and microtubule attachment occur soon after centromere 
DNA replication [4]. Third, centromere replication early in S phase 
might be important for robust sister-chromatid cohesion when cellular 
growth is slowed. The turnover of cohesins is fast on chromosomes 
until they become engaged in sister-chromatid cohesion [145,146]. 
Thus, after cohesins are loaded on chromosomes in the late G1 phase, 
they might be lost from chromosomes if replication—and therefore 
cohesins’ engagement in cohesion—does not happen quickly. This 
would explain why a common regulator, such as DDK, coordinates 
cohesin recruitment and early-S‑phase replication at pericentromeres 
in budding and fission yeast [57,79,135]. Fourth, the repair of DNA 
damage might be more efficient in early- than in late-replicating 
regions [147]. For example, early replication correlates with a low 
rate of genetic mutations [147,148]. The centromere could be suscep-
tible to DNA damage owing to a replication barrier—because of the 
presence of the kinetochore—or tension—generated by microtubule 

attachment—and, therefore, would require efficient DNA repair. 
Such repair could help to maintain the consensus sequence of a point 
centromere (in budding yeast) or the repetitive DNA sequence of  
a ‘regional’ centromere (in fission yeast and metazoan cells). These 
four possibilities are not mutually exclusive. Further studies will be 
necessary to test them.

In summary, in many yeast and protozoan species, the centro
mere DNA replicates early in the S phase. In budding and fission 
yeast, this regulation relies on DDK recruitment to the kinetochore 
and pericentromeric heterochromatin, respectively, which advances 
the initiation of replication at pericentromeric origins. At least in 
some metazoan cells, the core centromere replicates earlier than 
surrounding pericentromeric heterochromatin. However, the advan-
tages of early-S‑phase centromere replication are still a topic of 
debate (Sidebar A). At least in budding yeast, it is probably important 
for timely kinetochore assembly and for the efficient establishment 
of correct kinetochore–microtubule interactions.

Conclusions and perspectives
The main function of the centromere is to promote kinetochore 
assembly for microtubule attachment. This attachment provides 
the major force that drives chromosome segregation and, there-
fore, must be established efficiently and correctly. For example, 
kinetochores need to establish the initial microtubule interaction 
efficiently in early mitosis, and subsequent sister-kinetochore bi-
orientation must be correctly formed before chromosome segrega-
tion. However, kinetochore assembly is not the only centromere 
function. Centromeres also facilitate robust sister-chromatid cohe-
sion at pericentromeres and promote early‑S-phase replication of 
the centromeric regions. These two functions seem to help the main 
centromere function. Indeed, pericentromeric cohesion facilitates 
sister-kinetochore bi-orientation in yeast and metazoan cells. In 
addition, centromere replication early in S phase might allow timely 
kinetochore assembly for efficient microtubule interaction, at least 
in budding yeast. The exact mechanism for robust pericentromeric 
cohesion that promotes bi-orientation and the advantages of early 
centromere replication in various organisms remain to be addressed 
(Sidebar A). The evolutionary conservation of these centromere 
functions will be an important area of future research (Sidebar A).

Intriguingly, in budding and fission yeast, the two additional 
centromere functions are facilitated by a common regulator DDK, 
but are regulated independently of each other. To understand the 
molecular mechanisms involved, it will be crucial to identify the tar-
gets of DDK phosphorylation that are important in mediating these 
processes (Sidebar A). To determine the conservation of the DDK-
dependent mechanisms in metazoan cells will also be interesting. 
Three wise functions of the centromere contribute greatly to correct 
chromosome segregation and we should attempt to understand in 
more detail how the centromere orchestrates all three functions at 
the same chromosome site.
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