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This study was conducted to investigate the effects of different additives on the
fermentation quality, nutrient composition, bacterial communities, and metabolic profiles
of the silage of hybrid Pennisetum. The experiment was conducted using five
treatments, i.e., CK, control group, MA, 1% malic acid of fresh matter (FM) basis,
GL, 1% glucose of FM basis, CE, 100 U/g FM cellulase, and BS, 106 cfu/g FM
Bacillus subtilis, with six replicates each treatment. After a 120-day fermentation,
30 silage packages were opened for subsequent determination. As a result, all four
additives had positive effects on the fermentation quality and nutrient composition of
the silage of hybrid Pennisetum. The high-throughput sequencing of V3–V4 regions
in 16S rRNA was performed, and results showed that Firmicutes and Proteobacteria
were the dominant phyla and that Aquabacterium and Bacillus were the dominant
genera. MA, GL, CE, and BS treatment resulted in 129, 21, 25, and 40 differential
bacteria, respectively. The four additives upregulated Bacillus smithii but downregulated
Lactobacillus rossiae. Metabolic profiles were determined by UHPLC-Q/TOF-MS
technology and the differential metabolites caused by the four additives were 47, 13,
47, and 18, respectively. These metabolites played antioxidant, antibacterial, and anti-
inflammatory functions and involved in pathways, such as the citrate cycle, carbon
fixation in photosynthetic organisms, and glyoxylate and dicarboxylate metabolism. In
conclusion, silage additives promoted fermentation quality and nutrient composition
by altering bacterial communities and metabolic profiles. This study provided potential
biomarkers for the improvement of silage quality.

Keywords: hybrid Pennisetum, silage additives, bacterial community, metabolic profile, silage quality

INTRODUCTION

The hybrid Pennisetum (Pennisetum americanum × Pennisetum purpureum), a kind of high-
stalk perennial plant belonging to the Poaceae family, is a fast-growing and high-yielding
agricultural crop widely distributed in south China (Song et al., 2019; Cai et al., 2020). With
strong adaptability, the hybrid Pennisetum requires minimum management and can resist adverse
conditions, including drought, flood, acid, and salt, and can grow on barren land due to its vigorous
root system (Wang Y. et al., 2019). The hybrid Pennisetum has a wide range of uses and has been
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reported for use as feedstock for biogas and biofuel and as forage
and ornamental plant (Wang et al., 2014; Suaisom et al., 2019;
Zhao et al., 2019).

Ensiling is an effective and widespread technique for long-
term feed preservation with the characteristics of low cost
and easy operation (Wang et al., 2021). At the early stage of
ensiling, water-soluble carbohydrates (WSC) are broken down
into water, carbon dioxide, and energy under the respiration
of aerobic bacteria (Zieliński et al., 2021). When oxygen is
depleted, lactic acid bacteria (LAB) attached to forage multiply
and convert WSC into organic acids, thereby creating an
acidic and anaerobic environment, inhibiting the activities of
unwanted bacteria, such as clostridia, and reducing the risk
of forage spoilage (Zieliński et al., 2021). By 2050, more than
half of the global demand for ruminant meat and milk is
estimated to be produced in developing countries particularly
in China and India (Xu et al., 2021). Silage is an important
part of ruminant feed, and its safety and quality become a
requirement for the steady development of ruminant husbandry
to a certain extent. The hybrid Pennisetum is recognized as a
forage grass with high buffer capacity and low WSC content
and is difficult to ensile (Shah et al., 2020b). Therefore, silage
additives, including chemicals, enzymes, and LAB and non-
LAB species, appear to be important as they play important
roles in improving lactate fermentation, suppressing spoilage
microorganisms, enhancing aerobic stability, and reducing
nutrient degradation (Muck et al., 2018).

The silage quality is attributed to the bacterial community.
Types and breeds of forage, temperature of ensiling, length
of storage, and application of silage additives have remarkable
effects on the composition and function of bacterial community
(Carvalho-Estrada et al., 2020). However, due to the complex
composition of microbial community, traditional microbial
isolation and culture technologies, including culture-dependent
strain isolation and microorganism counting, cannot be adapted
for the exploration of dynamic changes in silage microflora (Guan
et al., 2020). Recently, the wide application of high-throughput
sequencing technology, including Illumina MiSeq, Ion Torrent
PGM, single-molecule real-time sequencing technology, and 454
sequencing FLX Titanium chemistry, provides new insights into
the microbial ecology of silage (McAllister et al., 2018). With the
process of fermentation, the activities of microorganisms produce
a large number of metabolites, including amino acids, aromatic
compounds, fatty acids, flavoring agents, oligosaccharides,
peptides, and vitamins (Guo et al., 2018). In addition to lactic
acid (LA), acetic acid, propionic acid, and other conventionally
detected substances, other metabolites, such as sorbic acid,
isovaleric acid, 3-phenyllactic acid, and hydroferulic acid, play
important roles in maintaining aerobic stability and improving
the fermentation quality of silage (Hu et al., 2020). Metabolomics
focuses on all small-molecule metabolites with molecular weights
less than 1,000 Da and can monitor the changes in metabolic
profiles caused by different treatments. Emerging microbiome
and metabolome technologies provide new insights for silage
research. The combined analyses of microbiome and metabolome
may reveal potential biological processes during ensiling (Wang
et al., 2020). In recent years, Napier grass, alfalfa, sainfoin,

TABLE 1 | Chemical compositions of hybrid Pennisetum.

Items Content

DM (g/kg FM) 336.30

WSC (g/kg DM) 26.84

Starch (g/kg DM) 8.78

NDF (g/kg DM) 696.50

ADF (g/kg DM) 431.72

CP (g/kg DM) 68.05

TP (g/kg TN) 742.91

NPN (g/kg TN) 257.09

NDIN (g/kg TN) 252.61

ADIN (g/kg TN) 188.91

DM, dry matter; FM, fresh matter; WSC, water-soluble carbohydrates; NDF, neutral
detergent fiber; ADF, acid detergent fiber; CP, crude protein; TN, total protein; TP,
true protein; NPN, non-protein nitrogen; NDIN, neutral detergent insoluble nitrogen;
ADIN, acid detergent insoluble nitrogen.

whole-crop corn, rice straw, and stylo silage have been subjected
to multiomics analyses. These previous studies revealed the
mechanism of different additives affecting silage quality to a
certain extent (Guan et al., 2020; Wang et al., 2020; Xu et al., 2020,
2021; Zhang et al., 2021).

To our knowledge, the combined analysis of microbiome and
metabolome on hybrid Pennisetum silage (HPS) remains limited.
We hypothesize that silage additives have different effects and
corresponding mechanisms on silage quality. Therefore, in this
study, HPS is treated with four types of additives, i.e., malic
acid (fermentation inhibitor), glucose (fermentation accelerator),
cellulase (enzyme), and Bacillus subtilis (microbial inoculant).
After a 120-day fermentation, the fermentation parameters,
chemical compositions, bacterial community, and metabolic
profile of HPS are determined. In addition, the combined
analyses of microbiome and metabolome are performed. This
study may reveal the potential mechanisms of different additives
affecting silage quality and provide theoretical reference for the
safe production of silage.

MATERIALS AND METHODS

Silage Preparation
The fresh hybrid Pennisetum was harvested from a commercial
plantation base located in Meizhou City, Guangdong Province
(115.82◦E, 24.52◦N). Plants were cut down at a height of 2–
2.5 m and chopped into pieces (1–2 cm per segment) via a fully
automatic grass shredding machine. The chemical composition
of hybrid Pennisetum was determined (Table 1). After moderate
drying, the chopped hybrid Pennisetum was divided into five
treatments and ensiled with (1) no additive (CK), (2) 1%
malic acid (purity ≥ 99.5%; Shanghai Macklin Biochemical
Co., Ltd., Shanghai) of fresh matter (MA), (3) 1% glucose
(purity ≥ 99.5%; Shanghai Macklin Biochemical) of fresh matter
(GL), (4) 100 U/g cellulase (VTR Bio-Tech Co., Ltd., Zhuhai,
Guangdong) of fresh matter (CE), and (5) 106 cfu/g Bacillus
subtilis (VTR Bio-Tech) of fresh matter (BS). After adequate
mixing, approximately 200 g hybrid Pennisetum was packed into
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a polyethylene bag (20 cm × 30 cm), compacted, and sealed
via an automatic vacuum packager. Six replicates were set in
a treatment; 30 bags were obtained and preserved at ambient
temperature (25–28◦C). After a 120-day fermentation, all 30
packages were opened for subsequent experiments, including
the determination of fermentation parameters and chemical
compositions and the analyses of bacterial community and
metabolic profile.

Determination of Fermentation
Parameters and Chemical Compositions
Approximately 4 g of each silage sample was divided into two
parts and maintained at−80◦C for the determination of bacterial
community and metabolic profile. Then, 10 g sample was
homogenized with 90 ml distilled water and incubated at 4◦C for
24 h. After extraction, the mixture was filtered by a sterilized 4-
layer gauze, and the filtrate was collected to measure fermentation
parameters. pH was determined using a glass electrode pH
meter (FE28-Standard); volatile fatty acids (VFAs) and LA
were determined in accordance with the method of Rumsey
et al. (1967); and ammoniacal nitrogen (AN) was measured via
phenol–hypochlorite colorimetry (Zhang et al., 2021).

The rest of the silage samples was dried to constant
weight at 65◦C for 48 h for the determination of dry
matter (DM). Then, the dried sample was ground for
the analyses of chemical compositions. WSC and crude
protein (CP) contents were determined in accordance with
the procedure of the Association of Official Analytical
Chemists (AOAC, 2002). Neutral (NDF) and acid (ADF)
detergent fibers were measured in accordance with the
methods described by Van Soest et al. (1991). True protein
(TP) and non-protein nitrogen (NPN) contents were
determined using the trichloroacetic acid method (Licitra
et al., 1996). Neutral (NDIN) and acid (ADIN) detergent
insoluble nitrogen contents were measured in accordance
with the method of Licitra et al. (1996). The content of
starch was analyzed via perchloric acid–anthrone colorimetry
reported by Bakhshy et al. (2020).

Bacterial Community Analyses
The total genomic DNA of silage sample was isolated via
the DNeasy Power Soil Kit (QIAGEN, Inc., Netherlands)
on the basis of the manufacturer’s instructions. After
isolation, the concentration and quality of DNA samples
were determined using the NanoDrop2000 Spectrophotometer
(Thermo, United States). The Pyrobest DNA Polymerase
(TaKaRa, DR500A) was adopted for the amplification of 16S
rRNA V3–V4 regions of genomic DNA, and primer pairs
were designed as 338F (5′-ACTCCTACGGGAGGCA GCA-
3′) and 806R (5′-GACTACHVGGGTATCTAATCC-3′) in
accordance with the method of Zi et al. (2021). The quality
control and purification of PCR products were subsequently
performed after amplification via the PicoGreen dsDNA
Assay Kit (Invitrogen, Carlsbad, CA, United States) and
Agencourt AMPure Beads (Beckman Coulter, Indianapolis, IN,
United States). The high-throughput sequencing was carried out

by the equimolar and paired-end sequencing (PE250) on the
Illumina Novaseq 6000 platform (Personal Biotechnology Co.,
Ltd., Shanghai, China).

After sequencing, the processing of sequenced data was
implemented by the QIIME (V 1.8.0) software. After the
filtration of low-quality sequences defined by Gill et al.
(2006) and Chen and Jiang (2014) and meaningless sequences
(Including adapters, chimera, poly_A and primer), valid
sequences were clustered into operational taxonomic units
(OTUs) at a 97% similarity threshold via the UCLUST
(Malik et al., 2020). The Basic Local Alignment Search Tool
was used for further taxonomic classification, and an OTU
table was obtained (Urbanek et al., 2020). The α- and β-
diversity values of bacterial community were calculated via
the QIIME software and vegan package in R software,
respectively (De Filippis et al., 2018). The functions of
bacterial community were predicted via the Phylogenetic
Investigation of Communities by Reconstruction of Unobserved
States (PICRUSt) database (Langille et al., 2013). The Linear
Discriminant Analysis (LDA) Effect Size (LEfSe) analyses were
conducted via an online tool1, and LDA score>3 and p<0.05
were selected as threshold.

Metabolic Profile Analyses
In this study, the metabolic profile was analyzed via the
UHPLC-Q/TOF-MS technology. The thawed sample (100 mg)
was ground promptly and homogenized in 1 ml precooled
methanol/acetonitrile/ddH2O solvent (2:2:1, v/v/v), and the
mixture was subjected to cryogenic ultrasound at −20◦C for
30 min. After standing for 10 min, the mixture was centrifuged
at 14,000 rpm and 4◦C for 15 min. The supernatant was reserved
and dried by a vacuum centrifuge, and the dried sample was
redissolved and homogenized in 100 µl acetonitrile/ddH2O
solvent (1:1, v/v). After centrifugation at 14,000 rpm and 4◦C for
15 min, the supernatant was collected for analyses. In addition,
quality control (QC) samples were prepared to monitor the
repeatability and stability of instruments.

Samples were analyzed using the Agilent 1290 Infinity LC
UHPLC system and the parameters of instrument were set as
follows: column temperature, 25◦C; flow velocity, 0.5 ml/min;
injection volume, 2 µl; mobile phases, and 25 mM ammonium
acetate + 25 mM ammonium hydroxide in ddH2O (A) and
acetonitrile (B). The elution procedure was as follows: 0–0.5 min,
B maintained at 95%; 0.5–7 min, B changed from 95 to 65%
linearly; 7–8 min, B changed from 65 to 40% linearly; 8–9 min,
B was 40%; 9–9.1 min, B linearly changed from 40 to 95%;
9.1–12 min, B maintained at 95%. Samples were stored in an
autosampler at 4◦C during the whole analysis period.

The AB Sciex Triple TOF 6600 mass spectrometer was
adopted for analyses, and the parameters of electrospray
ionization source were set in accordance with the method of
Li R. et al. (2021). Briefly, the Ion Source Gas1, Ion Source
Gas2, and Curtain gas were 60, 60, and 30 kPa, respectively.
The IonSpray Voltage Floating was ±5,500 V for positive and

1http://huttenhower.sph.harvard.edu/galaxy/
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TABLE 2 | Effects of silage additives on the fermentation parameters of silage hybrid Pennisetum.

CK MA GL CE BS

DM (g/kg FM) 322.49 ± 5.02bc 326.74 ± 3.15ac 330.40 ± 7.09a 320.86 ± 3.06c 321.41 ± 1.45bc

pH 4.08 ± 0.02a 4.03 ± 0.02b 4.08 ± 0.02a 4.05 ± 0.02b 4.10 ± 0.02a

LA (g/kg DM) 7.41 ± 0.16bc 8.34 ± 0.55a 7.13 ± 0.63c 8.00 ± 0.51ab 7.71 ± 0.50ab

AA (g/kg DM) 6.64 ± 0.33b 4.86 ± 0.23c 6.94 ± 0.30b 8.46 ± 0.84a 6.83 ± 0.69b

WSC (g/kg DM) 23.79 ± 3.96a 21.44 ± 2.73ab 18.87 ± 2.24b 19.80 ± 1.51b 18.54 ± 1.65b

AN (g/kg TN) 59.05 ± 7.99a 36.93 ± 4.61b 56.14 ± 2.90a 33.93 ± 4.03b 57.29 ± 1.77a

CK, control group; MA, 1% FM malic acid addition; GL, 1% FM glucose addition; CE, 100 U/g FM cellulase addition; BS, 106 cfu/g Bacillus subtilis FM addition. DM,
dry matter; FM, fresh matter; LA, lactic acid; AA, acetic acid; WSC, water-soluble carbohydrates; AN, ammonia nitrogen; TN, total nitrogen. a,b,cDifferent letters indicate
significant differences (P < 0.05).

TABLE 3 | Effects of silage additives on the chemical compositions of silage hybrid Pennisetum.

CK MA GL CE BS

Starch (g/kg DM) 7.34 ± 0.40a 7.19 ± 1.10a 6.57 ± 0.85ab 5.56 ± 0.56c 6.20 ± 0.34bc

NDF (g/kg DM) 668.10 ± 16.88a 647.37 ± 13.58b 665.01 ± 9.48a 603.06 ± 12.81c 633.93 ± 6.81b

ADF (g/kg DM) 414.57 ± 18.94a 405.13 ± 8.56a 412.03 ± 10.19a 367.20 ± 8.77c 386.50 ± 6.34b

CP (g/kg DM) 56.10 ± 2.06d 56.86 ± 1.41d 59.73 ± 1.25c 72.25 ± 1.48a 61.72 ± 1.01b

TP (g/kg TN) 637.38 ± 18.00c 675.66 ± 24.61b 631.21 ± 13.78c 716.63 ± 11.05a 626.35 ± 12.58c

NPN (g/kg TN) 362.62 ± 18.00a 324.34 ± 24.61b 368.79 ± 13.78a 283.37 ± 11.05c 373.65 ± 12.58a

NDIN (g/kg TN) 284.90 ± 5.16a 287.17 ± 7.15a 246.11 ± 10.98b 194.54 ± 17.68c 236.60 ± 5.33b

ADIN (g/kg TN) 182.99 ± 7.85a 178.19 ± 5.42a 158.57 ± 7.98b 122.77 ± 7.68d 147.03 ± 3.51c

CK, control group; MA, 1% FM malic acid addition; GL, 1% FM glucose addition; CE, 100 U/g FM cellulase addition; BS, 106 cfu/g Bacillus subtilis FM addition. DM, dry
matter; FM, fresh matter; NDF, neutral detergent fiber; ADF, acid detergent fiber; CP, crude protein; TN, total protein; TP, true protein; NPN, non-protein nitrogen; NDIN,
neutral detergent insoluble nitrogen; ADIN, acid detergent insoluble nitrogen. a,b,cDifferent letters indicate significant differences (P < 0.05).

negative modes. The source temperature was 600◦C. For MS-
only acquisition, the m/z range of the TOF MS scan and product
ion scan were 60–1,000 and 25–1,000 Da, respectively. The
accumulation time of TOF MS scan and product ion scan were
0.20 and 0.05 s/spectra, respectively. The information-dependent
acquisition was adopted for the acquisition of the product ion
scan, and parameters were set as follows: mode, high sensitivity;
declustering potential, ±60 V for positive and negative modes;
collision energy, 35 V ± 15 eV. Ten candidate ions were
supervised per cycle, and isotopes within 4 Da were eliminated.

Data processing was performed in accordance with the
method of Li R. et al. (2021). First, raw data in the wiff.scan format
were converted into the MzXML format via the ProteoWizard
MSConvert, and MzXML files were imported into the XCMS
software. The parameters for peak picking were set as centWave
m/z = 25 ppm, prefilter = c (10, 100), and peak width = c (10,
60). bw = 5, minfrac = 0.5, and mzwid = 0.025 were used as
parameters for peak grouping. The annotation of adducts and
isotopes was performed using the Collection of Algorithms of
MEtabolite pRofile Annotation. The structural identification of
metabolites was performed by comparing the retention time,
molecular weight (<25 ppm), MS/MS spectra, and collision
energy with the database established by Benton et al. (2015).
Subsequently, multidimensional statistical analyses, including
principal component analysis (PCA), projections to latent
structures–discriminant analysis (PLS-DA), and orthogonal PLS-
DA (OPLS-DA), were conducted using the SIMCA-P 14.1
software. Metabolites with variable importance in projection
(VIP) > 1, fold change > 1.2 or <0.833, and p < 0.05

were recognized as differential metabolites (Hao et al., 2021).
In addition, the Kyoto Encyclopedia of Genes and Genomes
(KEGG) database was adopted for the analyses of functional
characteristics and classifications of differential metabolites
(Guan et al., 2020).

Statistical Analysis
The experimental data of fermentation parameters, chemical
compositions, and α-diversity indices were preliminarily sorted
using the Excel software and analyzed via the SAS 9.4 software
with the model of Y ij = µ + Ai + εij. Y ij is the dependent variable
of the silage samples in different treatments, µ is the overall
mean, Ai is the effects of silage additives, and εij is the random
error. The LSD method was adopted for multiple comparisons.
Data were displayed in tables in the form of mean ± SD,
and p < 0.05 indicated a significant difference. The Pearson
correlation coefficient was adopted for correlation analyses, and
correlation coefficient (Cor) > 0.6 or <−0.6 and p < 0.05 were
considered as correlation.

RESULTS

Characteristics of Fresh Hybrid
Pennisetum
The chemical compositions of the hybrid Pennisetum
are shown as Table 1. The DM content of hybrid
Pennisetum was 336.30 g/kg fresh matter (FM). The
contents of WSC, starch, NDF, ADF, and CP were 26.84,
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8.78, 696.50, 431.72, and 68.05 g/kg DM, respectively.
The contents of TP, NPN, NDIN, and ADIN were
742.91, 257.09, 252.61, and 188.91 g/kg total nitrogen
(TN), respectively.

Fermentation Parameters and Chemical
Compositions of Hybrid Pennisetum
Silage
As shown in Table 2, glucose and cellulase increased and
decreased, respectively, the DM content in HPS (p < 0.05).
The application of malic acid and cellulase decreased the pH
of HPS (p < 0.05). Malic acid increased the content of LA but
decreased the AA content (p < 0.05). Compared with that in
CK, the AA content in CE continued to increase (p < 0.05).
WSC contents in GL, CE, and BS were significantly lower than
those in CK (p < 0.05). The contents of AN in MA and CE
decreased compared with that in CK (P < 0.05). The chemical
compositions of HPS are shown in Table 3. Malic acid, cellulase,
and B. subtilis reduced the contents of NDF in HPS (p < 0.05).
Moreover, cellulase and B. subtilis could reduce the contents of
starch and ADF (p < 0.05). Compared with CK, GL, CE, and
BS were observed with increased CP and significantly decreased
NDIN and ADIN (p < 0.05). In addition, the application
of malic acid and cellulase could increase the content of TP
(p < 0.05).

Bacterial Diversity in Hybrid Pennisetum
Silage Affected by Silage Additives
In this study, silage samples were sequenced via the Illumina
Novaseq 6000 platform, and 2,548,477 raw reads were obtained.
After removing meaningless sequences, we obtained 2,011,503
clean sequences. The clustering and annotation of clean reads
were performed, and 13,503 OTUs were found eventually.
The diversity of bacterial communities is shown in Figure 1.
The rank–abundance curve showed that samples in MA had
improved evenness and diversity (Figure 1A). With increasing
sequence number, the rarefaction curve tended to flatten,
indicating that sampling was sufficient and that data were
reasonable and reliable for further analyses. For α-diversity
(Figures 1C–H and Supplementary Table 1), the Observed
species, Faith PD, Pielou evenness, Chao1, Shannon, and
Simpson indices of MA were significantly higher than those in
CK (p < 0.05). Moreover, the Pielou evenness and Simpson
indices in CE were lower compared with those in CK (p < 0.05).
The Venn diagram showed that 351 OTUs appeared in all five
treatments, and 1,678, 3,389, 1,423, 2,259, and 1,969 OTUs were
unique to CK, MA, GL, CE, and BS, respectively (Figure 1I). For
β-diversity, the PCoA score plot indicated that the individuals
in MA could be remarkably separated from those in four other
treatments. The Adonis analyses were further conducted, and
results showed that the application of malic acid, cellulase, and
B. subtilis had significant effects on the bacterial communities in
HPS (p < 0.05). However, no evident difference between CK and
GL was observed (p < 0.05).

Bacterial Abundance in Hybrid
Pennisetum Silage Affected by Silage
Additives
At the phylum level, the dominant bacteria were Proteobacteria,
Firmicutes, Bacteroidetes, Actinobacteria, and Deinococcus–
Thermus (Figure 2A and Supplementary Table 2). Malic acid
reduced the relative abundance of Proteobacteria but increased
Firmicutes and Actinobacteria (p < 0.05). The addition of
B. subtilis increased the abundance of Deinococcus–Thermus
(p < 0.05, Figure 2B and Supplementary Table 2). At the
genus level, the dominant bacteria were Aquabacterium, Bacillus,
Weissella, Lactobacillus, and Brevibacillus (Figure 2A and
Supplementary Table 2). The application of malic acid decreased
the abundance of Aquabacterium and Weissella but increased the
abundance of Bacillus and Brevibacillus (p < 0.05, Figure 2B and
Supplementary Table 2).

To study the differential OTUs and potential biomarkers,
we performed LEfSe analyses between CK and each additive
treatment. As shown in Figure 3 and Supplementary Table 3,
the differential OTUs between CK and MA were highest, and
the addition of malic acid caused the upregulation of 81
differential OTUs and the downregulation of 48 differential OTUs
(Figure 3A). Glucose caused the least number of differential
OTUs, and the numbers of upregulated and downregulated
OTUs were 3 and 18, respectively (Figure 3C). The number of
differential OTUs caused by cellulase was 8 for upregulation and
17 for downregulation, and 17 upregulated and 23 downregulated
OTUs were caused by B. subtilis (Figures 3B,D).

Predicted Functions and Pathways of
Bacterial Community in Hybrid
Pennisetum Silage
In this study, the PICRUSt was adopted for the functional
prediction of bacterial communities (Figure 4 and
Supplementary Table 4). The top five predicted functions
were DNA helicase, DNA-directed DNA polymerase, histidine
kinase, NADH:ubiquinone reductase (H+-translocating),
and peptidylprolyl isomerase (Figure 4A). The top five
pathways were aerobic respiration I (cytochrome c), gondoate
biosynthesis (anaerobic), CDP–diacylglycerol biosynthesis
I, CDP–diacylglycerol biosynthesis II, and cis-vaccenate
biosynthesis (Figure 4C). The diversity of functions and
pathways were also calculated, and the PCoA score plots of
functions and pathways indicated that treated individuals were
separated from four other treatments. The Adonis analyses
further confirmed that malic acid played important roles in
altering microbial functions (Table 4), but the effects caused by
glucose, cellulase, and B. subtilis were unnoticeable.

The top five differential pathways between CK and four
additive treatments are shown in Figure 5 and Supplementary
Table 5. For malic acid and B. subtilis, the application of
the two additives reduced the abundance of the top five
differential pathways (p < 0.05), whereas the abundance of
pathways were upregulated by cellulase (p < 0.05). Glucose
upregulated the abundance of the superpathway of thiamin
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FIGURE 1 | Effects of silage additives on the diversity of bacterial communities in hybrid Pennisetum silage. (A) Rank–abundance curve; (B) rarefaction curve; (C)
observed species index; (D) Faith PD index; (E) Pielou evenness index; (F) Chao1 index; (G) Shannon index; (H) Simpson index; (I) venn diagram of operational
taxonomic units (OTUs); (J) principal co-ordinates analysis (PCoA) scores plot. CK, control group; MA, 1% fresh matter (FM) malic acid addition; GL, 1% FM glucose
addition; CE, 100 U/g FM cellulase addition; BS, 106 cfu/g Bacillus subtilis FM addition. *, **, and *** represent P < 0.05, P < 0.01, and P < 0.001, respectively.
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FIGURE 2 | Relative abundance of bacterial communities at the phylum and genus levels for hybrid Pennisetum silage treated with different silage additive.
(A) Accumulation bar graph of the top 10 phyla (i) and genera (ii). (B) Bar graph of the top five phyla (i) and genera (ii). CK, control group; MA, 1% fresh matter (FM)
malic acid addition; GL, 1% FM glucose addition; CE, 100 U/g FM cellulase addition; BS, 106 cfu/g Bacillus subtilis FM addition. *, **, and *** represent P < 0.05,
P < 0.01, and P < 0.001, respectively.

diphosphate biosynthesis II but downregulated the abundance
of the superpathway of pyridoxal 5′-phosphate biosynthesis and
salvage, PpGpp biosynthesis, pyridoxal 5′-phosphate biosynthesis
I, and Syringate degradation (p < 0.05). In addition, we could find
that the abundance of differential pathways in CK vs. GL were
less than those in CK vs. MA, CK vs. CE, and CK vs. BS, implying
that the effects of glucose on the dominant pathways were not
evident. By analyzing all differential pathways, we found that
nine pathways were simultaneously affected by all four additives
(Figure 6 and Supplementary Table 6).

Metabolic Profile in Hybrid Pennisetum
Silage Affected by Silage Additives
The relative standard deviations (RSD) of the ion peak abundance
in QC samples are displayed in Supplementary Figure 1A

(positive ion mode) and Supplementary Figure 1B (negative ion
mode). In this study, the number of peaks with RSD ≤ 30% in
QC samples accounted for more than 80% of the total number of
peaks, indicating that the instrumental analysis system was stable
and reliable (Shen et al., 2016). The PCA score plots of 30 samples
and 4 QC samples are shown in Supplementary Figure 2A
(positive ion mode) and Supplementary Figure 2B (negative ion
mode). Results showed that QC samples were closely clustered,
suggesting that the repeatability of the experiment was good.

In this study, 422 metabolites, including 259 in the positive ion
mode and 163 in the negative ion mode, were obtained. These
metabolites could be divided into organic acids and derivatives,
organic oxygen compounds, lipids and lipid-like molecules,
organoheterocyclic compounds, benzenoids, and five other types
(Supplementary Figure 3). Multivariate statistical analyses were
conducted to distinguish the difference between CK and the four
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FIGURE 3 | Linear discriminant analysis (LDA) effect size (LEfSe) analyses of bacterial communities in hybrid Pennisetum silage based on the threshold of LDA
score > 3. (A) CK vs. MA; (B) CK vs. GL; (C) CK vs. CE; (D) CK vs. BS. CK, control group; MA, 1% fresh matter (FM) malic acid addition; GL, 1% FM glucose
addition; CE, 100 U/g FM cellulase addition; BS, 106 cfu/g B. subtilis FM addition.

other treatments. PCA and PLS-DA score plots showed that the
effects of malic acid and cellulase on the metabolic profile in
HPS were evident, but the differences between CK and GL and
between CK and BS were not significant (Figure 7). Subsequently,
we performed OPLS-DA analyses, and the VIP values of each
metabolite were calculated. After screening with the criterion
of VIP > 1, FC > 1.2 or <0.833, and p < 0.05, differential
metabolites were obtained (Supplementary Table 7). Malic acid
upregulated 29 metabolites and downregulated 18 metabolites,
and glucose upregulated 8 metabolites and downregulated 5
metabolites. The numbers of upregulated and downregulated
metabolites caused by cellulase were 35 and 12, respectively. The
numbers of upregulated and downregulated metabolites caused
by B. subtilis were 16 and 2, respectively (Figure 7).

We further performed the functional annotation of
differential metabolites via the KEGG database (Figure 8
and Supplementary Table 8). Results showed that

differential metabolites were involved in carbon fixation
in photosynthetic organisms; alanine, aspartate, and
glutamate metabolism; aminoacyl-tRNA biosynthesis;
glyoxylate and dicarboxylate metabolism; ascorbate and
aldarate metabolism; beta-alanine metabolism; arginine
biosynthesis; citrate cycle (TCA cycle); isoquinoline
alkaloid biosynthesis; tyrosine metabolism; and
betalain biosynthesis.

Correlation Analyses Between
Differential Operational Taxonomic Units
and Metabolites
In the comparison between CK and MA, g_Thermobacillus
was positively correlated with alanine–glucose (Cor = 0.9793,
p = 2.92E−08) but negatively correlated with L-alanine
(Cor = −0.9510, p = 2.05E−06) and D-threitol (Cor = −0.9419,
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FIGURE 4 | Effects of silage additives on the function of bacterial communities predicted by PICRUSt in hybrid Pennisetum silage. Panels (A,C) are the accumulation
bar graphs of the top 10 functions and pathways; (B,D) are principal co-ordinates analysis (PCoA) scores plots on the function and pathway level. CK, control group;
MA, 1% fresh matter (FM) malic acid addition; GL, 1% FM glucose addition; CE, 100 U/g FM cellulase addition; BS, 106 cfu/g B. subtilis FM addition.

TABLE 4 | Adonis analyses of the components and functions of bacterial communities in silage hybrid Pennisetum.

Items OTUs Predicted functions Predicted pathways

R2 P R2 P R2 P

CK vs. MA 0.5924 0.010 0.7522 0.020 0.7195 0.017

CK vs. GL 0.1402 0.116 0.1413 0.237 0.1348 0.199

CK vs. CE 0.1646 0.039 0.2395 0.111 0.2382 0.085

CK vs. BS 0.2327 0.026 0.2260 0.141 0.2544 0.085

CK, control group; MA, 1% FM malic acid addition; GL, 1% FM glucose addition; CE, 100 U/g FM cellulase addition; BS, 106 cfu/g Bacillus subtilis FM addition. FM, fresh
matter. The functions and pathways were predicted via PICRUSt.

p = 4.71E−06; Figure 9A). For CK vs. GL, s_Alistipes finegoldii
was positively correlated with isomaltose (Cor = 0.8647,
p = 5.92E−04), and f_Rikenellaceae was negatively correlated
with alpha-D-glucose (Cor = −0.8351, p = 1.38E−03) and
N-acetyl-L-phenylalanine (Cor = −0.7928, p = 3.60E−03;
Figure 9B). In the comparison between CK and CE,

s_Bacillus smithii was positively correlated with threonine–
valine (Cor = 0.9085, p = 4.32E−05) and 5-methylcytosine
(Cor = 0.8798, p = 1.61E−04), and s_Lactobacillus brevis was
negatively correlated with isoleucine–isoleucine (Cor = −0.7959,
p = 1.96E−03) and proline–glucose (Cor = −0.7741,
p = 3.12E−03, Figure 9C). For CK vs. BS, s_Brevibacillus
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FIGURE 5 | The top five pathways with statistical difference obtained by comparing CK and additive treatments. CK, control group; MA, 1% fresh matter (FM) malic
acid addition; GL, 1% FM glucose addition; CE, 100 U/g FM cellulase addition; BS, 106 cfu/g B. subtilis FM addition.

thermoruber was positively correlated with histidine–proline
(Cor = 0.8935, p = 8.98E−05) and isomaltose (Cor = 0.8850,
p = 1.30E−04), and tyramine was negatively correlated
with g_Thermoactinomyces and f_Thermoactinomycetaceae
(Cor = −0.9297, p = 1.20E−05; Cor = −0.9232, p = 1.85E−05;
Figure 9D). Other correlations are displayed in Supplementary
Table 9.

DISCUSSION

Characteristics of Fresh Hybrid
Pennisetum
In this study, the DM content of the hybrid Pennisetum was
336.30 g/kg FM, which met the ideal DM content of 30–35%
(Guyader et al., 2018). NDF, ADF, and CP contents were all higher
than that reported by Shah et al. (2020a). The variation might be
attributed to the geographical and climatic conditions for plant
growth and the growth stage of a plant. The WSC content of
hybrid Pennisetum was 26.84 g/kg DM, which was insufficient
to meet the minimum requirement of 60–70 g/kg DM for well-
preserved silage (Wang et al., 2021). As a result, the moisture

content of hybrid Pennisetum was suitable for silage, but the
insufficient WSC might prevent continuous fermentation.

Fermentation Parameters and Chemical
Compositions of Hybrid Pennisetum
Silage
Dry matter losses are caused by the metabolic activities
of aerobic microorganisms, and digestible carbohydrates are
an important fraction for consumption (Yuan et al., 2017).
The addition of glucose might alleviate the consumption of
carbohydrates to some extent. The pH values of HPS in all
five treatments were less than 4.2 and could be considered
as well fermented (He et al., 2020). Malic acid reduced the
pH due to its acidity, and the decreased pH in CE might be
attributed to increased AA. Cellulase can hydrolyze structural
carbohydrates and provide a fermentation substrate for LAB,
thereby accumulating organic acids and reducing pH (Li F.
et al., 2020). The changes in the contents of LA and AA
in CK and MA might be because of different fermentation
types. WSC was consumed and decomposed into organic acids
under the activities of microorganisms during the first 30 days
of silage, and the fermentation in GL, CE, and BS might be
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FIGURE 6 | Differential pathways presented in CK vs. MA, CK vs. GL, CK vs. CE, and CK vs. BS. (A) Venn diagram of upregulated pathways; (B) venn diagram of
downregulated pathways; (C) heatmap of the nine pathways affected by the four additives. CK, control group; MA, 1% fresh matter (FM) malic acid addition; GL, 1%
FM glucose addition; CE, 100 U/g FM cellulase addition; BS, 106 cfu/g B. subtilis FM addition.

complete (Chen et al., 2020). Similar to WSC, starch is a type
of rapidly degradable carbohydrate and can provide a substrate
for fermentation (Feng et al., 2020). The CP content in CE
was highest, which might be due to the carbon loss during
fermentation (He et al., 2018). In addition, silage additives had
remarkable effects on the nitrogen fractions of HPS. AN is

produced by clostridial fermentation, and one of the criteria for
good silage is AN < 100 g/kg TN (Mu et al., 2020). NPN is
an important product of proteolysis, and the utilization rate of
NPN in ruminants is lower compared with that of TP due to
rapid degradation (Dentinho et al., 2019; Wang et al., 2021).
The present study suggested that the addition of malic acid
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FIGURE 7 | Effects of silage additives on the metabolic profile of bacterial communities predicted by PICRUSt in hybrid Pennisetum silage. (A) CK vs. MA; (B) CK vs.
GL; (C) CK vs. CE; (D) CK vs. BS. (i) Principal component analysis (PCA) scores plots; (ii) projections to latent structures-discriminant analysis (PLS-DA) scores
plots; (iii) orthogonal PLS-DA (OPLS-DA) scores plots; (iv) volcano plots. CK, control group; MA, 1% fresh matter (FM) malic acid addition; GL, 1% FM glucose
addition; CE, 100 U/g FM cellulase addition; BS, 106 cfu/g B. subtilis FM addition.

and cellulase had positive effects on inhibiting proteolysis, and
low pH was speculated to inhibit the activities of proteases (He
et al., 2020). NDIN and ADIN belong to bonding proteins, which
bond plants with cell wall. NDIN is degraded and utilized in
the rumen slowly, whereas ADIN cannot be utilized (Licitra
et al., 1996). As a result, the four additives used in this study
had positive effects on the nutrients of HPS, and this finding
was manifested in increased available protein and reduced
structural carbohydrates.

Bacterial Diversity in Hybrid Pennisetum
Silage Affected by Silage Additives
Given the important influence of microorganisms on silage
fermentation, bacterial communities should be monitored. The

α-diversity refers to the richness and diversity of species
in a particular habitat or ecosystem and can indicate the
degree of species isolation in the habitat. According to Bai
et al. (2020), when dominant bacteria are abundant, the
diversity of microbial community is low. In this study, the
dominant bacteria at the phylum (Proteobacteria) and genus
(Aquabacterium) levels in CE were highest among the five
treatments, whereas the dominant bacteria in MA were lowest.
These findings might be the reason why the α-diversity
indices in CK were lower and higher than those in MA and
CE, respectively. The β-diversity can reflect the differences
between and within groups. Results indicated that malic acid,
cellulase, and B. subtilis had significant effects on the bacterial
communities of the HPS. However, the effects of glucose
seemed inconspicuous.
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FIGURE 8 | Functional annotation of differential metabolites. (A) CK vs. MA;
(B) CK vs. GL; (C) CK vs. CE; (D) CK vs. BS. CK, control group; MA, 1%
fresh matter (FM) malic acid addition; GL, 1% FM glucose addition; CE,
100 U/g FM cellulase addition; BS, 106 cfu/g B. subtilis FM addition.

Bacterial Abundance in Hybrid
Pennisetum Silage Affected by Silage
Additives
Bacterial communities were altered by silage additives, whereas
Firmicutes and Proteobacteria were always the dominant phyla.
Results were consistent with those reported by Wang et al.
(2021); Zhang et al. (2021), and Zi et al. (2021). Almost
all LAB belong to Firmicutes, which are involved in the
degradation of biomacromolecules and secretes various lipases,
cellulases, and proteases (Yuan et al., 2020). The upregulation of

Firmicutes in MA might lead to increased LA. A wide variety
of pathogenic Gram-negative bacteria, including Escherichia,
Helicobacter, Legionellales, Salmonella, Vibrio, and Yersinia,
belong to Proteobacteria. Malic acid may inhibit pathogenic
bacteria (Du et al., 2021). Moreover, Actinobacteria and
Deinococcus–Thermus were upregulated by malic acid and
cellulase, respectively. However, research on the two phyla in
silage remains limited, and mechanisms need further research.

At the genus level, Aquabacterium was the dominant bacteria
and accounted for the vast majority of Proteobacteria. According
to previous reports, Aquabacterium is a facultatively anaerobic,
non-spore-forming, and rod-shaped bacteria detected in soil and
fresh water, and most species cannot metabolize carbohydrates
(Chen et al., 2012; Hirose et al., 2020). Thus far, only Xu et al.
(2020) reported Aquabacterium in silage. Therefore, the function
of the genus remains unknown. Bacillus, a type of facultatively
anaerobic and Gram-positive bacteria, can secrete bacteriocin
and inhibit the activities of undesirable bacteria. In addition,
some species of Bacillus can produce LA (Li M. et al., 2020).
Weissella, a type of heterofermentative LAB, converts 1 mol
glucose to 1 mol AA, 1 mol LA, and 1 mol CO2 (Wang M.
et al., 2019). The upregulation of Bacillus and downregulation
of Weissella may lead to increased LA and decreased AA in
MA. Some species of Brevibacillus are reported to produce
antibacterial agents (Miljkovic et al., 2019). The antimicrobial
activities of malic acid might be attributed to the upregulation
of Bacillus, Brevibacillus, and other similar bacteria.

The LEfSe analysis is a tool for the interpretation and
discovery of high-dimensional data biomarkers, highlights
biological correlation and statistical significance, and can explore
potential biomarkers that are different among groups. In this
study, only two differential bacteria were affected by all four
additives. B. smithii was upregulated, whereas Lactobacillus
rossiae was downregulated, indicating that the four additives had
different regulating mechanisms on silage quality. B. smithii can
convert cellulose into LA via simultaneous saccharification and
fermentation processes (Chacón et al., 2021). Although research
about B. smithii on silage remains limited, its characteristics of
simultaneous saccharification and fermentation allow increased
fermentation efficiency. B. smithii may be developed as a new
silage or food additive, but the safety of produced silage or
food should be assessed. L. rossiae, a type of LAB, converts
arginine into toxic putrescine via the ornithine decarboxylase
pathway (Del Rio et al., 2018). L. rossiae may be a biomarker
of silage safety and quality, but no direct evidence shows
that L. rossiae is related to silage spoilage and accumulation
of toxins. Notably, Moraxellaceae is inhibited by glucose,
cellulase, and B. subtilis and previously reported as a pathogenic
microorganism (Narciso-da-Rocha et al., 2018). Lysinibacillus
and Paenibacillus were upregulated by malic acid. These bacilli
are reported to be probiotics and considered as potential
fermentation additives (Liñan-Vidriales et al., 2021; Soni and
Keharia, 2021). Methylobacterium is a strictly aerobic bacterium
and involved in environmental carbon cycle and decomposition
of compounds in plants (Wang et al., 2021). Ali et al. (2020)
reported that Methylobacterium is downregulated from the pre-
ensiled to the post-ensiled period, and the reduction of the
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genus implies that malic acid may create good conditions for
fermentation. Leuconostoc is a lactate-producing bacteria (Wang
et al., 2021). However, with increasing LA in MA, the abundance
of the genus declined. This finding was speculated to be caused
by competition between LAB, and the growth of dominant LAB
might inhibit the metabolic activities of LAB with low abundance.
The addition of glucose reduced the relative abundance of
some pathogenic bacteria, including Escherichia–Shigella and
Acinetobacter (Liu et al., 2020; De Almeida et al., 2021). Similarly,
Acinetobacter was downregulated by B. subtilis. Pseudomonadales
was downregulated by cellulase. According to a previous report,
some members of the order are spoilage microorganisms with
lipolytic and proteolytic enzymatic activities (Porcellato et al.,
2018). This finding might explain why CE had the highest CP
and TP contents among the five treatments. In summary, the
results of LEfSe analyses implied that bacterial communities
might be optimized by four additives. However, the mechanisms
required in-depth research because of the complex competition
and cooperation in microorganisms.

Predicted Functions and Pathways of
Bacterial Community in Hybrid
Pennisetum Silage
The function of bacterial communities was determined by
their composition to a high extent. In this study, malic
acid had significant effects on the functions of bacterial
communities, as evidenced by the addition of malic acid caused
the most differential bacteria compared with the addition
of glucose, cellulase, and B. subtilis. This finding might be
because the malic acid additive led to abundant variations in
some functional bacteria (Wang et al., 2021). Malic acid has
antioxidant and antibacterial functions and is widely used in
food, pharmaceutical, healthcare, cosmetics, and other industries.
Moreover, malic acid, which can be used as a carbohydrate
source, provides energy for LAB and accelerates LAB growth (Li
M. et al., 2020). Notably, the relative abundance of differential
pathways caused by glucose was lower compared with those
of pathways caused by malic acid, cellulase, and B. subtilis.
Thus, glucose had little effect on dominant pathways. Nine
pathways, including 1 upregulated (i.e., superpathway of thiamin
diphosphate biosynthesis II) and 8 downregulated (i.e., PpGpp
biosynthesis, syringate degradation, protocatechuate degradation
I [meta-cleavage pathway], methyl gallate degradation, gallate
degradation II, superpathway of salicylate degradation, toluene
degradation IV [aerobic, via catechol], and nitrate reduction I
[denitrification]) pathways, were affected by all four additives.
We hypothesized that the nine pathways were the core pathways
affecting silage quality in the hybrid Pennisetum.

Metabolic Profile in Hybrid Pennisetum
Silage Affected by Silage Additives
Ensiling is a complex biological fermentation process that
involves a wide variety of microorganisms, thereby leading to
many kinds of metabolites. Conventionally, VFAs and LA are
adopted for evaluating silage quality, whereas other metabolites
are also of concern. Therefore, metabolomics technology can

provide a complete understanding of metabolites in the
microenvironment. The addition of glucose caused 13 differential
metabolites, which was the least among the four additives. CK
and GL could not be separated in PCA and PLS-DA score
plots, which might be because glucose had less effect on the
microflora and caused few differential metabolites. No metabolite
was simultaneously upregulated or downregulated by all four
additives. This finding was consistent with the fact that the four
additives shared few differential bacteria and further suggested
that the mechanisms of the four additives altering silage quality
varied. In addition, the functional annotation based on KEGG
database showed that the differential metabolites were involved
in the metabolism and biosynthesis of small molecules, TCA
cycle, and carbon fixation in photosynthetic organisms. This
was beneficial to the comprehension of metabolites in silage
and contributed to the identification of beneficial metabolites
(Guan et al., 2020).

A total of 26 metabolites were obtained in MA vs. CK
and CE vs. CK, indicating that malic acid and cellulase had
the most similar effects on the metabolic profiles of HPS.
Besides, malic acid and cellulase affected four pathways, including
carbon fixation in photosynthetic organisms; alanine, aspartate,
and glutamate metabolism; ascorbate and aldarate metabolism;
and beta-alanine metabolism. Considering that malic acid and
cellulase reduced the ratio of AN and NPN in HPS, we
speculated that the four pathways might play some unknown
functions. Among the four pathways, five differential metabolites,
including L-alanine, L-aspartate, L-gulono-1,4-lactone, myo-
inositol, and uracil, were obtained. In this study, L-aspartate was
involved in five pathways and negatively related to B. smithii.
Coincidentally, this species was negatively related to L-alanine,
which played important roles in three pathways. This result
confirmed the important role of B. smithii in silage. In the
research of metabolome on silage, amino acids as metabolites
are reported, whereas the functions of amino acids are still
unknown (Guo et al., 2018; Xu et al., 2019). Besides, we found
that malic acid and cellulase could upregulate the expression
of several dipeptides, like alanine–glucose, threonine–glucose,
histidine–isoleucine, and proline–glucose. Some dipeptides are
reported to exert anti-inflammatory functions and considered
as flavor substances (Gallego et al., 2021; Molinari et al., 2021).
Thus, silage supplemented with malic acid and cellulase might
provide improved palatability and animal health. Tuberibacillus,
B. smithii, and Bacillus lehensis might play positive roles in the
production of dipeptides. In addition, as an important part of
the TCA cycle, malic acid can directly regulate the metabolism
of carbohydrates and proteins through this biochemical reaction
(Li M. et al., 2020). Two differential metabolites (i.e., malic
acid and isocitrate) caused by glucose are involved in the TCA
cycle and glyoxylate and dicarboxylate metabolism, which are
reported to be related with carbohydrate metabolism (Ruan
et al., 2021). According to the correlation analysis, bacteria
associated with malic and isocitrate included Pseudomonadales,
Acinetobacter, Pelomonas, and Lactobacillus reuteri, suggesting
that these microorganisms might be potential targets for
regulating carbohydrate metabolism during silage. For other
metabolites, some special sugars are considered as biomarkers
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FIGURE 9 | Correlation analysis between differential OTUs and metabolites. The differential OTUs are displayed as triangles and the differential metabolites are
shown as diamonds. Red represents upregulation while green means downregulation. (A) CK vs. MA; (B) CK vs. GL; (C) CK vs. CE; (D) CK vs. BS. CK, control
group; MA, 1% fresh matter (FM) malic acid addition; GL, 1% FM glucose addition; CE, 100 U/g FM cellulase addition; BS, 106 cfu/g B. subtilis FM addition.

of poor fermentation. According to Li M. et al. (2021), the
downregulation of isomaltose and L-sorbose may indicate high-
quality ensiling. B. subtilis caused 18 differential metabolites.
Among these metabolites, diosmetin is a flavonoid and has
antioxidant, antibacterial, and anti-inflammatory properties (Lee
et al., 2020). In the present study, diosmetin was positively related
to Thermoactinomyces daqus and Brevibacillus thermoruber,
suggesting that these two species might be involved in the
production of diosmetin and other bioactive compounds. Several
studies proved that different additives in silage can cause changes
in bioactive metabolites, such as polyphenols, flavonoids, and
terpenoids (Guan et al., 2020; Hu et al., 2020; Xu et al., 2021).
However, these active substances are rarely used directly as silage
additives. The effects of active substances on silage should be
studied. Arachidonic acid (cis-5,8,11,14-eicosapentaenoic acid) is
a type of ω-6 polyunsaturated fatty acid with anti-inflammatory
functions (Trostchansky et al., 2021). Arachidonic acid was
positively related to Bacillus, and the upregulation might be
attributed to the inoculation of B. subtilis. Notably, correlation
analyses were performed in accordance with statistical and
correlation parameters. Therefore, results could not be regarded
as causation (Xu et al., 2019). The present study provided

potential biomarkers for improving the silage quality, and the
development and application of amino acids, organic acid, small
peptides, phenols, and other bioactive compounds will be the
research focus of silage additives (Xu et al., 2019).

CONCLUSION

The application of malic acid, glucose, cellulase, and B. subtilis
promoted the fermentation quality and nutrient composition
by altering the bacterial communities and metabolic profiles
of HPS. In this study, the dominant phyla were Firmicutes
and Proteobacteria and that the dominant genera were
Aquabacterium and Bacillus. Malic acid, glucose, cellulase,
and B. subtilis caused 129, 21, 25, and 40 differential bacteria,
respectively, and 47, 13, 47, and 18 differential metabolites,
respectively. Thereinto, B. smithii was upregulated by all the
four additives and had potential to be used as a silage inoculant.
These differential metabolites included amino acids, organic
acids, sugars, small peptides, and phenols and were involved
in various pathways, such as the TCA cycle; carbon fixation
in photosynthetic organisms; alanine, aspartate, and glutamate
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metabolism; and glyoxylate and dicarboxylate metabolism.
Some metabolites exerted antioxidant, anti-inflammatory,
and antibacterial functions and had potential to be silage
additives. In summary, the present study provided new
suggestions on screening biomarkers for modulating silage
quality.
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