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Here, we investigate the contributions of coevolutive, evolutive and stochastic information in determin-
ing protein-protein interactions (PPIs) based on primary sequences of two interacting protein families A
and B. Specifically, under the assumption that coevolutive information is imprinted on the interacting
amino acids of two proteins in contrast to other (evolutive and stochastic) sources spread over their
sequences, we dissect those contributions in terms of compensatory mutations at physically-coupled
and uncoupled amino acids of A and B. We find that physically-coupled amino-acids at short range
distances store the largest per-contact mutual information content, with a significant fraction of that
content resulting from coevolutive sources alone. The information stored in coupled amino acids is
shown further to discriminate multi-sequence alignments (MSAs) with the largest expectation fraction
of PPI matches – a conclusion that holds against various definitions of intermolecular contacts and
binding modes. When compared to the informational content resulting from evolution at long-range
interactions, the mutual information in physically-coupled amino-acids is the strongest signal to
distinguish PPIs derived from cospeciation and likely, the unique indication in case of molecular coevolution
in independent genomes as the evolutive information must vanish for uncorrelated proteins.

� 2019 The Authors. Published by Elsevier B.V. on behalf of Research Network of Computational and
Structural Biotechnology. This is an open access article under the CC BY-NC-ND license (http://creative-

commons.org/licenses/by-nc-nd/4.0/).
1. Introduction

While being selected to be thermodynamically stable and kinet-
ically accessible in a particular fold [1,2], interacting proteins A and
B coevolve to maintain their bound free-energy stability against a
vast repertoire of non-specific partners and interaction modes.
Protein coevolution, in the form of a time-dependent molecular
process, then translates itself into a series of primary-sequence
variants of A and B encoding coordinated compensatory mutations
[3] and, therefore, specific protein-protein interactions (PPIs)
derived from this stability-driven process [4]. As a ubiquitous pro-
cess in molecular biology, coevolution thus apply to protein inter-
ologs, either paralogous or orthologous, under cospeciation or in
independent genomes.

Thanks to extensive investigations in the past following inge-
nious approaches based on the correlation of phylogenetic trees
[5–7] and profiles [8], gene colocalization [9] and fusions [10],
maximum coevolutionary interdependencies [11] and correlated
mutations [12,13], the problem of predicting PPIs based on
multi-sequence alignments (MSAs) appears to date resolvable, at
least for small sets of paralogous sequences – recent improvements
[14–18] resulting from PPI prediction allied to modern coevolu-
tionary approaches [19–23] to identify interacting amino acids
across protein interfaces. In these previous studies, however, the
information was taken into account as a whole, and it was not clar-
ified, as discussed in recent reviews [4,24], the isolated contribu-
tions of coevolutive, evolutive and stochastic information in
resolving the problem. Differentiating functional coevolution from
stochastic and phylogenetic sources remains looked for in the
research field and may help introducing models capable of accu-
rately detecting protein-protein interactions and interfaces, espe-
cially when the number of sequences or the amount of biological
information are limited [25].

Here, by benefiting from much larger data sets made available
in the sequence- and structure-rich era, we revisit the field by
quantifying the amount of information that protein A stores about
protein B stemming from each of these sources and, more impor-
tantly, their effective contributions in discriminating PPIs based
on MSAs (Scheme 1). Specifically, under the assumption that the
coevolutive information is imprinted on the interacting amino
acids of protein interologs in contrast to other (evolutive and
stochastic) sources spread over their sequences, we want the infor-
mation to be dissected in terms of compensatory mutations at
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Scheme 1. Structural contacts mapped into M-long multi-sequence alignment (MSA) of protein interologs A and B. A set of pairwise protein-protein interactions is defined by
associating each sequence l in MSA B to a sequence k in MSA A in one unique arrangement, {l(k)|z}M, determined by the coevolution process z to which these protein families
were subjected. Shown is a ‘‘scrambled” concatenated MSA of A and B associated to a given process z (red dashes).
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physically-coupled and uncoupled amino acids of A and B. Given a
known set of protein three-dimensional amino-acid contacts and
their underlying primary sequences we seek therefore differentiat-
ing functional coevolution from stochastic and phylogenetic sig-
nals for subsequent evaluation of their contributions in PPI
recognition from primary sequences. It is worth emphasizing our
study is not aimed at providing a method for prediction of
protein-protein interactions nor protein-protein interfaces, hence
it differs from previous studies in which sequence covariance is
used to predict three-dimensional amino-acid contacts across
interfaces and assemble models of protein complexes [26] or pro-
tein docking [27]. Anticipating our findings, we show that
physically-coupled amino-acids store the largest per-contact
mutual information (MI) content to discriminate concatenated
MSAs with the largest expectation fraction of PPI matches – a con-
clusion that holds against various definitions of intermolecular
protein contacts and binding modes, including native and non-
native decoy structures. A significant fraction of that information
results from coevolutive sources alone. Although, our analysis
involved protein interologs under cospeciation that is, proteins
evolving in the same genome, the derived conclusions are likely
general to cases of non-cospeciating interologs given that the
underlying thermodynamical principles must be the same for all
cases.

2. Theory and methods

2.1. Decomposition of mutual information

In detail, consider two proteins A and B that interact via forma-
tion of i = 1,. . .,N amino-acid contacts at the molecular level. Pro-
teins A and B are assumed to coevolve throughout M! distinct
processes z described by the stochastic variable Z with an uniform
probability mass function q(z), "z 2 {1,. . .,M!}. Given any specific
process z, their interacting amino-acid sequences are respectively
described by two N-length blocks of discrete stochastic variables
XN � (X1,. . .,XN) and YN � (Y1,. . .,YN) with probability mass functions
{q(xN),q(yN),q(xN,yN|z)} such that,

q xN
� � ¼P

yN
q xN; yNjz� �

q yN
� � ¼P

xN
q xN ; yNjz� �

8><
>: ð1Þ

andX
xN ;yN

q xN; yNjz� � ¼ 1 ð2Þ
for every joint sequence xN; yN
� �

xj j2N defined in the alphabet v of

size |v|. Under these considerations, the amount of information that
protein A stores about protein B is given by the mutual information I
(XN; YN|z) between XN and YN conditional to process z [28]. As made
explicit in Eq. (1), we are particularly interested in quantifying I(XN;
YN|z) for the situation in which marginals of the N-block variables {q
(xN), q(yN)} are assumed to be independent of process z meaning
that, for a fixed sequence composition of proteins A and B only their
joint distribution depends on the process. Furthermore, by assum-
ing N-independent contacts, we want that information to be quan-
tified for the least-constrained model q*(xN, yN|z) that maximizes
the conditional joint entropy between A and B – that condition
ensures the mutual information to be written exactly, in terms of
the individual contributions of contacts i.

For the least-constrained distribution {q*(xN, yN|z)}, the condi-
tional mutual information

I XN;YNjz
� �

¼ H XN
� �

þ H YN
� �

� H XN;YNjz
� �

ð3Þ

writes in terms of the Shannon’s information entropies
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associated with the conditional joint distribution {q*(xN, yN|z)} and
the derived marginals {q*(xN), q*(yN)} of the N-block variables. From
its entropy-maximization property, the critical distribution {q*(xN,
yN|z)} factorizes into the conditional two-site marginal of every con-
tact i

q� xN ; yNjz� � ¼YN
i¼1

q� xi; yijzð Þ ð5Þ

then allowing Eq. (4) to be written extensively, in terms of the
individual entropic contributions
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such that,
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I XN;YN jz
� �

¼
XN
i¼1

I Xi;Yijzð Þ ð7Þ

(cf. SI for details). In Eq. (7), the conditional mutual information
achieves its lower bound of zero if XN and YN are conditionally
independent given z i.e., q*(xN, yN |z) = q*(xN) � q*(yN). For the case
of perfectly correlated variables q*(xN, yN |z) = q*(xN) = q*(yN), the
conditional mutual information is bound to a maximum which
cannot exceed the entropy of either block variables H(XN) and H
(YN).

Given a known set of protein amino-acid contacts and their
underlying primary sequence distributions defining the stochastic
variables XN and YN, Eq. (7) thus establishes the formal dependence
of their mutual information with any given process z. Because
‘‘contacts” can be defined for a variety of cutoff distances rc, Eq.
(7) is particularly useful to dissect mutual information in terms
of physically-coupled and uncoupled protein amino acids. In the
following, we explore Eq. (7) in that purpose by obtaining the
two-site probabilities in Eq. (5)

q� xi; yijzð Þ ¼
X

x01 ;:::;x
0
N ;y

0
1 ;:::;y

0
N

dx0
i
y0
i
xiyiq
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0
N; y

0
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0
Njz

� � � f xiyi jz ð8Þ

from the observed frequencies f ¼ fxi ;yi jz
� �

in the multiple-
sequence alignment

xNk ; y
N
l jz

� �
M

where the N-length amino-acid block l of protein B is joint to block k
of protein A in one unique arrangement {l(k)|z}M for 1 � k � M (cf.
Scheme 1 and Computational Methods).

2.2. Computational methods

Table 1 details the interacting protein systems considered in the
study. For each system under investigation, amino-acid contacts
defining the discrete stochastic variables XN and YN including phys-
ically coupled amino acids at short-range cut-off distances (rc � 8.
0 Å) and physically uncoupled amino-acids at long-range cut-off
distances (rc > 8.0 Å) were identified from the x-ray crystal struc-
ture of the bound state of proteins A and B. The reference (native)
multi-sequence alignment {xNk , yNl |z*}M of the joint amino-acid
blocks associated to XN and YN was reconstructed from annotated
primary-sequence alignments published by Baker and coworkers
[22], containing M paired sequences with known protein-protein
interactions and defined in the alphabet of 20 amino acids plus
the gap symbol (|v|=21). ‘‘Scrambled” MSA models were generated
by randomizing the pattern {l(k)|z*}M in which block l is joint to
block k in the reference alignment.
Table 1
Protein system A and B considered in the study.

Complex description PDB
ID

Protein A

Obligate
Dimers

Carbamoyl Phosphate Synthetase 1BXR Chain A: Carbamoyl
Synthetase large sub

Lactococcus Lactis Dihydroorotate
Dehydrogenase B.

1EP3 Chain A: Dihydrooro
B (PYRD Subunit)

Polysulfide reductase native structure 2VPZ Chain A: Thiosulfate
heterohexameric TusBCD proteins 2D1P Chain B: Hypothetic

yheM
3-oxoadipate coA-transferase 3RRL Chain A: Succinyl-Co

coenzyme A transfer
Bovine heart cytochrome c oxidase 2Y69 Chain A: Cytochrom

1
Non-

Obligate
Dimer

Toxin-antitoxin complex RelBE2 from
Mycobacterium tuberculosis

3G5O ChainA: Protein Rv2
For any given MSA model, two-site probabilities q� xi; yijzð Þ �
f xi ;yi jz were defined from the observable frequencies f xi ;yi jz regular-
ized by a pseudocount effective fraction k* in case of insufficient
data availability as devised by Morcos and coauthors [19].
More specifically, two-site frequencies were calculated according
to

f xiyi jz ¼
k�

vj j2
þ 1� k�ð Þ 1

Meff
z

XM
m¼1

1
nm
z
dxm

i
ym
i

z;xiyij jz ð9Þ

where, nmz = |{m0|1 � m0 � M, Hamming Disatnce(m,m0) � dh}| is
the number of similar sequencesm0 within a certain Hamming dis-

tance dh of sequence m and Meff
z ¼PM

m¼1 nm
z

� ��1 is the effective
number of distinguishable primary sequences at that distance
threshold – the Kronecker delta dxm

i
ym
i

z;xiyij jz ensures counting of (xi,

yi) occurrences only. In Eq. (9), two-site frequencies converge to
raw occurrences in the sequence alignment for k* = 0 or approach
the uniform distribution 1

xj j2 for k* = 1; Eq. (9) is identical to the

equation devised by Morcos and coauthors [19] by rewriting
k* = k/(k + Meff

z ). Here, two-site probabilities q� xi; yijzð Þ � f xi ;yi jz were
computed from Eq. (9) after unbiasing the reference MSA by
weighting down primary sequences with amino-acid identity
equal to 100%. An effective number of primary sequences Meff

z = M
(cf. Table S1) was retained for analysis and a pseudocount fraction
of k* = 0.001 was used to regularize data without largely impacting
observable frequencies. Single-site probabilities {q(xN), q(yN)}
were derived from q*(xi, yi|z) by marginalization via Eq. (1).

The conditional mutual information in Eq. (7) was computed
from single- and joint-entropies according to Eq. (3). Given the fact
that the maximum value of I(Xi; Yi|z) is bound to the conditional
joint entropy, Eq. (7) was computed in practice as a per-
contact entropy-weighted conditional mutual information [29],
H(Xi; Yi|z)�1 I(Xi; Yi|z), to avoid that contributions of H(Xi, Yi|z) con-
tacts between highly variable sites are overestimated. Because
HðXi;Yi j zÞ and I(Xi, Yi|z) have units of nats, Eq. (7) is dimensionless
in the present form.
3. Results and discussion

Details of all protein systems under investigation are presented
in Table 1. Each system involves two families of protein interologs
A and B with known PPIs derived from cospeciation in the same
genome [26]. We denote by {xNk , yNl |z*}M their reference concate-
nated MSA associated to the native process z*. For convenience,
in the following, we present and discuss results obtained for a rep-
resentative system A and B – the protein complex TusBCD (chains B
and C of 2DIP) which is crucial for tRNA modification in Escherichia
Protein B M MSA
length

-Phosphate
unit

Chain B: Carbamoyl-Phosphate
Synthetase small subunit

1004 1452

tate Dehydrogenase Chain B: Dihydroorotate Dehydrogenase
B (pyrk Subunit)

552 572

Reductase Chain B: NRFC Protein 676 927
al UPF0116 protein Chain C: Hypothetical protein yheL 216 214

A:3-ketoacid-
ase subunit A

Chain B: Succinyl-CoA:3-ketoacid-
coenzyme A transferase subunit B

1330 437

e C Oxidase Subunit Chain B: Cytochrome C Oxidase Subunit
2

1484 740

865 ChainB: Protein Rv2866 904 173
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coli. Similar results and conclusions hold for all other systems in
Table 1 as presented in supplementary Figs. S1 through S4 (cf. SI).

3.1. Decomposition of mutual information

Fig. 1A shows the three-dimensional representation of stochas-
tic variables embodying every possible amino-acid pairs along pro-
teins A and B and their decomposition in terms of physically
coupled amino acids at short-range cutoff distances (rc � 8.0 Å)
and physically uncoupled amino-acids at long-range cutoff dis-
tances (rc > 8.0 Å). In Fig. 1B, the total mutual information
(coupled + uncoupled) across every possible amino-acid pairs of
A and B amounts to 987.88 in the reference (native) MSA. As esti-
mated from a generated ensemble of ‘‘scrambled” MSA models,
expectation values for the mutual information <I(XN; YN|z)>M�n

decreases significantly as decorrelation or the number of mis-
matched proteins in the reference MSA increases. The result also
holds at the level of individual protein contacts i as the mutual
information I(Xi; Yi|z*) for the reference alignment is systematically
larger than the mutual information expectation value for ‘‘scram-
bled” MSA models full of sequence mismatches that is, with a total
number M of mismatched sequences (Fig. S1).

As a measure of correlation, it is not surprising that mutual
information in the reference MSA is larger than that of scrambled
Fig. 1. Informational analysis of protein complex TusBCD, chains B and C. (A) Three-
dimensional representation of stochastic variables XN and YN as defined from
physically coupled amino acids at short-range cutoff distances rc � 8.0 Å (turquoise)
and physically uncoupled amino-acids at long-range cutoff distances rc > 8.0 Å
(gray). Calculation of rc involved Cb-Cb atomic separation distances. (B) Conditional
mutual information <I(XN; YN|z)>M�n as a function of the numberM � n of randomly
paired proteins in the reference (native) MSA, for 0 � n � M. < I(XN; YN|z)>M�n are
expectation values estimated from a generated ensemble of 500 MSA models.
Mutual information of fully ‘‘scrambled” models featuring M unpaired sequences is
similar to that calculated from randomized sequence alignments generated by
aleatory swapping of lines within columns. (C) Mutual information gap DIM
between reference and 100 fully ‘‘scrambled” models featuring M unpaired
sequences. (D) Per-contact mutual information gap N�1DIM,rc. (E) Mutual informa-
tion decomposition N�1DDICovM;rc�8Å

� �
according to Eq. (11) and comparison with

functional mutual information (MIp,rc�8Å) and direct information (DIrc�8Å). In B, C, D
and E error bars correspond to standard deviations.
alignments. Not expected however, is the fact that correlation does
not vanish at ‘‘scrambled” models meaning that part of the calcu-
lated mutual information results at random. Supporting that
notion, the mutual information of fully ‘‘scrambled” models is
found here to be very similar to the same estimate from random-
ized sequence alignments featuring aleatory swapping of lines
within columns. Subtraction of that stochastic source from the
native mutual information, as computed in the form of an informa-
tion gap

DIM�n � I XN ; YNjz�
� �

� I XN ; YNjz
� �D E

M�n

��� ��� ð10Þ

between the reference MSA and ‘‘scrambled” models full of
sequence mismatches, then reveals the isolated nonstochastic con-
tributions to the total correlation between proteins A and B. Here,
the information gap amounts to ~440 for every possible amino-
acid pairs of A and B.

Fig. 1C shows the individual contributions of physically coupled
and uncoupled amino acids to the total mutual information gap,
DIM = DIM,rc�8.0Å + DIM,rc>8.0Å. As a direct consequence of the exten-
sive property of Eq. (7), individual contributions to the total mutual
information gap (DIM;rc ) increase with cutoff distances defining
amino-acid contacts (rc) and consequently, with the block length
(N) of the corresponding stochastic variables. As such, the informa-
tion imprinted at physically uncoupled amino acids accounts for
most of the total mutual information gap (438.8132 ± 4.5159).
When normalized by the block length or the number of amino-
acid contacts (Fig. 1D), the mutual-information contribution N�1-
DIM,rc reveals a distinct dependence being larger for physically cou-
pled amino acids than uncoupled ones (0.0653 ± 0.0015 versus 0.
039 ± 0.0004). The information-gap profile as a function of
amino-acid pair distances shown in Fig. S2 makes sense of the
result by showing few larger information-gap values at short dis-
tances in contrast to many smaller ones at long distances.

Under the assumption that the coevolutive information is
imprinted on the interacting amino acids of interologs in contrast
to other (evolutive and stochastic) sources spread over their pri-
mary sequences, the difference between short- and long-range
contributions provides us with per-contact estimates for the infor-
mation content resulting from coevolution alone that is,

N�1DDICovM;rc�8Å �def N�1DIM;rc�8Å � N�1DIM;rc�8Å ð11Þ

where, N�1DIM;rc>8Å represents the per-contact mutual informa-
tion resulting from evolution. As shown in Fig. 1E, the information
content resulting from coevolution alone amounts to 0.0264 ±
0.0014 which compares well to independent measures of coevolu-
tionary information i.e., functional mutual information (MIp;rc�8Å)
[29] and direct information (DIrc�8Å) [19], 0.0340 ± 0.0037 and
0.0202 ± 0.0019. More specifically, MIp is a metric formulated by
Dunn and coworkers [29] in which mutual information is sub-
tracted from structural or functional relationships whereas, DI is
based on the direct coupling analysis that removes all kinds of indi-
rect correlations by following a global statistical approach [19].
According to definition in Eq. (11), we then conclude that ~40%
of the information content stored in physically coupled amino
acids of the protein complex TusBCD results from coevolutive
sources alone.

3.2. Degeneracy and error analysis of short and long-range
correlations

The present analysis reveals quantitative differences between
short- and long-range correlations of proteins A and B. Because
the total mutual-information component N�1DIM;rc provides us
with an unbiased (intensive) estimate for proper comparison of



Fig. 2. Degeneracy and error analysis for stochastic variables XN and YN involving
interacting amino acids at short-range distances rc � 8.0 Å (turquoise) and long-
range distances rc > 8.0 Å (gray). (A) Total number xS of native-like MSA models at
various mutual-information resolutions dI. (B) Per-contact gaps of mutual infor-
mation N�1DIM�n,rc as a function of the number M � n of ‘‘scrambled” sequence
pairs in the reference native alignment. (C) Expectation values <e>S (Eq. (15)) for the
fraction of sequence matches across native-like MSA models at various mutual-
information resolutions dI. Dashed lines highlight differences at dI values of 0.01
and 0.02.
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the information content between coupled and uncoupled amino
acids, in the following, we focus our attention on N�1DIM;rc to dis-
sect their effective contributions in determining PPIs based on
sequence alignments. Accordingly, let us define the total number
xS of native-like MSA models generated by scrambling of M � n
sequence pairs in the reference alignment

xS rcð Þ �
X

n2S rcð Þ
xM;n ð12Þ

in terms of rencontres numbers xM,n

xM;n ¼ M!

n!

XM�n

q¼0

�1ð Þq
q!

ð13Þ

or permutations of the reference sequence set {l(k)|z*}M with n
fixed positions satisfying

PM
n=0 xM,n = M! (in combinatorics lan-

guage). Here, S(rc) denotes the set of fixed positions n

S rcð Þ � nj0 � n � M; N�1DIM�n;rc � dI
n o

ð14Þ

for which the mutual information gap N�1DIM�n;rc is smaller
than a certain resolution dI independently from the corresponding
block length N or the number of amino-acid contacts. In simple
terms, xS in Eq. (12) informs us on the degeneracy or the number
of ‘‘scrambled” MSA models with a similar amount of mutual infor-
mation of that in the reference (native) alignment.

As shown in Table S1, rencontres numbersxM,n is an astronom-
ically increasing function of M � n, identical for any definition of
the stochastic variables XN and YN derived from the same number
M of aligned sequences. For instance, there is 164548102752 align-
ments for the protein complex TusBCD with M � n = 5 scrambled
sequence pairs. In contrast, the total number xS of native-like
MSA models depends on the stochastic variables at various resolu-
tions dI (Fig. 2A). That number is substantially smaller for defini-
tions of XN and YN embodying physically-coupled amino acids in
consequence of the smaller number M � n of unpaired sequences
required to perturb N�1DIM�n;rc of a fixed change dI such that xS

accumulates less over MSA models satisfying the condition
N�1DIM�n;rc � dI in Eq. (14) (Fig. 2B).

The degeneracy of native-like MSA models at a given resolution
depends on the cutoff distance defining stochastic variables
(Fig. 2A). That condition imposes distinct boundaries for the
amount of PPIs amenable of resolution across definitions of the
stochastic variables in terms of coupled and uncoupled amino
acids. Indeed, the expectation value

eh iS ¼
X
n2S

M
X
n2S

xM;n

 !�1

nxM;n ð15Þ

for the fraction M�1n of primary sequence matches among
native-like MSA models decreases substantially with the degener-
acy of such models meaning that <e>S is systematically larger for
physically-coupled amino-acids at various mutual-information
resolutions dI (Fig. 2C). For instance, the fraction of matches at
dI = 0.02 is ~20% larger for coupled amino-acids than the same esti-
mate for amino acids at long-range distances (0.8333 versus
0.6991). Linear extrapolation in Fig. 2C along increased values of
mutual-information resolutions suggests even larger differences
in the expectation fraction of PPI matches between short and
long-range correlations of A and B.

3.3. Dependence with contact definition and docking decoys

So far, ‘‘contact” is actually any given pair of residues ‘‘i” in pro-
tein A and ‘‘j” in protein B within a given distance rc* which can be
redefined for a variety of cutoff distances. Specifically, our results
were determined by defining physically coupled amino acids at
short-range cutoff distances (rc � rc*) and physically uncoupled
amino-acids at long-range cutoff distances (rc > rc*) for a typical
‘‘contact” geometrical definition involving Cb-Cb atomic separation

distances of 8.0 Å (that is, r�c �
def

8:0 Å). In the following, amino-acid
‘‘contacts” are loosely redefined for a variety of cutoff distances to
study the dependence of the information encoded in short and
long-range protein interactions with rc*. Further analysis shows a
clear dependence of the per-contact mutual information gap (N�1-
DIM,rc) of coupled amino acids with rc* – which is not the case for
uncoupled ones. As shown in Fig. 3A, that distinction is due the
coevolutive information stored at short-range distances which
reaches a maximum at rc* � 8.0 Å in contrast to evolutive sources
uniformly spread over an entire range of rc* values. Particularly
interesting, the result strongly support the assumption that coevo-
lutive information is imprinted preferentially on physically-
coupled amino acids of interologs in contrast to other (evolutive
and stochastic) sources spread over their primary sequences – a
conclusion further supported by calculations of the mutual infor-
mation subtracted from structural-functional relationships (MIP)
as a function of rc*.

Still, the information encoded in short and long-range amino-
acid interactions was analyzed across the native binding interface



Fig. 3. Dependence with contact definition rc* and docking decoys. (A) Per-contact mutual information gap N�1DIM,rc and mutual information subtracted from structural-
functional relationships MIp,rc at various rc*. (B) Per-contact mutual information gap N�1DIM,rc (turquoise), information content resulting from coevolution alone N�1DDICovM,rc

(green) and mutual information subtracted from structural or functional relationships MIp,rc (blue) at alternative interfaces generated by docking – only physically coupled
amino acids as defined for rc � 8.0 Å were included in the calculations. Black bars represent the root-mean-square deviation (RMSD in Ȧ units) between the native bound
structure and docking decoys as generated by GRAMM-X [30]. Docking solutions were selected following a stability binding-energy criterium according to the scoring
function of GRAMM – all docking decoys considered in the study are low-energy configurations despite large RMSD values relative to the native structure. (C) Illustration of
four docking decoys of chain B in the protein complex TusBCD (chain C is shown in gray).
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between proteins as revealed by x-ray crystallography experi-
ments. The dependence of the per-contact mutual information
gap with non-native binding modes or docking decoys of proteins
A and B was then analyzed further, at the typical definition of

amino-acid contacts (r�c �
def

8:0 Å). Shown in Fig. 3B, there is a clear
dependence of the information gap with binding modes – the per-
contact mutual information gap reaches a maximum at the
experimentally-determined native bound configuration of A and
B (RMSD = 0.0 Å), meaning that N�1DIM,rc embodies coevolutive
pressures in the native amino acids contacts beyond their accessi-
bility at the molecular surface of proteins. The conclusion is further
supported in Fig. 3B by noticing that the isolated coevolutive con-
tent for the bound configuration of A and B or the associated
mutual information subtracted from structural-functional relation-
ships are larger than the very same estimates for any docking
decoys.
4. Concluding remarks

Overall, molecular coevolution as the maintenance of the bind-
ing free-energy of interacting proteins leads their physically cou-
pled amino-acids to store the largest per-contact mutual
information at rc* � 8.0 Å, with a significant fraction of the infor-
mation resulting from coevolutive sources alone. In the present
formulation, coupled amino acids are related to the smallest
degeneracy of native-like MSA models and, therefore, to the largest
expectation fraction of PPI matches across such models. These find-
ings hold against any other definition of protein contacts, either
across a variety of limitrophe distances discriminating coupled
and uncoupled amino acids or alternative binding interfaces in
docking decoys. Although presented for the protein complex
TusBCD, results and discussion also extent to other protein sys-
tems, including obligate and non-obligate dimers, as shown in sup-
plementary Figs. S1 through S4 (cf. SI).

Advances in PPI prediction [14–18] are highly welcome in the
contexts of paralog matching, host-pathogen PPI network predic-
tion and interacting protein families prediction. Recent studies
suggest strategies like maximizing the interfamily coevolutionary
signal [14], iterative paralog matching based on sequence ‘‘en-
ergies” [15] and expectation–maximization [18], which have been
capable of accurately matching paralogs for some study cases.
Despite these advances, the problem of PPI prediction remains
unsolved for sequence ensembles in general, especially for proteins
that coevolve in independent genomes though likely resulting
from the same free-energy constraints – examples are phage pro-
teins and bacterial receptors, pathogen and host-cell protein, neu-
rotoxins and ion channels, to mention a few. Accordingly, to add
efforts in the field, we have addressed the following questions in
our study: knowing three-dimensional amino-acid contacts from
x-ray crystal structures, what would be the information encoded
by them in terms of stochastic, evolutive and coevolutive sources,
and what would be the utility of such pieces of information in
resolving PPIs from ‘‘scrambled” multi-sequence alignments. Since
the Direct Information derived from modern coevolutionary
approaches [19,22] already filters out most of the information
sources, the decomposition as proposed here does only make sense
by considering the Mutual Information embodying unfiltered
information. In this regard, it is worth emphasizing that our goals
are neither the resolution of pair of residues highly-correlated via
direct physical coupling [19,22] nor to provide with a method for
prediction of protein-protein interactions and interfaces [26,27].

Although our study is not aimed at providing an approach for
PPI prediction, the largest amount of non-stochastic information
available in primary sequences helpful to differentiate MSA models
with the largest expectation fraction of sequence matches as found
here, might be of practical relevance in search of more effective
heuristics to resolve protein-protein interactions from ‘‘scrambled”
multi-sequence alignments. When compared to evolutive sources,
that information is the strongest signal to characterize protein
interactions derived from cospeciation and likely, the unique indi-
cation in case of coevolution without cospeciation as the non-
stochastic information of uncoupled amino acids must vanish in
independent proteins – indeed, low information between amino
acid positions of multiple sequence alignments is typically indica-
tive of independently evolved proteins. Developments of more
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effective heuristics based on that signal would be applied for reso-
lution of the more general problem of PPIs under coevolution in
independent genomes, providing us with a highly welcome
advance in the field.

We believe the results are of broad interest as the stability prin-
ciples of protein systems under coevolution must be universal,
either under cospeciation or in independent genomes. We there-
fore anticipate that decomposition of evolutive and coevolutive
information imprinted in physically-coupled and uncoupled amino
acids and evaluation of their potential utility in resolving MSA
models in terms of degeneracy and fraction of PPI matches should
guide new developments in the field, aiming at characterizing pro-
tein interactions in general.
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