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Micro-expressions can reflect an individual’s subjective emotions and true

mental state and are widely used in the fields of mental health, justice,

law enforcement, intelligence, and security. However, the current approach

based on image and expert assessment-based micro-expression recognition

technology has limitations such as limited application scenarios and time

consumption. Therefore, to overcome these limitations, this study is the first

to explore the brain mechanisms of micro-expressions and their differences

from macro-expressions from a neuroscientific perspective. This can be

a foundation for micro-expression recognition based on EEG signals. We

designed a real-time supervision and emotional expression suppression

(SEES) experimental paradigm to synchronously collect facial expressions and

electroencephalograms. Electroencephalogram signals were analyzed at the

scalp and source levels to determine the temporal and spatial neural patterns

of micro- and macro-expressions. We found that micro-expressions were

more strongly activated in the premotor cortex, supplementary motor cortex,

and middle frontal gyrus in frontal regions under positive emotions than

macro-expressions. Under negative emotions, micro-expressions were more

weakly activated in the somatosensory cortex and corneal gyrus regions than

macro-expressions. The activation of the right temporoparietal junction (rTPJ)

was stronger in micro-expressions under positive than negative emotions. The

reason for this difference is that the pathways of facial control are different;

the production of micro-expressions under positive emotion is dependent on

the control of the face, while micro-expressions under negative emotions are

more dependent on the intensity of the emotion.
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micro-expressions, macro-expressions, emotion, electroencephalography (EEG),
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Introduction

In human interpersonal interactions, the face’s complex
musculature and direct relationship with the processing and
perception of emotions in the brain make it a dynamic canvas
on which humans transmit their emotional states and infer
those of others (Porter et al., 2012). However, individuals
may suppress or hide their true emotional expressions in
certain social situations, which complicates the interpretation
of facial expressions. Brief facial expressions revealed under
such voluntary manipulation are often referred to as micro-
expressions (Ekman and Rosenberg, 2005; Ekman, 2009). As
instantaneous expressions within 1/2 to 1/25 of a second, micro-
expressions are faint and difficult to recognize by the naked
eye, but they are believed to reflect a person’s true intent,
especially those of hostile nature (ten Brinke et al., 2012a).
Micro-expressions are similar to macro-expressions and have
basic, discrete types of emotional expressions, such as disgust,
anger, fear, sadness, happiness, or surprise, that reveal the
emotions that a person may be attempting to hide (Ekman,
2003; Porter and Brinke, 2008). Therefore, micro-expressions
can provide essential behavioral clues for lie detection, which has
been increasingly used in fields such as national security, judicial
systems, medical clinics, and social interaction research.

However, the neural mechanisms of micro-expression
remains unclear, which affects the further development
of micro-expression recognition applications. The current
recognition of micro-expressions rely heavily on image
recognition technology (Peng et al., 2017; Zhang et al., 2018;
Wang et al., 2021) and expert assessment (Yan et al., 2013,
2014). Image recognition technology refers to the technology
of object recognition of human face images using various
machine learning (Wang et al., 2015; Liu et al., 2016) and
deep learning algorithms (Verma et al., 2020; Wang et al.,
2021) to recognize micro-expressions. Expert assessment refers
to an assessment method in which a professionally trained
micro-expression recognition expert manually judges micro-
expressions. The disadvantages of image recognition technology
are limited application scenarios (Goh et al., 2020), such as those
with covered facial micro-expressions (e.g., wearing a mask
during the pandemic), insufficient illumination (Xu et al., 2017),
and special people (e.g., patients with facial paralysis). The main
problem with expert assessment is subjectivity, which is not only
time-consuming but also has a low correctness rate (Monaro
et al., 2022). Therefore, exploring the neural mechanisms of
micro-expressions can lay the foundation for micro-expression
recognition based on physiological signals. This can help to
overcome the limitations of micro-expression recognition and
broader application scenarios for micro-expression recognition.

The inhibition hypothesis proposed by Ekman (Malatesta,
1985) suggests that micro-expressions are produced by
competition between the cortical and subcortical pathways
in emotional arousal, which involves both emotional arousal

and voluntary cognitive control processes. When an emotion
is triggered, the subcortical brain regions project a strong
involuntary signal from the amygdala to the facial nucleus. The
individual subsequently recruits the voluntary motor cortex
to conceal this response, sending a signal to suppress their
expression in a socially and culturally acceptable manner. This
means that the cortical pathways, including the temporal cortex,
primary motor cortex, ventrolateral premotor cortex, and
supplementary motor area, can evaluate and make decisions
regarding facial expressions and subsequently recruit motor
areas that directly control voluntary facial movements (Paiva-
Silva et al., 2016). This view can be considered as the basic
assumption of the neural perspective of micro-expressions
(Frank and Svetieva, 2015).

Therefore, this is the first study that aims to explore the brain
mechanisms underlying micro-expressions and their differences
from macro-expressions from a neuroscientific perspective.
Micro-expressions have the characteristics of spontaneity, short
duration, and low intensity. Therefore, the millisecond temporal
resolution of EEG technology can rapidly capture brain activity
when micro-expressions occur. Moreover, it has the advantage
of being non-invasive and low-risk, and a large number
of studies have used EEG techniques to examine the brain
mechanisms underlying macro-expression generation (Recio
et al., 2014; Shangguan et al., 2019; Yuan et al., 2021).
For example, using EEG techniques, Recio et al. found that,
compared to happy expressions, angry expressions came along
with greater allocation of processing resources for the inhibition
of the preactivated motor plan (N2), and the updating of a new
one (P3)(Recio et al., 2014). Shangguan et al. also used EEG to
examine the brain mechanisms underlying the production of
happy and angry facial expressions. They found that happiness
and anger did not differ during the motor-preparation phase.
The difference in amplitudes between N2 and P3 showed that
the inhibition and reprogramming costs of anger were greater
than those of happiness (Shangguan et al., 2019). Thus, it is
evident that the high temporal resolution of EEG technology
is substantially advantageous in studying the brain mechanisms
underlying the generation of micro- and macro-expressions.

Currently, the suppression-elicitation and lying-leakage
paradigms are the approaches typically used for micro-
expression elicitation (ten Brinke et al., 2012b; Yan et al., 2014).
The lying-leakage method (Ekman and Friesen, 1974; Frank and
Ekman, 1997), although more ecologically valid, is problematic
because the micro-expression occurrence rate is quite low and
EEG studies require a certain number of occurrences before
analysis. In contrast, the suppression-elicitation paradigm
requires participants to maintain neutral facial expressions
while watching a video and eliciting strong emotions. Their
performance is related to an experimental reward that increases
their motivation to hide their true emotions in facial expressions
(Yan et al., 2013, 2014). Video-induced high emotional intensity
increased the occurrence of micro-expressions; 109 MEs were
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detected among 1000 facial expressions (approximately 11%).
However, micro-expressions mostly occur in interpersonal
situations; thus, we added a real-time supervision module to
the suppression-elicitation paradigm to improve the ecological
validity of this method. Consequently, the subjects and
supervisors participated simultaneously in the experiments,
providing simulated social supervision. We named this
improved paradigm real-time supervision and emotional
expression suppression (SEES) experimental paradigm.

In summary, we designed a paradigm (SEES) to investigate
the neural mechanisms via EEG synchronization with a high-
speed camera for the difference between micro and macro-
expressions under voluntary conditions at the scalp and source
levels. Meanwhile, we examined the effect of different types
of emotions (i.e., whether the neural mechanisms of micro-
expressions are different under positive and negative emotions).

Materials and methods

Participants

There were 80 self-reported, right-handed participants in
the current study. The participants were healthy and did not
consume psychoactive substances. Those at risk for depression
were excluded (Beck Depression Inventory score of > 18). Of
these 80 participants, 78 exhibited at least one instance each
of happy and fearful expressions during positive and negative
video clips. Thus, the final sample comprised 78 participants
(age range: 17–22 years, 23 males, 45 females). All participants
provided written informed consent and the ethics committee of
Southwest University approved the study.

Materials

We chose videos of amusement, fear, and neutral emotions
as emotional stimuli to elicit sufficient, relatively pure facial
expressions that were not surrounded by various unemotional
facial movements. Chinese comedy film clips and variety shows
were used for the amusement videos, since native cultural factors
may affect elicitation in emotional experiments (Zheng et al.,
2017). Classic scary films were used for fear videos. The criteria
for selecting the video materials were as follows: (a) the length of
the video was < 3 min to avoid visual fatigue, (b) the materials
were easily understood and did not require excessive thinking,
and (c) the materials should elicit the expression of a single
desired target emotion (e.g., urge to laugh or express fear). Based
on these criteria, we manually selected 35 online videos as the
emotional materials. We requested 20 participants (not part of
the formal experiment) to assess the valence of these videos and
rate the intensity on a seven-point Likert scale; six points and
above were the criteria for selection. We selected seven videos

as the elicitation material for experimentation, including three
positive (eliciting laughter urges, scale 6.05 ± 0.83), one neutral,
and three negative (eliciting fear expression, scale 6.13 ± 0.92)
video clips.

Experimental design

To put the participants into strong motivation to inhibit
facial expressions and improve the ecological validity, we
increased the pressure (simulated social supervision situation)
into the classic micro-expressions suppression-elicitation
paradigm (SEES experimental paradigm) to strongly motivate
participants to inhibit facial expressions and improve ecological
validity. The participants and supervisors participated
simultaneously in the experiment. Participants were seated
approximately 1 m from a 23-inch screen, behind which
there were two cameras: a high-speed recording camera (90
frames/s) and a real-time surveillance camera on a tripod. The
supervisor was seated approximately 1 m to the left of the
participant to observe facial expressions through a monitor
in real time. The participant was aware of the supervisor’s
presence. Participants and supervisors were divided by a
curtain to ensure that the movement of supervisors did not
affect the participant’s attention. EEG signals were recorded
from 128 active electrodes using a Biosemi Active system.
A labview-based synchronization system was developed to
synchronize the EEG acquisition device accurately with a
high-speed camera. We ensured that the EEG signal was
accurately synchronized with the acquisition of facial images
by using the same trigger simultaneously to generate time
stamps on the camera recording and Biosemi Active system (see
Figure 1).

Participants were seated in a comfortable chair in a
silent room at a temperature of 24–26◦C. Participants were
instructed to concentrate on the video clips and neutralize
their facial expressions. Additionally, they were informed that
their payments were directly proportional to their performance.
If the supervisor observed their facial expressions, two yuan
for each expression would be subtracted from their payment.
On the contrary, if the supervisor did not observe any facial
expressions, ten yuan would be added to their payment as an
additional reward.

The seven video clips were grouped into three blocks. Each
block comprised three positive, one neutral, and three negative
videos played sequentially. To avoid order effects, the order of
playing the positive and negative video clips was reversed for
different participants. Before starting the experiment, 60 s of
resting state was collected as the baseline. After each video,
participants were allowed to rest for 60 s and their emotional
activation were measured with a 7-point Likert scale. The
average score for negative materials was 5.91 and that for
positive materials was 6.11.
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FIGURE 1

Schematic representation of the presentation of a single block video material.

Data collection, processing, and
analysis

Facial expression identification and processing
Complete micro-expressions are difficult to elicit in

the laboratory, and only partial facial expressions, such as
movements from the lower or upper face, are typically observed
(Porter et al., 2012; Yan et al., 2013). However, partial micro-
expressions tend to be subtle manifestations of an underlying
emotion, and observations of rapid facial expressions in various
social situations indicate that micro-expressions are more often
partial than are full-face expressions. In this study, partial or
full facial expressions with durations of 500 ms were considered
micro-expressions, whereas those with durations > 500 ms were
classified as macro-expressions. We first used action units (AUs)
from a facial action coding system (Yan et al., 2014) to detect
micro-expressions among participants at the same stimulus time
points based on a discriminative response map fitting method
(Asthana et al., 2013), tracking 66 facial landmarks of facial
expressions (Liu et al., 2016). Two coders were used to analyze
the micro-expressions (Yan et al., 2014). The procedure includes
the following three steps (see Figure 2).

Step 1: Count the time points of all micro-expressions
across all participants. This step was used to detect all the
time points of the participants’ micro-expressions when
they watched the videos. We determined the approximate
time points for the onset, apex, and offset frames by playing
the recording at a 1/3 speed. We selected all time points
based on these results.
Step 2: Frame-by-frame coding. This step was used to
determine the onset, apex, and offset frames of the micro-
expressions based on the time points previously selected. As
micro-expressions under positive emotion for instance, the
first frame that showed activation of AU6, AU12 (or both)
was considered the onset frame. For this facial expression,
the apex frame displayed the entire expression with the
maximum intensity. The offset frame is the last frame

before the face reverts to its original expression (Hess and
Kleck, 1990; Hoffmann, 2010; Yan et al., 2013). The coders
repeatedly examined minute changes between adjacent
frames surrounding the micro-expression onset, apex, and
offset to identify these frames accurately. The duration of
micro-expression was calculated.
Step 3: Determining time points: Based on the apex frame,
we selected time points when > 20 participants showed
micro-expressions. Global time points were determined by
averaging the timestamps of the apex frames. Based on
these reference points, 2-s blocks of the corresponding
EEG signals were extracted for each participant to
perform the analysis. Participants with micro-expressions
occurring at these time points were included in the micro-
expression group.

Electroencephalography signal processing and
analysis
Acquisition and pre-processing

Electroencephalography was recorded continuously
from 128 electrodes using an ActiveTwo acquisition 125
system (BioSemi, The Netherlands) at a sampling rate of
2,048 Hz. EEG data were processed offline using EEGLAB
(Delorme and Makeig, 2004) and BESA research software
(Hoechstetter et al., 2004). Drift and noise reduction
were performed by applying a 0.5-50 band-pass filter. To
maximize the signal-to-noise ratio, the EEG signals should
be referenced to the Reference Electrode Standardization
Technique (REST) reference using the REST software (Yao,
2001; Dong et al., 2017). We used BESA research software
to correct EEG signals contaminated by eye blinks and
movements.

The time synchronization signal and timing of the apex
frame of the facial expression were used to estimate the position
of the EEG signal. We found that the EEG responses of micro-
expressions were relatively short, generally within 1 s, and
macro-expressions generally longer. Thus, with the apex of
all facial expressions as the midpoint, we trimmed segments
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FIGURE 2

Diagram of facial expression identification and determination of the time points of micro-expressions.

with a length of 2 s from the pre-processed EEG signals. The
global field power (GFP) (Khanna et al., 2015) was subsequently
calculated for the 2 s segments. We selected 1 s of data with
the maximum peak (calculated using GFP) as the midpoint
for the sample. GFP represents the strength of the electric
field over the brain at each instant, and is often used to
characterize rapid changes in brain activity. We selected the data
with the maximum peak as the midpoint because the peak of
the GFP curve instantaneously represented the strongest field
strength.

Scalp-level analysis

To identify the average power spectral density (PSD) value
in different frequency bands for each condition (occurrence
of micro- and macro-expressions in positive/negative
emotions), we extracted EEG signals using the open-
source MATLAB toolbox FieldTrip (Oostenveld et al.,
2011). The PSD at each electrode was calculated in 1 Hz
steps between 0.5 Hz and 50 Hz with a seven-cycle-length
sliding window. This resulted in a decreasing time window
length as the frequency increased (e.g., 700 ms for 10 Hz
and 350 ms for 20 Hz). The average PSD values from the
alpha (8 Hz < f < 12 Hz), beta (12 Hz < f < 30 Hz), and
gamma (30 Hz < f < 50 Hz) bands were extracted for all 128
electrodes.

The possible activity among electrodes at different frequency
points associated with the micro- and macro-expressions was
evaluated by calculating the differences in each condition at each
frequency point. The resulting differences were first compared
using a post hoc independent-sample t-test to compare the
changes elicited by the occurrence of micro-expressions with
macro-expressions. We used multiple-comparison corrections
based on randomization statistical non-parametric mapping
(5,000 times) to assess the statistical significance of all t-values
(p < 0.05) (Maris and Oostenveld, 2007).

Source-level analysis

We used standardized low-resolution brain electromagnetic
tomography (SLORETA) analysis to localize the sources of the
difference between the two types of facial expressions induced
by changes in brain oscillations (Fuchs et al., 2002; Pascual-
Marqui, 2002; Jurcak et al., 2007). This calculates the cortical
three-dimensional distribution of current source density (CSD)
for micro-expressions and macro-expressions. For this purpose,
scalp activity recorded at each electrode was first converted
into the current CSD field on a three-dimensional source space
(6,239 cerebrospinal gray matter voxels with a resolution of
5 mm) based on the transformation matrix. Subsequently, voxel-
by-voxel one-sample t-tests on log-transformed data between
the two conditions were used to determine whether these
two larger late positivities would be mediated by distinct
functional neural structures. Multiple comparison corrections
based on randomization statistical non-parametric mapping
(5,000 times) were used to assess the statistical significance of
all t-values (p < 0.05).

Results

The results of topographical maps showed that, during
positive emotion, compared with macro-expression, the power
of micro-expression was significantly higher in the right central
and parietal regions in the alpha and gamma bands. However,
in the theta and alpha bands of the prefrontal and left
temporal regions, micro-expressions had lower power than
macro-expressions (Figure 3A).

Contrary to the pattern of positive emotion, the power of
macro-expressions in negative emotion was greater than that
of micro-expression; significant differences were located in the
channel from the parietal and occipital regions in theta bands;
right prefrontal, right frontal, right central, right parietal, and
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FIGURE 3

Topographical maps for EEG power in micro-expression and
macro-expression from theta, alpha, beta and gamma bands in
(A) Positive emotion and (Micro-expression minus
Macro-expression) (B) Negative emotion (Macro-expression
minus Micro-expression). The white dots on the difference
graph are the electrode points with significant difference
between the power of micro-expression and macro-expression.

right temporal regions in the alpha band; right frontal, right
central, right parietal, and right parietal regions in the beta band;
and right frontal, right central, and right temporal regions in the
gamma band (Figure 3B).

Micro- and macro-expressions have a similar activation
pattern in positive and negative emotions. This is more
prominent in the left prefrontal and right frontal regions in the

theta and alpha bands and left temporal region in the theta,
alpha, and gamma bands.

We conducted the SLORETA analysis to further determine
whether the brain areas were mediated by distinct functional
neural generators. There was greater activation in micro-
expression (p < 0.05) for a positive emotion (see Figure 4A).
We found significant differences in: the theta band located in
the promoter cortex (PMC), right superior frontal gyrus (SFG),
and right middle frontal gyrus (MFG); alpha band, which is
also located in PMC, right SFG, and MFG; and gamma band,
which is located in the PMC, MFG, and SFG. There was greater
activation in macro-expression (p < 0.05) for a negative emotion
(Figure 4B). We found significant differences in: the theta band
located in the left somatosensory association cortex (SAC) in the
occipital region; alpha band, which is located in the MFG in the
prefrontal region, somatosensory cortex (S1) in the right central
region, left angular gyrus (ANG) in the occipital region, and
temporal pole (TPO) in the temporal region; beta band, which
is located in the SAC in the occipital region, and S1 in the right
central region; and gamma band located in the SAC and ANG
in the occipital region, S1 in the right central region, and TPO
in the temporal region (see Figure 4B).

The present study further analyzed the differences in micro-
expressions under positive and negative emotions. The power
under positive emotion in the alpha, beta, and gamma bands on
the scalp level was greater in the right parietal, temporal, and
occipital regions than under negative emotion. This difference
was not significant in the theta band. The source-level results
showed stronger activation under positive emotion in the
right temporoparietal junction (rTPJ), which is associated with
attentional control (see Figure 5).

Discussion

In order to help overcome for the limitations of micro-
expression expert assessment and image recognition techniques,
and lay the foundation for micro-expression recognition based
on EEG signals. This study is the first to investigate the brain
mechanisms of micro-expressions and their differences from
macro-expressions from a neuroscience perspective. As a result,
we found (1) a general activation of the left temporal and frontal
regions in micro-expressions and macro-expressions under both
positive and negative emotions; (2) that under positive emotion,
micro-expressions shows stronger power in the central and
parietal regions on the scalp in the alpha and gamma bands
than macro-expressions, which are located in the premotor,
supplementary motor cortices, and MFG on the source level.
and (3) that under negative emotion, the micro-expressions
showed lower power in the right prefrontal, right frontal,
right central, right parietal, and right temporal regions than
macro-expressions across frequencies in negative emotion. At
the source level, differences were located in the somatosensory
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FIGURE 4

LORETA probabilistic map showing cortical activation and a significant difference between micro-expression minus macro-expression in
(A) Positive emotion and (B) Negative emotion (Micro-expression minus Macro-expression) (B) Negative emotion (Macro-expression minus
Micro-expression). Red colors represent a greater activation, blue colors represent a less activation.

cortex and angular gyrus regions. These three main points are
elucidated in the following discussion.

We found a similar activation on the scalp for micro- and
macro-expressions under both positive and negative emotions,
with general activation in the left temporal and prefrontal
regions, which concurs with previous emotional suppression
studies (Ochsner et al., 2012; Buhle et al., 2014). In the
present study, participants in the SEES were requested to

perform neutral facial expressions that conflicted with their
real emotional state. Activation of the prefrontal region,
especially higher power in the alpha band (Pfurtscheller et al.,
1996; Klimesch, 1999; Coan and Allen, 2004), was reported
to be associated with voluntary control of social-emotional
behavior and involved in coordinating rapid action selection
processes, emotional conflict detection, and inhibition of
emotional responses (Volman et al., 2011; Roy et al., 2012;
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FIGURE 5

Topographical maps for EEG power and LORETA probabilistic map showing cortical activation and a significant difference between
micro-expression under positive emotion and negative emotion (positive emotion minus negative emotion). Red colors represent a greater
activation, blue colors represent a less activation. The white dots are the electrode points with significant difference.

Rive et al., 2013). For instance, in an emotional conflict task
(face-word task), successful emotional conflict resolution was
associated with regions of the ventral medial prefrontal cortex,
cortex supplementary motor area, and superior temporal gyrus
(Deng et al., 2014). Meta-analyses of fMRI showed that response
inhibition activated the frontostriatal system, including the
ventral lateral prefrontal cortex and supplementary motor areas
(Hung et al., 2018). In addition, temporal regions are core
regions for emotion detection, and the left temporal lobe is
considered to be involved in the action component of emotion
(Bamford et al., 2009; Jastorff et al., 2016), in avoiding negative
items. In addition, according to recent research, activation
of the superior temporal cortex suggests that the extrastriate
and temporal cortices (such as the superior temporal sulcus)
are relevant to facial processing (Gerbella et al., 2019). There
are reports in patients with schizophrenia that temporal lobe
structural abnormalities are related to deficits in facial emotion
recognition (Goghari et al., 2011). Considering both these
findings, the general activation in the frontal and left temporal
regions appears to reflect the participants’ inhibition state of
facial control for emotional stimulation and/or responses when
suppressing emotional facial expressions.

For positive emotions, the premotor area showed a
significant difference, while micro-expressions showed higher
activation in this area. Higher activation of the premotor

cortex correlates with facial expression control, as the premotor
cortex, supplementary motor area, and primary somatosensory
cortex are key regions controlling all subdivisions of the
facial nucleus and implicate sensorimotor simulation during
action observation (Grosbras and Paus, 2006; Majdandzic et al.,
2009). For instance, direct electrical stimulation of the rostral
portion of the supplementary motor area elicits complex facial
movement patterns (Fried et al., 1991). Furthermore, the
premotor cortex is more directly implicated in emotion-related
motor behavior, which has been often reported in studies on
the passive observation of actions (Balconi and Bortolotti, 2013;
Mattavelli et al., 2016). The prefrontal cortex and premotor
cortex are the core regions that control responses to emotional
cues (Coombes et al., 2012; Braadbaart et al., 2014; Perry
et al., 2017). Activation of these areas has been interpreted
as evidence that contributes to explicit emotion processing by
linking emotion perception with representations of somatic
states engendered by emotions (Balconi and Bortolotti, 2013).
Furthermore, to support this viewpoint research has indicated
that comprehending another person’s facial expressions is
related to increased activity in similar sensorimotor cortices
(Banissy et al., 2010; Karakale et al., 2019). In the present study,
the higher activity of micro-expressions in the premotor cortex
may reflect stronger engagement of face control in positive
emotions.
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In contrast, under negative emotions, macro-expressions
were more strongly activated in the somatosensory cortex
and angular gyrus regions than in micro-expressions.
This may indicate a stronger emotional arousal of macro-
expressions compared to micro-expressions of fear. A previous
study on fear processing found preferential involvement
of the somatosensory cortex in fear processing (Williams
et al., 2004; Bertini and Ladavas, 2021). For instance, the
prominent role of somatosensory cortices in previous studies on
embodied emotional simulation showed consistent activation of
somatosensory areas when observing and producing emotional
facial expressions (Carr et al., 2003; Winston et al., 2003).
Moreover, information regarding the presence of a potential
threat relies more heavily on somatosensory representations
than other emotions (Pourtois et al., 2004). Activation on the
right side of the somatosensory cortex further demonstrates
the function of recognizing fearful emotional expressions
(Pourtois et al., 2004). For instance, lesion studies showed that
damage to the right somatosensory cortex significantly impairs
recognition of emotional facial expressions (Adolphs et al.,
2000). Inhibiting the activity of the right somatosensory cortex
with repetitive transcranial stimulation interferes with the
embodied simulation mechanism, thereby disrupting the ability
to recognize emotional facial expressions (Pitcher et al., 2008).
More importantly, conscious visual perception of fear-related
stimuli involves cortical visual pathways to the amygdala,
including the primary and extrastriate visual areas (Morris et al.,
1999; Cecere et al., 2014; Bertini et al., 2018). This concurs with
our finding that the activation of ANG shows that fear-related
salient visual stimuli elicit activity in defense circuits that
can heighten visual perceptual processing (Keil et al., 2010).
Therefore, the specific higher activation occurring in the macro-
expressions seems to reflect a stronger facial representation
elicited by fear. This has been attributed to a preliminary
activation of the somatosensory cortices in response to threat
due to a possible interaction between the networks subserving
visual perception and emotional arousal mechanisms (Gall
and Latoschik, 2020). Accordingly, the stronger activation of
macro-expressions in the somatosensory cortex and angular
gyrus regions and their right-side lateralization suggest a
stronger sensation of fearful emotions in macro-expressions.

These findings, collectively, indicate that micro-expressions
are different from macro-expressions. However, the differences
are not the same for positive and negative emotions. A possible
explanation for the difference between the positive and
negative emotional conditions is that the face is controlled
by two main pathways: cortical and subcortical (Haxby
et al., 2000; Adolphs, 2002). The cortical pathway is top-
down voluntary control, whereas the subcortical pathway is a
bottom-up physiological response (Vuilleumier and Pourtois,
2007; Ishai, 2008). For instance, the amygdala can influence
the activity of somatosensory cortices in the presence of
a potential threat, resulting in increased activity in the

sensorimotor system and direct projection to the facial nucleus
(Bertini and Ladavas, 2021). Thus, when we compared the
differences between macro-expressions and micro-expressions
under negative emotions, owing to the subcortical way, we
found that macro-expressions had stronger activation on
the somatosensory and visual cortices. In contrast, in facial
expressions of happiness, smiles required little preparation
and were usually easier to control in accordance with the
requirements. Thus, voluntary control of micro-expressions of
positive emotions in the cortical pathway can be observed
in the premotor cortex. In other words, micro- and macro-
expressions exhibit differences in neural activity under the
same conditions; however, these differences vary under positive
and negative emotions. Moreover, micro-expressions under
positive emotion were more strongly activated in the right
temporoparietal junction (rTPJ) than in negative emotion.
A previous study found that stronger activation of the rTPJ
was associated with greater attentional control. For instance, it
influences the detection of deviant stimuli in oddball paradigms
(Arrington et al., 2000; Jakobs et al., 2009). Taken together,
this is because the pathways of facial control are different; the
production of micro-expressions under positive emotions is
dependent on the control of the face, while micro-expressions
under negative emotions are more dependent on the intensity
of the emotion.

This study had several limitations. We used the dipole-
source method to study neural activities associated with
the generation and evaluation of significant differences
between micro-expressions and macro-expressions.
However, we were unable to detect the neural activity
of key emotion processing structures (such as the
amygdala) buried deep in the lower cortex, because of the
inherent deficiency in EEG detection depth. Therefore,
we were unable to grasp the complete picture of the
brain mechanisms involved in micro-expression. Higher
spatial resolution tools such as fMRI are needed for
future research.

Conclusion

This study is the first to investigate the neural mechanisms
underlying the differences between micro- and macro-
expressions by using EEG signal. It helps to fill the gap in the
field of identifying micro-expressions in neural activation.
We designed a paradigm SEES, which we believe is a worthy
contribution to the elicitation of micro-expressions. Our
findings highlight that both micro- and macro-expressions
activate the left temporal and prefrontal lobes under different
emotions. This reflects the participants’ state of inhibition
of facial control in response to emotional stimuli and/or
responses to emotional facial expressions. Micro-expressions
were strongly activated in the premotor cortex, supplementary
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motor cortex, and MFG regions under positive emotions.
They were more weakly activated in the somatosensory cortex
and angular gyrus regions under negative emotions. This
indicates that micro-expressions under positive emotions
are dependent on the control of the face, whereas under
negative emotions, they are dependent on the intensity of
the emotion. Our findings highlight that this difference
occurs because the pathways of facial control are different,
which contributes to the groundwork for future research
on the mechanism and pattern recognition of micro-
expressions.
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