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Introduction
Presently, cancer remains one of the most significant factors 
threatening human health and is a major focus of the World 
Health Organization.1 While surgery, radiation therapy (RT), 
and chemotherapy are still the primary clinical methods for 
treating tumors, their limitations, including poor targeting 
and obvious adverse reactions, cannot be denied. With the 
development of research, photothermal therapy (PTT), tar-
geted therapy, immunotherapy, and combination therapy have 
gained increasing attention. Immunotherapy, in particular, has 
become popular as it can activate immune responses to inhibit 
tumor growth and establish long-term immune memory to 
prevent tumor recurrence.2 Currently, immunotherapies used 
for tumors in the clinic include immune checkpoint inhibitors 
(ICBs), cytokine therapy, lymphocyte (Chimeric antigen 
receptor T cells, CAR-Ts) or macrophage (Chimeric antigen 
receptor macrophages, CAR-MS) therapy, and tumor vac-
cines.3-6 It has great potential. Nevertheless, tumor immuno-
therapy still faces many challenges including treatment 
tolerance, heterogeneity of immune response, immune-related 
side effects, challenges of personalized therapy, continuity of 
the treatment and tolerance, and lack of early biomarkers. 
Solving these problems requires interdisciplinary research and 
in-depth cooperation to promote the scientific development 

of immunotherapy.7 To improve the effectiveness of tumor 
immunotherapy and minimize the side effects, cell mem-
brane–modified nanocarriers have emerged as a research hot-
spot owing to their favorable biocompatibility and low 
immunogenicity. Modification of nanocarriers by the internal 
cell membrane of the body can effectively retain their inherent 
advantages.

Cell membrane–modified nanocarriers exhibit immense 
potential for tumor immunotherapy. The cell membranes that 
can be used to modify nanocarriers include red blood cell 
membranes (RMs), blood platelet (PLT) membranes 
(PLTMs), white blood cell (WBC) membranes, tumor cell 
membranes, bacterial membranes, stem cell membranes, and 
hybrid fusion cell (FC) membranes. Each type of cell mem-
brane has unique biological functions, yielding diversified 
functionalities of membrane-modified nanocarriers. For 
example, the nanocarriers can have a prolonged blood circula-
tion time, improved ability to evade immune clearance, 
enhanced targeting, and other functions. Moreover, various 
inorganic or organic materials, such as silica nanoparticles 
(NPs), polymer NPs, melanin, and magnetic NPs, can serve as 
the inner core of the membrane coating (Figure 1).8 The rea-
sonably designed nanocarrier is more controllable and flexible, 
providing a novel platform for treating tumors. This review 
summarizes the research progress and applications of cell 
membrane–modified nanocarriers in tumor immunotherapy.
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Application of Cell Membrane
Red blood cell membrane–modified nanocarrier

Red blood cells (RBCs) are the most abundant cells in the blood 
and are responsible for oxygen transportation. Red blood cell 
membranes (RMs) have been widely used as surface modifica-
tions for drug carriers and are among the most established surface 
modification strategies.9 The most remarkable feature of RMs is 
long-term circulation ability which is ascribed to the existence of 
special surface markers, such as cluster of differentiation 58 
(CD58), CD59, and CD47 and their inherent physiological 
characteristics, providing the characteristics of immune evasion, 
flexibility, and high biocompatibility.10-12 As a result, nanocarriers 
modified with RMs manifest excellent development prospects.

To enhance immunosuppression in the tumor microenviron-
ment (TME) and increase tumor-infiltrating lymphocytes (TILs), 
Yang et al13 modified nitric oxide poly (acrylamide-co-acryloni-
trile-co-vinylimidazole)-S-nitrosothiols (PAAV-SNO) polymer 
that contains a near-infrared II (NIR-II) photothermal agent 
(IR1061) and the indoleamine 2,3-dioxygenase 1 (IDO-1) inhib-
itor 1-methyl-tryptophan (1-MT) using RMs. Through the com-
bination of biomimetic red cell technology, PTT, and 
immunotherapy, the recruitment of CD8+ cytotoxic T lympho-
cytes (CTLs) at tumor sites and the normalization of blood vessels 

were achieved, resulting in favorable curative outcomes for pri-
mary and metastatic breast cancer. In another work, Liang et al14 
developed a biomimetic formulation, black phosphorus quantum 
dot-RM nanovesicle (BPQD-RMNV) containing biomimetic 
BPQDs coated with RMs. The combination of BPQD-RMNV-
mediated PTT with programmed cell death protein 1 (PD-1) 
antibody programmed cell death protein 1 (aPD-1) effectively 
inhibited the growth of basal-like breast tumors. In addition, 
RM-modified nanocarriers can also be used in combination with 
chemotherapy and immunotherapy for tumor treatment. For 
example, Song et  al15 investigated RM-based nano gel 
(hydroxypropyl-β-cyclodextrin acrylate and 2 opposite-charged 
chitosan derivatives) containing paclitaxel, which demonstrated a 
significant enhancement in antitumor activity. To address the 
problem of systemic and thermal toxicities, Ou et al16 designed a 
nano-therapy system consisting of a poly-L-histidine (H)-grafted 
black phosphorus (BP) base core and an erythrocyte membrane 
(EM) shell (Figure 2A). This nanosystem containing an 
Ephrin-A2 receptor-specific peptide, interleukin (IL)-1α–
silencing small interfering RNA, and paclitaxel provided an intel-
ligent carrier for the combined treatment of tumors.

Tumor vaccine is one of the highly concerned focus nowadays. 
To improve dendritic cell (DC) targeting and antigen presenta-
tion efficiency, Guo et al19 developed a PLGA NP wrapped by 

Figure 1. Schematic illustration of the preparation of cell membrane–coated nanocarriers. This typically involves the preparation of nanocomplex and 

membrane isolation followed by encapsulation of various types of nanocarrier cores with the membrane for cancer treatment.
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Figure 2. Application of blood cell for membrane-functionalized particles. (A). Schematic presentation of BP-H-ILsi-X@EM-YSA nanosystems using RBC. 

An intelligent all-in-one nanosystem was prepared using an ephrin-A2 receptor-specific peptide (YSA, targeting cancer cells) anchored EM as the “shell.” 

The “core” contained (1) poly-L-histidine (H) grafted tailored BP as the near-infrared-stimulus core, (2) IL-1α–silencing small interfering RNA (ILsi) that 

abrogated IL expression resulting in restricted C-C motif chemokine ligand 22 (CCL22) secretion, and Treg cell accumulation to induce antitumor immune 

response, and (3) paclitaxel (X) that induced therapeutic effects. Adopted and revised with permission from Ou et al.16 (B) Functionalization and 

characterization of PLTM-derived vesicle (PMDV)-coated Si particles (a) Schematic of preparing PLTM-coated Si particles. Longitudinal bioluminescence 

imaging at week 4 following injection detected reduced lung metastases in the experimental group compared with tris-buffered saline (TBS). Revised and 

reproduced with permission from Li et al.17 (C) Illustration of neutrophil membrane–coated poly (lactic-co-glycolic acid) (PLGA) NPs loaded with 

carfilzomib (NM-NP-CFZ). NM-NP-CFZ was synthesized to target circulating tumor cell (CTC) in circulation and inflamed endothelial cells in the 

metastatic lesion where the interaction of (Leukocyte Function-associated Antigen-1) LFA-1 with intercellular cell adhesion molecule-1 (ICAM-1), CD44 

with L-selectin, and β1 integrin with vascular cell adhesion molecule-1 (VCAM-1) was involved in the targeting and subsequent effect. Adopted and revised 

with permission from Kang et al.18
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RM as a nano-vaccine. The research findings showed that the 
nano-vaccine could inhibit metastasis and prevent melanoma. In 
addition, the nano-vaccine augmented interferon-γ (IFN-γ) 
secretion and CD8+ T-cell response. In another study, Reuven 
et al20 designed an active cancer vaccine with anti-N-glycolylneu-
raminic acid (Neu5GC) antibodies loaded on RMs, which was 
experimentally proved to induce the production of anti-Neu5Gc 
IgG antibodies in mice and inhibit tumor growth.

Platelet membrane–modified nanocarrier

Platelets are small, irregularly shaped cells released by the 
mature megakaryocytes during cytoplasmic fragmentation in 
the bone marrow and are extremely important for the hemo-
static function of the body. Due to the presence of CD47 pro-
tein and P-selectin on PLTMs,21 nanocarriers modified with 
PLTMs can not only prolong blood circulation time and escape 
immune clearance but also have the ability of active targeting,22 
thereby, playing an important role in antitumor metastasis. 
There are associated antigens and functional proteins on PLTs, 
they are associated with immune defense and targeting of dam-
aged vascular systems, while also responding to invasive micro-
organisms.23 Given the above advantages, PLTM-modified 
nanocarriers are a promising targeted therapy for tumors.

Circulating tumor cells spread through the blood, causing 
tumor metastasis of distant organs. Circulating tumor cells 
exhibit distinct characteristics compared with the TME of 
solid tumors. Inspired by this, Li and co-workers synthesized 
activated PLTM-functionalized silica particles and bound the 
cancer-specific tumor necrosis factor-related (TNF-related) 
apoptosis-inducing ligand (TRAIL) on the surface  
(Figure 2B).17 Although CTCs are protected by activated PLTs 
and fibrin deposition in blood circulation to avoid immune 
attacks, a nanocarrier disguised with PLTMs can transport 
anti-cancer drugs directly to CTC thrombosis. Furthermore, 
TRAIL offers the advantage of inducing apoptosis in cancer 
cells while presenting low toxicity to normal cells.24,25 Mouse 
breast cancer experiments demonstrated that the nanocarriers 
were effective in reducing lung metastasis. Hu and co-workers 
developed PLGA NPs based on PLTM modification and 
loaded docetaxel in them.26 Besides avoiding immune attacks 
and inhibiting tumor growth, the nanodrug delivery system 
was capable of reducing the damage caused by free docetaxel to 
blood vessels. Similarly, Wang designed porous NPs using 
PLTMs that were demonstrated to be more effective in tumor 
growth inhibition compared with bufalin preparations.21 These 
findings suggest PLTMs as exceptionally promising materials 
in the preparation of tumor nano-vaccines.

White blood cell membrane–modified nanocarrier

White blood cells are a crucial part of the body’s innate immune 
system that resists pathogen invasion.27 These cells are not only 
found in blood and lymphatic vessels but also widely distrib-
uted throughout various tissues. White blood cell can be 

classified into 3 main categories based on their morphology, 
function, and location of origin: granulocyte, monocyte, and 
lymphocyte. Examples include macrophages, neutrophils, T 
lymphocytes, and natural killer cells. Tumors are often present 
in an inflammatory microenvironment, which can cause the 
tumor cells to overexpress various inflammatory factors. This, 
in turn, recruits various immune cells to the tumor site, although 
EM and PLTM-modified nanocarriers showed excellent per-
formance in evading reticuloendothelium-mediated uptake 
and immune recognition monitoring. The immune cell mem-
brane has specific surface markers (a variety of specific proteins 
and sugars), which makes the immune cell membrane unique 
functions. Therefore, it is of great research value to use different 
immune cells to build nanocarriers.

Macrophages are vital components of the human immune 
system and are widely distributed in the blood and tissues 
throughout the body. They function for identifying, engulfing, 
and eliminating foreign bodies such as bacteria and viruses.28 
Macrophage membrane–coated nanocarriers can play an impor-
tant role in inducing both innate and acquired immune responses. 
For instance, Cao et  al29 developed macrophage membrane–
modified EMTANSINE liposomes, which can improve the effi-
ciency of drug delivery and significantly inhibit breast cancer 
lung metastasis. In addition, Zhang reported a NP (CSKC-
PPIP/PTX@MA) wrapped in macrophage membrane that can 
control drug release step by step.30 To better meet clinical needs, 
Liu et  al31 designed a macrophage membrane–covered laser-
response variable nano-pharmaceutical (I-P@NPS@M) with 
good permeability, retention, and targeting. Advantageous prop-
erties, including good biocompatibility and immunomodulatory 
effects, make macrophages a promising material for the develop-
ment of tumor vaccines. To optimize the immune response and 
minimize potential side effects of dendrobium devonianum 
polygonatum (DP), Zhang et al32 developed a novel tumor vac-
cine by coating PLGA NPs (PLGA-DP/Ovalbumin (OVA)) 
with macrophage membranes, which demonstrated to effectively 
activate the immune response in mice. In addition, M1 mac-
rophage membrane coating has better tumor-targeting ability. 
For example, the M1-macrophage cell-coated NPs ([C/I]
BP@B-A(D)&M1 m) constructed by Hu et al,33 can effectively 
inhibit the recurrence and metastasis of primary tumors, and are 
characterized by laser response, variable size, on-demand drug 
release, and prolonged circulation retention.

The DC membranes play a crucial role in antigen presenta-
tion and can specifically activate memory T cells and primary 
T cells. In addition, DCs are capable of releasing a wide range 
of cytokines, including costimulatory and adhesion molecules, 
which promote the interaction between DCs and T cells to 
regulate the adaptive immune response of the body.34,35 In 
recent years, the DC tumor vaccine has made significant pro-
gress in prostate cancer and recurrent ovarian cancer.36-39 
Compared with the traditional DC vaccine, the “mini DC” 
vaccine prepared by the co-extrusion method is more clinically 
feasible.40 Cheng et al used PLGA NPs loaded with IL-2 and 
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encapsulated with DC membrane. In vivo and in vitro experi-
ments have demonstrated that this vaccine can effectively 
inhibit the growth and metastasis of ovarian cancer and acti-
vate the immune response of the entire body. Besides, it is easy 
to store and has a long shelf life.

As a host’s first line of defense against invading pathogens, 
neutrophils are the most abundant type of granulocyte.41 
Neutrophils play a central role in the acute inflammatory phase. 
They can also target CTCs.42 In the TME, neutrophils can 
interact with metastatic tumors and CTC through intercellular 
adhesion molecules.43 Based on this property, Kang et  al18 
designed neutrophil-coated PLGA NPs (NM-NP) that 
showed a profound cell binding affinity in vitro and CTC cap-
ture efficiency in vivo (Figure 2C). Interestingly, CFZ loaded 
by NM-NP could kill CTCs in the circulatory system and pre-
vent early metastasis of tumor cells. Thus, nanocarriers based 
on neutrophil membrane can prevent tumor metastasis through 
a variety of different mechanisms.

Both T cells and NK cells are lymphocytes. First, T cells 
are an important type of lymphocyte with tumor-specific rec-
ognition ability and immune response, making them poten-
tially applicable in cancer treatment. Given the limitations of 
traditional treatments, Ma et  al44 have constructed a new 
nanodrug delivery system that involves IR780-loaded 
mesoporous silica NPs coated with CAR-T cell membrane 
which specifically recognized Glypican-3 (GPC3) protein on 
the surface of liver cancer cells. This new drug delivery system 
has better immune targeting and photothermal antitumor 
ability. Due to the mutagenicity, heterogeneity, and immune 
escape of tumor cells, the dual-targeting strategy is more 
advantageous. Researchers constructed indocyanine green 
nanoparticles.45 Next, natural killer (NK) cells are the most 
cytotoxic cells and can directly kill tumor cells.46 They possess 
a variety of protein receptors including NKp46, CD226, and 
NKG2D, among others, that enable them to recognize and 
kill tumors.34 Cai et  al designed an allergy agent the 
4,4′,4′′,4′′′-(porphine-5,10,15,20-tetrayl) tetrakis (benzoic 
acid) (TCPP) NPs coated with NK cell membrane 
(NK-NPs).47 Nanoparticles coated with NK cell membrane 
can polarize M1 macrophages and produce an antitumor 
effect. In addition, after laser irradiation, NK-NPs can effec-
tively inhibit tumor development and metastasis.

Moreover, nanocarriers can also be prepared using mem-
branes from other important immune cells such as bone mar-
row–derived suppressor cells (MDSCs) and bone marrow–derived 
macrophages (BMDMs).48,49 These novel approaches offer 
promising immunotherapeutic options for treating tumors.

Cancer cell membrane–modified nanocarrier

In recent years, tumor cells have become a major focus of 
research due to their distinctive characteristics. First, tumor 

cells are relatively easy to expand in vitro to obtain cell mem-
branes. Second, tumor cell membranes can play important roles 
in immune activation, immune escape, and prolonging blood 
circulation time.50 Finally, tumor cell membranes also have 
unique homologous binding properties.50,51 These functions 
are primarily attributed to the surface proteins of tumor cell 
membranes, including N-cadherin, epithelial cell adhesion 
molecule (EpCAM), and galactose lectin-3.52-55 Therefore, 
cancer cell membranes are a promising modification material 
for antitumor immunotherapy. When modified by tumor cell 
membranes, the carrier can not only promote immune response, 
targeted aggregation, and drug delivery but also has substantial 
potential in developing personalized tumor vaccines.

The tumor cell membrane can be modified by combining 
membrane core structure usually with various organic or inor-
ganic materials, such as magnetic iron oxide nanoparticles 
(MNPs),56 silica NPs (Figure 3A),57,58 and PLGA NPs.59-61 For 
example, B16-F10 cancer cell membrane–modified PLGA 
nanoparticles (CCNPs) can effectively deliver tumor-associated 
antigens to immune cells for processing and subsequent anti-
gen-specific T-cell stimulation.60 Similarly, it was demonstrated 
that PLGA NP coated with cancer cell membrane fractions 
(CCMFs) that contain intact membrane-associated proteins, 
including C-X-C chemokine receptor type 4 (CXCR4) and 
CD44, can reduce the migration and metastasis of tumor cells. 
These CCMF-PLGA NPs were capable of migrating to nearby 
lymph nodes and enhancing the percentage of CD8+ and 
CD4+ cytotoxic T-lymphocyte populations in the spleen and 
lymph nodes of immunized mice.59 In addition, these nanocar-
riers showed the homologous targeting of cancer cells.

For most vaccines, immune adjuvants substantially enhance 
the immune response. Hence, when an adjuvant is injected into 
the body along with the antigen, it can significantly boost the 
immune response to the antigen. Currently, aluminum salt and 
Toll-like receptors (TLR) agonists, such as monophosphoryl 
lipid A (MPLA), CpG oligonucleotides, and R837, are the 
main clinically used immune adjuvants.51,61-66 For the first time, 
PLGA NPs were loaded with immune adjuvant R837 and then 
coated with mannose-modified tumor cell membranes to pre-
pare nano-vaccines (NP-R@M-M).61 The resulting nano-vac-
cines facilitated the maturation of DCs and triggered an 
immune response. Similarly, the immunoadjuvant CpG can also 
promote the maturation of antigen-presenting cells. For 
instance, Kroll et  al developed a novel nano-vaccine (CpG-
CCNPs) by coating CpG-loaded PLGA nuclei (CpG-NPs) 
with B16-F10 mouse melanoma cell membrane. Nevertheless, 
several tumor vaccines that do not contain immune adjuvants 
have also demonstrated remarkable antitumor effects.67,68 
Personalized tumor vaccine has emerged as a promising area of 
research aimed at overcoming the limitations of low antigen 
immunogenicity and weak immune response. A personalized 
photothermal vaccine (Gel-BPQD-CCNVs) was prepared 
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from the surgically removed tumor, which effectively activated 
DCs.69 Furthermore, in combination with ICBs, photodynamic 
therapy, and “starvation therapy,” the nanocarriers demonstrated 
complementary advantages and achieved better therapeutic 
outcomes.57,58,61,64,65,68-70

Bacterial membrane–modified nanocarrier

Bacterial membrane–modified nanocarriers have the charac-
teristics of immune stimulation, prolonging cycle time, and 
tumor imaging.71 The bacterial membrane-coated nanoparti-
cles (BNPs) have also been employed in targeted drug delivery 
systems for antitumor therapy, as a wide range of bacterial-
related membrane components can be used for immune 
stimulation or tumor-specific enrichment. Moreover, bacte-
rial-mediated nanocarriers can migrate toward hypoxic 
tumor environments.72 To enhance the immune response fol-
lowing systemic radiation therapy (RT) in immunologically 
“cold” tumors, Patel et al developed a BNP containing immune-
activating PC7A/CpG polyplex. They extracted the bacterial 
membrane from a non-pathogenic strain (mycobacterium 
minor), which exhibited strong immunogenicity (Figure 3B).62 
After RT, BNP can capture cancer neoantigens, improve DC 
uptake, and promote antitumor T-cell responses. In addition, 
tumor immunotherapeutic agents constructed by using outer 
membrane vesicles of gram-negative bacteria exhibited prom-
ising potential in eradicating tumors with low toxicity.73

Hybrid cell membranes modified nanocarrier

The membranes of different types of cells have specific character-
istics. The fusion of cell membranes is one of the simple and 
effective approaches to increasing the function of nanocarriers.74 
For example, when erythrocyte and PLTMs are fused, the protein 
marker molecules of the 2 membranes (CD235a, CD41, CD61, 

and CD44) remain on them.22 Subsequently, Liu et al75 proposed 
the concept of using DCs and tumor cell–derived FC bio-recom-
binant membranes (FM) for modifying tumor nano-vaccines. 
This offers a personalized treatment option for various tumors. In 
addition, various other types of membrane fusions are also 
reported, including tumor cell-Lactobacillus membrane, erythro-
cyte-cancer cell membrane, macrophage-tumor cell membrane, 
and multiple cell membrane fusion.76-79 Consequently, FC mem-
brane presents a promising technical advancement for the devel-
opment of a multi-functional bionic drug delivery platform.

Other types of cell membranes modified nanocarrier

Stem cells are pluripotent cells with low immunogenicity and 
self-replicating ability that can target tumor cells, such as mes-
enchymal stem cells (MSCs), neural stem cells, and hemat-
opoietic stem cells.80 Nanocarriers modified by different types 
of stem cells can target different types of tumor cells. Moreover, 
MSC membranes possess a variety of receptors including 
cytokine receptors, growth factor receptors, cell-matrix recep-
tors, chemokine receptors, and cell-cell interaction recep-
tors.81,82 To improve drug delivery efficiency and reduce the 
risk of vascular adverse reactions, Gao et al83 developed a nan-
odelivery system (SCMGs) for mesenchymal dry cell mem-
brane–modified gelatin nano gels. This system maintained the 
biological function and stability of dry cell membranes.

Clinical Application of Bionic Cell Membrane
Bionic membrane nanodelivery systems have become a pio-
neering technology in drug delivery, especially in the field of 
tumor immunotherapy. This innovative approach uses the 
properties of bionic membranes to precisely deliver therapeutic 
agents to target tissues or cells. In addition, it improves thera-
peutic efficacy while minimizing toxic side effects. In the spe-
cific clinical application of tumor immunotherapy, the bionic 

Figure 3. Application of tumor cell and bacterial for membrane-functionalized particles. (A) Schematic diagram of CMSN-Gox inducing antitumor immune 

response and enhancing anti-PD-1 immunotherapy. Adopted and revised with permission from Xie et al.58 (B) Schematic diagram of in situ vaccine 

induced by bacterial membrane–coated nanoparticles (BNPs) combined with RT. Diagram of how BNP interacts with TME to enhance antigen presenting 

cell (APC) uptake and activation. Schematic diagram of in situ vaccine induced by BNP in combination with RT. The composition and the function of each 

component of BNP. Adopted and revised with permission from Patel et al.62
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membrane nanodelivery system demonstrates unique advan-
tages: (1) drug delivery to the intratumoral TME: changes 
occurring within the TME, in addition to contributing to can-
cer immune escape.84,85 It also affects the effectiveness of 
immunotherapy.86,87 Potential in modulating the TME and 
enhancing immune cell activity is to improve the efficacy of 
tumor therapy. The bionic membrane nanodrug delivery sys-
tem allows for more precise delivery of immune drugs to the 
immune microenvironment within the tumor by adjusting the 
properties of the NPs. This includes the lymph nodes, tumor 
mesenchyme, and other key immune sites within the tumor. 
Improve the effectiveness of the drug’s action in the immune 
system. (2) Enhance immune cell infiltration into the tumor: 
The bionic membrane nanodrug delivery system can piggy-
back on immunomodulators. By adjusting the activity of 
immune cells, it prompts them to cross the tumor resistance 
barrier more effectively and increase the infiltration and killing 
effect on tumor cells.88 (3) Precise release of immunostimu-
lants: The nanodelivery system has the ability to release drugs 
under specific conditions. This makes it possible to release the 
immunostimulant when the immune cells come into contact 
with the tumor cells, improving the local effect of the treat-
ment and avoiding the side effects caused by over-activation of 
the immune system.89 (4) Individualized treatment strategy: 
Bionic membrane nanodrug delivery system can be individu-
ally adjusted according to the patient’s tumor characteristics 
and immune status, and the treatment plan that best suits the 
patient’s condition can be selected. This helps to improve the 
relevance and effectiveness of the treatment. (5) Multi-modal 
therapy: The system can be used not only for traditional immu-
notherapy but also combined with other treatment modalities 
such as radiotherapy and chemotherapy to form a multi-modal 
treatment strategy.90 The comprehensive effect of the treat-
ment can be further improved. (6) Interestingly, due to the 
preservation of the structure and function of the membrane, it 
can also be used for the diagnosis of clinical diseases.91

Although the bionic cell membrane has shown great advan-
tages, but in vitro cell experiments, animal experiments, and 
other laboratory stage of research. Few have entered clinical 
trials. Among them, nanomimetic vaccines have high clinical 
translational significance. Sipuleucel-T is the first clinically 
approved cancer vaccine. It is able to prolong the survival of 
prostate cancer. There are also DC-derived exosomes that have 
been validated in clinical trials, like Dex.84,92,93 Dex has been 
validated for its safety in advanced colorectal cancer, metastatic 
melanoma, and advanced non-small-cell lung cancer (NSCLC) 
in phase I clinical trials. In addition, there are many types of 
cell-derived cancer vaccines being tested in Phase I/II/III clin-
ical trials with excellent translational potential.94

Conclusions and Prospect
With the continued progress of research, the options for inter-
vention strategies for cancer are increasing. Immunotherapy 

will be an important research direction of antitumor therapy in 
the future. Numerous challenges are posed by tumor immuno-
therapy, such as immune tolerance, immune avoidance, and 
immunosuppression. In this regard, cell membrane–modified 
nanocarriers demonstrate important potential applications. 
These natural biofilms can evade the body’s clearance mecha-
nisms, overcome physiological barriers, and enable the nano-
carrier to actively target and penetrate the tumor site. Moreover, 
the use of different nanomaterials and biofilms in a flexible 
combination allows personalized cancer treatment.

Despite the development and proven efficacy of numerous 
nanodrugs and nano-vaccines, translation from basic research 
to clinical trials has been challenging. Most studies have been 
confined to in vitro and mouse in vivo experiments. Primarily 
due to several challenges, only a handful of nano-vaccines have 
been approved by the US Food and Drug Administration. First 
of all, many technologies involved in cell membrane extraction 
and purification, characterization, and specific protein selection 
are still under development at this stage. Second, unlike tumor 
cells that multiply indefinitely outside the body, some cells are 
short-lived and difficult to obtain. Finally, the selection of 
nanomaterials requires consideration of charge, particle size, 
composition, antigen-carrying capacity, and interaction with 
body tissues. In conclusion, cell membrane–modified nanocar-
riers are in their infancy, but have a bright future in tumor 
therapy. To enable experimental clinical applications, it is 
essential to strengthen basic research, overcome technical chal-
lenges, and ensure quality and yield.
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