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Multiarm trials with follow-up on participants are commonly implemented to
assess treatment effects on a population over the course of the studies. Dropout
is an unavoidable issue especially when the duration of the multiarm study is
long. Its impact is often ignored at the design stage, which may lead to less accu-
rate statistical conclusions. We develop an optimal design framework for trials
with repeated measurements, which takes potential dropouts into account, and
we provide designs for linear mixed models where the presence of dropouts is
noninformative and dependent on design variables. Our framework is illustrated
through redesigning a clinical trial on Alzheimer's disease, whereby the bene-
fits of our designs compared with standard designs are demonstrated through
simulations.
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1 INTRODUCTION

Clinical trials often involve several follow-up events for studying the impact of treatment regimes on subjects over the
course of the trial. In recent years, multiarm designs have become more prominent than two-arm trials as the former
design recruits one control group and several treatment arms in a single trial, leading to gains in efficiency for the overall
study. However, the issues caused by the presence of dropouts are unavoidable in multiarm trials with follow-up, especially
when the course of the study is long. It is common practice to tackle the presence of dropouts by scaling up the effective
total sample size of the study, independently of the design. If the control group has significantly more dropouts than other
treatment groups, statistical inference on pairwise treatment-control comparisons might still be distorted.

Assuming that repeated measurements on the same patients are independent, which may not be realistic,
Galbraith et al1 investigate power calculations for a longitudinal study in the presence of dropouts. In the literature on
design of experiments, some authors2-5 investigate the robustness of designs to missing values; others account for the
presence of missing responses in the respective design criteria.6,7 There are optimal design frameworks for regression
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models in the presence of responses missing at random8,9 and in the presence of responses not missing at random.10 The
attention on a design framework for multiarm studies with repeated measurements is rather limited, with only one study
taking dropouts into account. However, this is a longitudinal study with only one group of participants to be followed-up
throughout the course of the study.5 Assuming completely observed data, several authors11-13 focus on optimal design
methodology for linear mixed models with a fixed number of time points for a longitudinal study.

A key feature of an optimal experimental design is its cost efficiency. For a fixed trial budget, an optimal design will
provide the largest possible amount of information from the data. If a D-optimal design assuming all responses will be
observed is used, it has been noted that “… researchers can easily compensate for such a small efficiency loss by increasing
the sample size by at most 15%.”5 However, in many situations a 15% increase in sample size can already incur considerable
extra costs, and there are further ways to make a clinical trial design even more efficient. In our investigation, we redesign
a study14 assuming a fixed budget and realistic relative costs of recruiting a new participant versus measuring an existing
participant at a further time point, thus finding the cost-optimal number of time points for the study in addition to the
optimal locations of these time points.

We propose an optimal design framework for trials/studies that involve multiple groups of participants and several
follow-up sessions, whereby linear mixed models with some pragmatic design constraints are considered as well as the
presence of dropouts. By definition, a dropout refers to an experimental unit whose information is not being observed
further once the outcome variable on the subject is not being measured at a time point. We consider noninformative
dropout that depends on design variables, such as time of follow-up visits, in our investigation. We assume at the design
stage of the study that a linear mixed model will be fitted to the incomplete data using the available subject data, ie, all
observed responses of subjects during the study. This missing data analysis approach is appealing for its simplicity of
application and as it makes inferences based on all the observed data. Moreover, likelihood-based inference yields valid
conclusions in this framework when missing responses are noninformative.15-18

Our framework presents a more general approach to finding optimal designs over previously proposed approaches and
allows differential missingness between different treatment groups. This framework also considers more complex design
problems where a design consists not only of the optimal time points to measure subjects but also of other decision vari-
ables such as the number of time points (if using a fixed cost constraint) and the optimal allocation of dose levels of a drug.
We have thus unified the approaches that consider a single cohort longitudinal study with dropouts,5 without dropouts,11

and studies with more than one group of participants,13 while additionally incorporating cost and drug dose level con-
siderations. In other words, our framework could provide optimal designs for longitudinal observational studies as well
as for multiarm studies with follow-ups. Furthermore, our framework could include more sophisticated and pragmatic
design considerations. In an unblinded trial setting, we investigate the designs where different groups of participants
could have different time points versus designs where everyone is measured at the same time points. This work fills an
important gap by incorporating practical design settings in the framework such that practitioners could find and explore
the operating characteristics of various potential optimal designs before the implementation of a design. In addition, to
our knowledge, there has been no optimal design framework that seeks to simultaneously optimize dose levels of a drug
together with optimizing follow-up time point measurements. This is a key contribution of our work and would be useful
for practitioners that seek to both learn about dose-response relationships and performance of different dose groups over
time within a given study.

The structure of this paper is as follows. Section 2 introduces the concept of linear mixed models and the notion of
dropout, as well as depicting the optimal design framework for multiarm studies that have more than one measurement
observed on the same experimental units over the course of the trial. Section 3 then derives the optimal design frame-
work in the presence of dropouts. Section 4 revisits a trial on Alzheimer's disease14 to construct optimal designs through
the derived framework, using the information from the study to elicit the dropout probability functions and the model
parameters. Here, the main focus is on finding the design that provides the most information on a fixed budget. We use
simulations to compare the performance of the designs. Section 5 concludes this paper with some discussion and research
directions for future work.

2 BACKGROUND AND NOTATIONS

2.1 General linear mixed models
We now present the general formulation of a linear mixed model. Please note, while we define all notations used in the
text at the time of introduction, for convenience, we also present a glossary in the Appendix that explains all the notations
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used within this paper. Let yT
i = (𝑦i1, 𝑦i2, … , 𝑦iq) be the q repeated measurements of subject i, i = 1, … ,N. The responses

of subject i can be represented by the linear mixed model

yi = Xi𝜷 + Zibi + 𝛜i,

where 𝜷 is a vector of unknown fixed parameters, Xi and Zi are design matrices, bi is a vector of unknown random coeffi-
cients that is normally distributed with mean zero and covariance matrix D, ie, bi

iid∼ N(0,D), and 𝛜i = (𝜖i1, 𝜖i2, … , 𝜖iq)T is
a vector of observational errors that is normally distributed with mean zero and covariance matrix 𝜎2𝚿, ie, 𝛜i

iid∼ N(0, 𝜎2𝚿).
Moreover, bi and 𝛜i are assumed to be independent, i = 1, … ,N. When we find an optimal design, we conjecture the
structure of 𝚿, leading to a locally optimal design; see Section 2.4.

The maximum likelihood method provides an unbiased estimator for the fixed effect parameters 𝜷 of the linear
mixed model, ie, �̂� = (

∑N
i=1 XT

i V−1
i Xi)−1 ∑N

i=1 XT
i V−1

i yi, with covariance matrix cov(�̂�) = (
∑N

i=1 XT
i V−1

i Xi)−1, where
Vi = ZiDZT

i +𝜎2𝚿 is the covariance matrix of yi and
∑N

i=1 XT
i V−1

i Xi is called the Fisher information matrix. Note that this
information matrix is summing the individual information that is being contributed by each experimental subject, and
can be reexpressed as

N∑
i=1

XT
i V−1

i Xi =
c∑

k=1
nkXT

k V−1
k Xk = N

c∑
k=1

wkXT
k V−1

k Xk, (1)

where we assume that units are allocated into c groups with the same values of the design variables in each group. We
can then denote Xk to be the unique design matrix of the kth group, where k = 1, … , c, with nk (wk = nk∕N) reflecting
the number (proportion) of experimental units in group k, respectively.

2.2 Dropout mechanisms
We now illustrate the classification of dropout processes.19 Let yij denote the jth measurement taken for subject i, where
i = 1, … ,N and j = 1, … , q. Similarly, denote a binary missing data indicator lij where lij = 1 denotes yij is missing
and lij = 0 denotes yij is observed. The missing responses are said to be completely random drop-out if P(lij = 1) is
a constant ∀i, j; random drop-out if P(lij = 1) only depends on observed information; and informative drop-out if the
drop-out process depends on unobserved measurements or the missing value itself. The presence of informative drop-out
is more complicated than the presence of other processes and it often requires special treatment and sensitivity analysis
based on the incomplete data. Techniques for the analysis of incomplete data with dropout are available.20 We note that
the analysis techniques are not the key interest of our investigation as we focus on finding a design prior to observing a
study or an experiment. Nevertheless, the power of a study would be reduced if the dropout proportion is not accounted
for at the design stage of the study.

In this paper, we investigate the role of noninformative, covariate, and group dependent dropout processes at the design
stage of a study. Let nk,j be the number of subjects in group k who remain in the experiment at time point j. A dropout
process would cause nk,1 ⩾ nk,2 ⩾ · · · ⩾ nk,q. For j < q, we have gk,j = nk,j − nk,j + 1 units who have exactly j measurements
observed and q − j measurements missing, and gk,q = nk,q are the number of subjects with no missing data. At the design
stage, the exact rate of dropout will not be known and so nk,j and thus gk,j are treated as random variables. In what follows,
we denote the probability of having a response observed on a subject in group k at time point j by pk,obs(tkj, 𝛿k), where tkj
and 𝛿k are the jth follow-up time point and treatment dose of group k. The dropout process is noninformative in the sense
that it depends on, for example, which treatment the subject receives, and at which time point, but not on any unobserved
quantity. Denote E[gk,j] by mk,j, then

E[gk,𝑗] = mk,𝑗 =

{
Nwk pk,obs(tk𝑗 , 𝛿k), if 𝑗 = q,
Nwk pk,obs(tk𝑗 , 𝛿k) − Nwk pk,obs(tk𝑗+1, 𝛿k), if 𝑗 < q,

(2)

where Nwk is the number of subjects originally allocated to group k. The probabilities {pk,obs(tk1, 𝛿k) − pk,obs(tk2, 𝛿k), … ,

pk,obs(tkq− 1, 𝛿k) − pk,obs(tk2, 𝛿k), pk,obs(tkq, 𝛿k)} could be considered as the event probabilities of a multinomial distribution.

2.3 Optimal design framework
In the absence of missing responses, a design framework for the linear mixed model constructs an optimal design by
finding the setting of design matrix Xk such that a function of the Fisher information defined in (1) is optimized over a
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design region. Considering the available subject data used in available case analysis, ie, all observed responses of subjects
who may or may not dropout at later time points, and the impact of dropouts, the Fisher information can be written as

c∑
k=1

q∑
𝑗=1

gk,𝑗XT
k[𝑗]V

−1
k[𝑗]Xk[𝑗],

where Xk[j] denotes the subdesign matrix of a subject in group k measured up to the jth time point. As the Fisher infor-
mation is inversely proportional to the variance-covariance matrix of the model parameters, it is common to maximize a
function of the Fisher information that corresponds to minimizing the corresponding function of the variance-covariance
matrix. A commonly used criterion is to maximize/minimize the determinant of the information/variance-covariance
matrix that is typically referred to as D-optimality. However, at the planning stage of the experiment, the observed values
of gk,j, k = 1, … , c, j = 1, … , q, are not available. So, we aim to maximize a function of the expected information matrix
instead, ie,

E

[ c∑
k=1

q∑
𝑗=1

gk,𝑗XT
k[𝑗]V

−1
k[𝑗]Xk[𝑗]

]
=

c∑
k=1

q∑
𝑗=1

mk,𝑗XT
k[𝑗]V

−1
k[𝑗]Xk[𝑗].

We note that taking the inverse of this matrix does not give the expected variance-covariance matrix. However,
Galbraith et al1 found that, in a single cohort study with equally spaced measurements, this simple approximation gives
similar results as more complicated approximations to the variance-covariance matrix. For moderate to large sample sizes,
this was confirmed by Lee et al9 for studies without repeated measurements. Also, using this simple approximation in a
single cohort longitudinal study, Ortega-Azurduy et al5 investigated the loss in efficiency of D-optimal designs that were
found assuming the complete data set would be observed, when in fact, dropouts occurred. Hence, we will also use the
inverse of the expected Fisher information to approximate the variance-covariance matrix.

Here, we propose a more comprehensive design framework for studies with repeated measurements where more than
one group of experimental units are considered in the experiment. This is a common occurrence in most clinical studies
where there will be two or more groups followed up, eg, placebo and treatment. Sections 2.3.1 and 2.3.2 derive the relevant
framework.

2.3.1 Optimal designs when baseline measurements are comparable
In this section, we assume that the experimental units are recruited from a homogeneous population where different
groups of units have comparable baseline measurements at the onset of the study. An example of this type of study is
to investigate the efficacy of different treatments over time on subjects who have the same health status. We consider a
special case of the linear mixed model where a group indicator matrix, Ki, is incorporated in the model formulation, giving

yi = X iK i𝜷 + Zibi + 𝝐i,

as the repeated measurements of subject i. In what follows, we refer to this model as Mg. Schmelter13 uses similar models
to find optimal designs for linear mixed models but does not take dropout into account.

To fix ideas, if there are two groups in an experiment, corresponding to, eg, placebo and an active treatment, and the

regression function is linear in time, Mg has K i =
(

1 0 0
0 1 0

)
if experimental unit i is in group 1; otherwise, K i =

(
1 0 0
0 0 1

)
,

giving for the observation at the jth time point

(X iK i𝜷)𝑗 =

{
𝛽0 + t1𝑗𝛽1, if experimental unit i is in group 1,
𝛽0 + t2𝑗𝛽2, if experimental unit i is in group 2,

with random effects (Zibi)j = b0i + tkjb1i, k = 1, 2. The slope parameters 𝛽1 and 𝛽2 reflect the effect on responses of group
1 and group 2, respectively, due to a unit change in time; (Zibi)j reflects the response variability of subjects in different
groups at time point j.

To construct an optimal design for this special case of the linear mixed model, we seek an optimal design

𝜉∗ =
{

t′𝟏 t′𝟐 · · · t′c
w1 w2 · · · wc

}
(3)

that optimizes a function of
c∑

k=1

q∑
𝑗=1

mk,𝑗KT
k XT

k[𝑗]V
−1
k[𝑗]Xk[𝑗]Kk (4)
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over the design region of possible time points, 𝔛, and the weights wk, where t′k = {tk1, tk2, … , tkq} is the optimal allocation
of unique time points for measuring an outcome variable on group k, k = 1, … , c, and mk,j, a function of wk, is obtained
from (2). The optimization is subject to the constraints

tk1 < tk2 < · · · < tkq (5)

and

0 ≤ wk ≤ 1, k = 1, … , c,
c∑

k=1
wk = 1. (6)

Note that in order to implement such a design, the weights wk, k = 1, … , c, may need to be rounded such that Nwk is an
integer for all k = 1, … , c. The more relaxed condition (6) is commonly used in the optimal design literature to facilitate
numerical design search. A design found under (6) is referred to as an approximate design, whereas a design where all
Nwk's are integers is called an exact design.

2.3.2 Extension to incorporate additional design variables
In some scenarios, the experimental conditions of different groups are reflected by a continuous explanatory variable 𝛿

whose levels can be set by the experimenter. Consider, for example, a treatment that is a dose of a new drug. Although in
practice, each participant in the study could have a unique dose level, typically the experimenter would assign individuals
to c distinct values of the dose of the drug including placebo (ie, when the dose equals 0). We assume that the values of the
dose can be selected from within some dose range, eg, between placebo and maximum tolerated dose. In this situation,
the variable “dose” becomes part of the design, and it may be possible to increase the amount of information to be gleaned
from the data by an efficient selection of the doses as well as the time points. Note that we can also treat all individuals
receiving the same value of a dose as belonging to a group and allow each group's set of optimal time points to differ,
as described in the previous section. In addition, the probability of observing a response at a given time point may also
depend on the dose the patient received. In this section, we extend our design framework to incorporate this scenario.

In the simplest example, the jth repeated measurement of subject i who is assigned a dose value of 𝛿k, where k ∈
{1, … , c}, is

𝑦i𝑗 = 𝛽0 + tk𝑗𝛽1 + 𝛿k𝛽2 + b0i + tk𝑗b1i + 𝜖i𝑗 ,

where 𝛽0 is the intercept, 𝛽1 is the effect on responses of subjects due to a unit change in time, 𝛽2 is the effect on responses
due to a unit change in dose, and {b0i, b1i} are random effects. We refer to this model as Md. This model can easily be
extended to include, for example, a dose-time interaction effect to incorporate the possibility that different doses may
affect the responses differently over time, but we will consider Md for illustrative purposes in what follows.

Denote the design matrix of this linear mixed model by Xk(t, 𝛿). A design problem is then to find

𝜉∗ =
{(

t′𝟏, 𝛿1
) (

t′𝟐, 𝛿2
)

· · ·
(

t′c, 𝛿c
)

w1 w2 · · · wc

}
, (7)

where the elements, 𝛿k, reflect the experimental conditions of group k, k = 1, … , c, such that a function of the matrix
c∑

k=1

q∑
𝑗=1

mk,𝑗XT
k[𝑗](t, 𝛿)V

−1
k[𝑗]Xk[𝑗](t, 𝛿) (8)

is optimized over the design regions, ie, the design region of time points, 𝔛, and wk, the weight for group k, as well as the
design region of 𝛿. Similar to the model in Section 2.3.1, mk,j is obtained from (2), and this design problem is subject to
constraints (5) and (6).

2.4 Locally optimal designs
Having chosen the number of groups, c, the number of repeated measurements, q, and the structure of Vi, the covariance
matrix of yi, for a chosen formulation of the linear mixed model, a design problem is to find the time points of measuring
an outcome variable on the groups and the proportion of units to allocate to each group, such that a function of the
corresponding information matrix is optimized over the design region 𝔛 (and the design region of 𝛿 if 𝛿 is also to be
optimized in the design problem of the model introduced in Section 2.3.2). In practice, the structure of Vi is not known at
the design stage of an experiment. To construct an optimal design for a future experiment, we employ the notion of locally
optimal designs. The structure of Vi can be estimated using some historical data or the information that is obtained from
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some pilot studies. Moreover, the experimenters need to specify some MAR mechanisms for the different groups prior to
finding an optimal design for a study with follow-up/repeated measurements.

In addition to the assumption that experimental units are identical and independently distributed, we assume that 𝛜i
and bi are independent and that a first-order autoregressive process, AR(1), is chosen for 𝛜i to capture serial correlation.
The AR(1) process has parameter 0 < 𝜌 < 1 and covariance structure with elements 𝝍(t𝑗 , t𝑗′ ) = 𝜌|t𝑗−t𝑗′ |. This process is
often used to model time series for experiments where observations measured closer together in time are more correlated
than those measured further apart. On the other hand, the random effects bi reflect the between person variation, ie, how
individuals behave distinctly in the population. By fixing the covariance matrix of bi, we can find locally optimal group
designs for different classes of the above described linear mixed models.

For example, consider a linear regression model with a random intercept and slope denoted by bi = (b0i, b1i)T with
covariance matrix

D =
(

var(b0i) cov(b0i, b1i)
cov(b0i, b1i) var(b1i)

)
=
(

d11 d12
d12 d22

)
,

a fixed effects model has a zero matrix for D; a random intercept model has d11 > 0, d22 = d12 = 0; a random intercept
and slope model has d11 > 0, d22 > 0, d12 = 0; and a correlated random intercept and slope model has d11, d22 >

0, d12 ≠ 0.
Together with the fixed effects, XiKi𝜷 for model Mg that has the same baseline measurements for different groups, or

Xi(t, 𝛿)𝜷 for model Md where groups additionally depend on a continuous design variable, we can consider the profile of
locally optimal time points to measure units' responses for a range of different 𝜌 ∈ (0, 1) by optimizing a function of the
corresponding information matrix. We note that, often, a numerical optimization procedure is required to find a solution
to the design problem.

3 OPTIMAL DESIGNS IN THE PRESENCE OF DROPOUTS

The novelty of this work focuses on two aspects when finding a design for a future experiment/study. Firstly, for a study
that employs model Mg, we propose to consider two scenarios when finding an optimal design: (1) all experimental units
are restricted to have the same set of time points of measuring the outcome variable and (2) different groups are allowed
to have different sets of time points of measuring the outcome variable. These can be done by restricting all t′k to be one
set of time points in the design problem for scenario (1) and by setting all sets of t′k as free variables to be searched in the
optimization problem for scenario (2). In other words, the restricted design condition forces the time points in XiKi𝜷 to be
the same for all experimental units whereas the flexible design condition allows the time points in these design matrices
to be different for different groups. The former setting is often used in a blinded trial or longitudinal observational study
whereas the latter condition could be implemented in an open label/unblinded trial where clinicians and experimental
subjects know the administered treatment. Secondly, we propose to optimize the treatment dose levels for a trial that
employs model Md when the clinicians have the freedom to do so. In this case, we consider the restricted design condition
where all subjects are measured at the same set of time points to conform with common practice. We note that model
Mg would not have the flexibility for optimizing the dose levels from a design perspective when the dropout mechanism
depends on both the time point of follow-up measurements and treatment dose level.

In this section, we illustrate these aspects by considering an experiment that has c = 2 and q = 4 in each of the two
groups and that both special cases of the linear mixed model have fixed effects {𝛽0, 𝛽1, 𝛽2} and random effects {b0i, b1i}.
Note that the interpretation of the fixed effect parameters for both types of models is different and that the class of lin-
ear mixed model is determined by the values of the covariance matrix D. For each class of the linear mixed model, we
employed d11 = 1, d22 = 3, d12 = 0.8

√
3, respectively, unless the model required some (or all of these) to be set to 0, to

study the profile of the optimal time points across a range of 𝜌 from 0 to 0.9 in step sizes of 0.1. These values are chosen for
ease of comparison with the literature.5 The results presented here are found by using the function fmincon in MATLAB,
whereby different sets of initial values are employed to verify the locally optimal design.

3.1 Designs with time dependent dropouts
We now present the application of our design framework for model Mg. An example of a design problem is to find t′1 =
(t11, t12, t13, t14), t′2 = (t21, t22, t23, t24), and w1, such that the determinant of (4) is maximized over the design region of time
points. The design problem is subject to constraints (2), (5), (6) and the flexible/restricted design condition on the time
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points. Note that maximizing the determinant of (4) is equivalent to minimizing the determinant of the covariance matrix
for the estimator of the population parameter vector �̂� and is defined as D-optimality.21

For better comparability of our results with the literature that did not account for the presence of dropouts,5,11 and the
work that investigated the efficiency loss of D-optimal designs due to the presence of dropouts in a longitudinal study
with one cohort,5 we consider the standardized time design region [ − 1, 1] that reflects the interval between follow-up
visits in this illustration. We consider 𝜎2 = 1, a linear response probability function

p1,obs(t, 𝛿1) = 0.65 − 0.35t, (9)

and a quadratic response probability function

p2,obs(t, 𝛿2) = 0.5 − 0.35t + 0.15t2, (10)

to capture the presence of missing responses in a group. With this missing mechanism, subjects in group 1 are more
likely to be observed for longer than subjects in group 2. We note that our design framework is compatible with a wide
class of noninformative dropout mechanisms that have monotone response probability functions. We conjecture that
Ortega-Azurduy et al5 considered these less commonly used response models for ease of satisfying constraint (2) in the
design framework, whereby the sum of event probabilities must equal to one. When a response model that does not satisfy
this constraint over the time design region is used in our design framework, we resolve this conflict by not optimizing
the first two time points whereby they must be chosen by the experimenter, and truncate the time design region to find
tk3, … , tkq− 1. See Section 3.2 for illustration.

To find the optimal time points, we choose the lower bound of the time design region as the first time point for both
groups, ie, t11 = t21 = −1 in this example, because it has the highest response probability rate over the region; and choose
the upper bound as the last time point, ie, t14 = t24 = 1, for practical reasons (eg, pre-selected end of study time). The

FIGURE 1 The middle two D-optimal time points for model Mg with c = 2, q = 4, restricted design condition (top row) and flexible
design condition (bottom row), respectively. In the bottom plots, Group 1 (blue dotted lines) has quadratic response probability function (10);
Group 2 (red dashed lines) has linear response probability function (9) [Colour figure can be viewed at wileyonlinelibrary.com]

http://wileyonlinelibrary.com
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TABLE 1 Maximum/minimum optimal weight, w1, for the group with
quadratic response, found under the restricted and the flexible design condition,
respectively, for model Mg (corresponds to the optimal designs in Figure 1)

Flexible Restricted
Max w1 Min w1 Max w1 Min w1

FE 0.5000a 0.4821 0.5000a 0.4828
RI 0.4981 0.4901 0.5000a 0.4878
RIRS 0.4921 0.4624 0.4921 0.4781
RIRSc 0.4907 0.4761 0.4907 0.4773

Abbreviations: FE, fixed effects model; RI, random intercept model; RIRS, random
intercept and slope model; RIRSc, correlated random intercept and slope model.
aThese maximum weights are obtained for 𝜌 = 0.

middle time points of measuring the outcome variable on the groups and the corresponding weights can be found by
using optimization algorithms.

The x-axis on the plots in Figure 1 shows the second and the third time points of locally D-optimal designs for various
versions of model Mg, with quadratic response probability function (10) in one group, and linear response probability
function (9) in the other group. Each plot in Figure 1 corresponds to the middle time points of the optimal designs for
each class of the models; the pair of dotted lines in the first row of plots correspond to the second and third time points
assuming both groups are measured at the same set of time points (scenario 1); the two pairs of lines in the second row of
plots correspond to the sets of time points of measuring the outcome variable in each group, which are found assuming
these can differ between groups (scenario 2). The y-axis in each plot shows the considered value of 𝜌 (with 0.1 between
each case) in the design problems.

Looking at the trend of the time points, we find that the optimal time points for the experiments with the two response
probability functions do not converge to the equidistant design as 𝜌 approaches to one, in particular for the model with
independent random intercept and slope parameters, and the model with correlated random intercept and slope param-
eters. To be more specific, consider the second row of plots in Figure 1, we find that the optimal time points of measuring
the outcome variable on the experimental units who remain longer in the study, ie, the group with the linear response
probability function, are larger than those of the subjects who are expected to be dropping out earlier from the study,
ie, the group with the quadratic response probability function. Intuitively, this is reasonable as we would like to observe
units' follow-up measurements before they drop out. Comparing the first and second rows of plots, we learn that there
may be considerable differences between the optimal time points in different groups that are found under the respective
design conditions. Hence, when planning a study in practice, it should be investigated if using different time points for
different groups is feasible (eg, would not violate double-blindness) since it would increase the amount of information
that can be gathered from the data.

We now consider the weights of the locally D-optimal designs for the above described experiment, ie, the proportions of
experimental units allocated to each group. Table 1 shows the maximum and minimum weights across the 10 considered
cases of 𝜌, 0 ≤ 𝜌 ≤ 0.9 (and difference of 0.1 between each case). For the experiments with 𝜌 > 0, the design framework
maximizes the expected total information by having more experimental units in the group that has a higher response
rate within the time region, ie, the group that has the linear response probability function (red dashed line) in the plots
in Figure 1, respectively. On the other hand, for the experiment with 𝜌 = 0 in scenario 1, the locally D-optimal designs
for the corresponding fixed effect models and the random intercept models have w1 = 0.5 = w2. This is because all the
experimental units have the same response rate at the third/fourth optimal time points, ie, at the end points of 𝔛 (see the
first two plots from the left in the first row of plots in Figure 1). The same reason also applies to the locally D-optimal
design for model Mg with fixed effect parameters and 𝜌 = 0 in scenario 2 (see the first plot from the left in the second
row of plots in Figure 1).

3.2 Designs with time and dose dependent dropouts
We now present the application of our design framework for model Md where we have the flexibility to additionally choose
the dose levels, which we treat as comparative groups in the trial, while also simultaneously assessing the effect of dose
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on the outcome. We restrict t′2 = t′1 in this illustration for ease of presentation and consider a response model

pobs(t, 𝛿) =
1

1 + exp(𝛾0 + 𝛾1𝛿 + 𝛾2t)
,

with 𝛾1 < 0 and 𝛾2 > 0, so that the response rate of subjects increases with dose level and decreases with time. In the
situation where the response rate decreases with dose level, we could choose 𝛾1 > 0 and 𝛾2 > 0 to reflect the elicitation
of the response rate. Furthermore, we could also include a dose-time interaction in the linear predictor above. The logistic
function, while commonly used in the literature to model missingness of responses, would never lead to the event prob-
abilities of the multinomial distribution in constraint (2) summing to one or, equivalently, would not result in observing
a response at time zero (baseline) with probability one. We resolve this issue by fixing the second time point of measure-
ments (in addition to the first measurement at time zero), and truncate the design region to optimize the remaining points
tk3, … , tkq, without normalizing them after an optimal design is found.

As an illustration, consider a one-year trial that examines the effect of a drug to treat Alzheimer's disease.14 Patients are
measured five times during the year, with the first measurement taken at baseline, ie, the start of the trial. We assume
without loss of generality that the dose levels could take values within a range of 0 (placebo) up to 100. We would choose
t11 = 0 (corresponds to baseline measurement at day 0) and t15 = 364 (corresponds to the end of the study), and then fix,
for example, t12 = 42 for the first follow-up visit after 1/4 year. The design problem is then to find t′1 = (t13, t14) in design
region (42, 364), and treatment dose levels 𝛿1 and 𝛿2 in [0, 100], such that the determinant of (8) is maximized over this
design region, subject to constraints (2) and (5). If the weight, w1, is not fixed to 0.5 in advance, the design problem would
also involve finding w1 and w2 subject to constraint (6). Consider 𝜎2 = 10, {𝛾0, 𝛾1, 𝛾2} = {0, − 3∕100, 3∕364} and the
corresponding values for matrix D that determine the respective classes of linear mixed models. We find optimal designs
by choosing t15 = 364 to reflect the pre-selected end of trial time, and 𝛿2 = 100 as it has the highest response probability
rate over the dose region. We find the middle time points of follow-up measurements, 𝛿1 and w1 (if it was not pre-chosen)
using fmincon in MATLAB.

Figure 2 shows the D-optimal settings for the above scenario on the x-axis of the plot. The first row of plots corre-
spond to the middle time points of the D-optimal designs for a range of 𝜌; the second row of plots corresponds to the
optimal 𝛿1; the third row of plots corresponds to w1 for the case in which w1 is not pre-selected in the design problem.
In all plots, blue solid lines correspond to the optimal design setting that has optimized w1; red dashed lines correspond
to the design problem where w1 = 0.5. The y-axis in each plot shows the value of 𝜌 (in steps of 0.1) in the design
problems.

Looking at the first row of plots, we find that the optimal time points are the same for both designs assuming equal or
unequal weights. Moreover, the optimal time points are far from an equal time interval design that would measure subjects
at approximately {42, 149, 256, 364} days after baseline measurements. If w1 is not pre-chosen in the design problem, we
find that a D-optimal design has w1 < 0.5 and smaller optimal 𝛿1 when compared to 𝛿1 of the optimal design that has
w1 = 0.5. The former finding agrees with the finding for model Mg that, in the presence of dropouts, having more subjects
from the group that has a higher response rate would increase the precision of the fixed effect parameters estimation. If
we insist in having equal sample size for both groups, having a larger dose than 0 would hopefully decrease the overall
dropout rate of that group.

4 APPLICATION: REDESIGNING A STUDY ON ALZHEIMER'S DISEASE

4.1 Background and exploratory analysis
We now illustrate our framework through an application using the data from the Alzheimer's disease study.14 The study14

considered the effectiveness of two drugs to treat Alzheimer's disease, donepezil and memantine, as well as receiving
both drugs. The study randomized patients into four groups given by a factorial design, with each group of patients fol-
lowed up at four subsequent times after baseline. Each patient had five measurements in each group at week 0, 6, 18,
30, and 52, respectively. The aim of the study is to explore the changes from baseline measurement in each group over
a period of 52 weeks. For illustration purposes, we only consider the experimental units in the placebo group and the
donepezil-memantine (treatment) group, who were included in the primary intention-to-treat sample. Here, we treat the
primary outcome measure, SMMSE score (higher score indicates better cognitive function), as the response variable of
our model. The total sample size of the data used in this illustration is N = 144 (72 in each group). By the end of the
study period, there were only 29 patients in the placebo group and 51 patients in the treatment group included in the
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per-protocol analysis, with some of them having been lost to follow-up during the course of the study. We consider time
in terms of days for both the response probability and the design. The original design, 𝜉ori, measures subjects at day 42,
126, 210, and 364 after the baseline measurement.

To illustrate our proposed framework, we assume an analyst is also interested in investigating the effect of the specific
dose level prescribed to patients on their cognitive function, as well as studying how their cognitive function changes over
time in the different dose groups. This results in adopting model Md as our analysis model and finding an optimal design
accordingly. We note that the simpler model Mg could be considered here as well, but this would not allow any optimal
dose allocation to be considered, and could potentially lead to a loss of information in learning about the dose-response
relationship. To find an optimal design, treating dose as a design variable to be optimized, we assume the design will have
two dose levels/groups. In the original design, this corresponds to the placebo and the treatment group. Without loss of
generality, we assume that the dose can take values on the interval [0, 100]. We see from the data that the treatment group
has less missing data than the placebo group. So, we set the upper optimal dose level to be 𝛿2 = 100, as was also the case
in the previous illustration. The optimal design then proceeds to find the optimal value of the lower dose level, 𝛿1, as well
as the weight to assign to each dose group, and the optimal time points at which to take measurements over the one-year
period. We assume initially that measurements will be taken at five time points over the one-year period (baseline plus
four further follow-up measurements) and assume that both dose groups will be observed at the same set of time points.
Furthermore, we assume the last measurement will be taken at the end of the trial period (one year) and that the first
follow-up measurement should not be taken too close to the baseline measurement to give the treatment some time to
(potentially) start showing an effect. In particular, we set the time range (in days), in which the three middle time points
must lie, to [42, 364].

As designs are locally optimal, we first use the lme function in the R software package to fit the SMMSE score to the two
groups' available data (n1 = 29 in placebo group and n2 = 51 in treatment group), to obtain a realistic scenario for which

FIGURE 2 First row of plots: middle two D-optimal time points for model Md; second row: optimal dose 𝛿1; third row: optimal weight w1.
The blue solid lines correspond to the optimal designs that involve choosing w1; the red dashed lines correspond to the optimal designs that
have pre-chosen w1 = 0.5 [Colour figure can be viewed at wileyonlinelibrary.com]

http://wileyonlinelibrary.com
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to design. We consider all four possible classes of model Md and three different temporal correlation structures within each
subject: no correlation, compound symmetry where 𝝍(t𝑗 , t𝑗′ ) = 𝜌 for t𝑗 ≠ t𝑗′ , and AR(1) as defined in Section 2.4. Table 2
presents Akaike information criterion (AIC) and Bayesian information criterion (BIC) values from the different models
fitted to the data. We find that the random intercept model with AR(1) correlation and parameter estimates {𝛽0, 𝛽1, 𝛽2} =
{8.939,−0.0866, 0.0146}, {�̂�, d̂11, d̂22, d̂12} = {0.3326, 2.6612, 0, 0}, and �̂�2 = 2.6132 has the smallest AIC and BIC values
among the possible classes of models. To obtain realistic response probability functions for the two groups, we use the
numbers of subjects who remain in the study over the period of 364 days14 to fit logistic regression models for the two
groups where the placebo group has 𝛿 = 0 whereas the treatment group has 𝛿 = 100. We obtain the following response
probability:

p̂obs(ti𝑗 , 𝛿) =
1

1 + exp(�̂�0 + �̂�1𝛿 + �̂�2ti𝑗)
,

with {�̂�0, �̂�1, �̂�2} = {−2.2332,−0.0131, 0.0100}, reflecting that the treatment group has a larger response rate than the
placebo group. These values can then be used to construct optimal designs. The type of fixed and random effects models
we have considered here are commonly used to analyze repeated measurement clinical trial data where there are likely
to be dependencies within an individual's measurements collected over time.5 In addition, the logistic model is a com-
monly used model to characterize missing data mechanisms18,22,23 and is a convenient model to use when seeking to fit a
regression model for binary response data.

4.2 Optimal designs, simulation study, and sensitivity analysis
We now determine an optimal design using the D-optimality criterion for model Md assuming a random intercept with
parameter values specified above. We denote this design by 𝜉∗D and it is presented in Table 3 together with the expected
number of subjects who have j observations/measurements, m𝛿,j, where j = 1, … , 5. The design would measure all
subjects at 42, 285, 356, 364 days, substantially different to time points used in the original design, denoted by 𝜉 ori in
Table 3. The design would also allocate n1 = 144 ∗ 0.42 ≈ 60 subjects in the placebo group and n2 = 144 − 60 = 84
subjects in the treatment group, again substantially different to the allocation used in 𝜉 ori. The design 𝜉∗D determines
𝛿1 = 0, ie, 𝜉∗D takes the bounds of the dose design region as the optimal values. This is because a value of 𝛾1 close to
zero was taken when constructing the design and so the optimal design chooses the bounds of the dose design region
in order to maximize the determinant of (8). Nevertheless, in other situations, other dose levels may be determined to
be optimal, or it may be the case that the practitioner would like to specify more than two dose levels for the design, eg,
if they think there is a more complex does response relationship, which should then also be reflected in the choice of
model.

In practice, the correct model for the data and true parameter values will not be known in advance of constructing
optimal designs. To address this, we perform a sensitivity analysis by considering alternative locally optimal designs based
on different model formulations and parameter values used to construct 𝜉∗D. Table 3 presents designs 𝜉∗D,RI , 𝜉

∗
D,RIS, and

𝜉∗D,RISc, which are D-optimal for the values {𝜌, d11, d22, d12} = {0.3326 × 2, (2.661 × 2)2, 0, 0}, {0.3326, 2.6612, 2, 0}, and
{0.3326, 2.6612, 2, − 1}, respectively. In other words, these optimal designs correspond to a random intercept model, a
linear mixed effect model with uncorrelated random intercept and slope parameters, and a linear mixed effect model
where the random parameters are correlated, but with parameter estimates different to those obtained from the data.
In particular, note that design 𝜉∗D,RI has the same model formulation as 𝜉∗D but is constructed using a different set of
parameters. A similar sensitivity analysis could be done when the dropout mechanism is uncertain, although we do not
present the investigation here.

We see that 𝜉∗D,RI would measure subjects at 42, 292, 349, and 364 days after baseline measurement that is very similar
to the optimal follow-up times resulting from 𝜉∗D. The optimal allocation to the two dose groups is also the same under
𝜉∗D,RI as 𝜉∗D. Both these optimal designs have t13 and t14 which are very close to the bounds of the time point design region
[42, 364], which might suggest that having one fewer time point might be more efficient. This will be explored more in the

TABLE 2 Akaike information criterion (AIC) and Bayesian information criterion (BIC) values for the different models fitted to
the data in Section 4.1. Compound symmetry (CS) and AR(1) refer to the serial correlation structure within subjects over time

FE FE CS FE AR(1) RI RI CS RI AR(1) RIRS RIRS CS RIRS AR(1)

AIC 2171.89 1972.30 1969.32 1972.30 1974.30 1961.31 1967.65 1969.65 1962.80
BIC 2187.73 1992.10 1989.12 1992.10 1998.06 1985.07 1991.41 1997.37 1990.53
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TABLE 3 Middle time points of D-optimal designs for several classes of model Md, t11 = t21 = 0,
t12 = t22 = 42, t15 = t25 = 364, w2 = 1 − w1. The optimal values of 𝛿 are the bounds of the design
region [0, 100], w1 is the optimal weight of the placebo group (𝛿1 = 0). Both groups are measured at the
same time points, m𝛿 = k,j, k = {0, 100}, j = 1, … , 5 is the expected number of subjects in group k who
have exactly j observed responses

t11 t12 t13 t14 t15 w1
m𝜹= 0,1 m𝜹= 0,2 m𝜹= 0,3 m𝜹= 0,4 m𝜹= 0,5 n1

m𝜹= 100,1 m𝜹= 100,2 m𝜹= 100,3 m𝜹= 100,4 m𝜹= 100,5 n2
Five Time Point Design, N = 144

𝜉 ori 0 42 126 210 364 0.5
Placebo group 10 10 14 24 14 72

Treatment group 3 4 7 24 34 72
𝜉∗D 0 42 285.2340 355.6943 364 0.4221
Placebo group 8 31 8 1 12 60
Treatment group 4 24 14 2 40 84
𝜉∗D,RI 0 42 292.2367 349.1291 364 0.4189

Placebo group 8 32 7 1 12 60
Treatment group 3 26 12 3 40 84
𝜉∗D,RIS 0 42 46.3915 153.7180 364 0.4865

Placebo group 10 0 13 33 14 70
Treatment group 3 0 6 30 35 74
𝜉∗D,RISc 0 42 46.3841 153.8501 364 0.4865

Placebo group 10 0 13 33 14 70
Treatment group 3 0 6 30 35 74

Four Time Point Design, N= 172
𝜉∗D,4 0 42 318.5670 364 0.4183

Placebo group 10 42 6 14 72
Treatment group 4 37 11 48 100
𝜉∗D,RI 0 42 322.3673 364 0.4154

Placebo group 10 42 5 14 71
Treatment group 4 38 11 48 101
𝜉∗D,RIS 0 42 137.3887 364 0.4865

Placebo group 12 13 43 16 84
Treatment group 4 5 37 42 88
𝜉∗D,RISc 0 42 136.9573 364 0.4865

Placebo group 12 13 43 16 84
Treatment group 4 5 37 42 88

next section. When a model with random intercept and slope is considered at the design stage of a study, the D-optimal
designs become qualitatively more different from the former designs. From Table 3, we see that 𝜉∗D,RIS and 𝜉∗D,RISc would
measure subjects at 42, 46, 154, 364 days after baseline measurements, with both allocating n1 = 144 ∗ 0.4865 ≈ 70
subjects in the placebo group and n2 = 144 − 70 = 74 subjects in the treatment group. In this example, 𝜉∗D,RIS and 𝜉∗D,RISc
are similar as the value of d12 = −1 is relatively small compared with the variances of the random effects. As with 𝜉∗D, all
designs choose the bounds of the dose design region, ie, 𝛿1 equals 0 in all cases.

We evaluate the performance of different designs through a simulation study. For a given design, we simulate

𝑦i𝑗 = 8.939 − 0.0866ti𝑗 + 0.01458𝛿i + b0i + 𝜖i𝑗 ,

where tij corresponds to the jth time point of measuring the outcome variable on subject i. Here, 𝛿i = 0 corresponds to the
placebo group, with size n1; 𝛿i = 100 corresponds to the treatment group, with size n2; 𝜖i𝑗 ∼ N(0, �̂�2�̂�), �̂�(t𝑗 , t𝑗′ ) = �̂�|t𝑗−t𝑗′ |,
and b0i ∼ N(0, d̂11). We have thus used model parameters estimated from the data above and thus design 𝜉∗D should
perform best. Missing values in the vector of observed responses of subject i, ie, yi = {yi1, … , yi5}, are introduced using
a multinomial indicator with the corresponding event probabilities computed by p̂obs(ti𝑗 , 𝛿) for each group.



LEE ET AL. 2761

TABLE 4 Simulation output of design comparison

var(�̂�0) var(�̂�1) var(�̂�2) |cov(𝜷)| RED(𝛏, 𝛏∗D) RED(𝛏, 𝛏∗D,4)
×10−1 ×10−7 ×10−5 ×10−12

𝜉ori, N = 144 1.524 18.06 2.104 2.828 0.8140 0.7448
𝜉∗D, N = 144 1.736 8.146 2.815 1.526 1 0.9150
𝜉∗D,RI , N = 144 1.745 8.175 2.829 1.544 0.9959 0.9113

𝜉∗D,RIS, N = 144 1.385 13.17 2.540 2.099 0.8990 0.8226

𝜉∗D,4, N = 172 1.477 8.440 2.433 1.169 1.093 1

𝜉∗D,RIS and 𝜉∗D,RISc are identical in this illustration.

For each of the different designs, we repeatedly simulate the incomplete data 100 000 times as described above. For each
incomplete data set, we compute the sample estimates for the fixed effect coefficients, {𝛽0, 𝛽1, 𝛽2} from the available cases.
The elements of cov(�̂�) are then estimated empirically using the sample estimates that are obtained from each simulated
data set.

Table 4 presents the empirical values of 𝑣𝑎𝑟(𝛽0), 𝑣𝑎𝑟(𝛽1), 𝑣𝑎𝑟(𝛽2), and |cov(�̂�)| from 100 000 simulated sets, as well as the
D-efficiency relative to 𝜉∗D (five time points), the final column will be explained in the next section. The relative D-efficiency

of a design 𝜉, with respect to a design 𝜉∗ is RED(𝜉, 𝜉∗) =
(|I𝜉∗ ||I𝜉 |

)1∕p
, where I𝜉 denotes the covariance matrix provided by

using the design 𝜉, and p is the number of fixed effect coefficients in the model.
As designs are obtained using D-optimality, we focus on |cov(�̂�)|. From Table 4, we see that 𝜉 ori performs poorly with

respect to this criterion. We find that the D-efficiency of the original design, 𝜉 ori, relative to 𝜉∗D is 0.814, implying that
approximately five replicates of 𝜉 ori would be as efficient as four replicates of the D-optimal designs, 𝜉∗D. When an optimal
design assumes the true structure of Vi but wrong values for 𝜌 and d11, we find that the efficiency loss is not significant;
an example of such a design is 𝜉∗D,RI that loses only about 0.4% D-efficiency relative to 𝜉∗D in the simulation. However, if an
optimal design assumed the wrong structure of Vi, the D-efficiency loss could be significant. In our illustration, this loss is
about 10% when 𝜉∗D,RIS or 𝜉∗D,RISc is used in the simulation instead of 𝜉∗D. Note, however, that all the derived designs perform
better than the original design, even the ones which have been obtained using a misspecified model structure. Similar
analysis could be conducted to study efficiency loss when using an optimal design that assumes different noninformative
dropout mechanisms.

4.3 Cost saving design
From Table 3, we can see that the derived designs (ie, designs other than 𝜉 ori) have two follow-up time points quite close
together. For example, 𝜉∗D and 𝜉∗D,RI have the fourth follow-up time point close to the fifth (end of study follow-up). There
is thus evidence to suggest that a design could have fewer follow-up time points without greatly suffering from a loss of
information. From a practical point of view, having fewer follow-up time points would reduce the overall cost of the study
and thus potentially allow more patients to be recruited. This may also reduce the chances that subjects may be lost to
follow-up.

We illustrate the benefit of employing an optimal design with a fixed budget where the trade-off is between the number
of time points of measurement and total sample size. Specifically, we assume that it costs approximately twice as much
to recruit a patient to the study (and take measurements at baseline) as it does to take a follow-up measurement. The
cost function ratio used here is a representative example and was obtained through email communication with one of
the authors of the original DOMINO study who compared testing and cost templates for a number of studies they had
previously done and also looked at the National Institute for Health Research costing templates. They concluded that
despite the variability, the relative cost is approximately 2 to 2.5, ie, to recruit a new patient into a study costs about 2 to 2.5
times the cost of an average follow-up visit (Prof C. Holmes, personal communication, February 20, 2017). Under these
conditions, the cost saving afforded from moving from a five-time-point to a four-time-point design (including baseline)
allows the possible number of patients to be recruited to the study to increase from 144 to approximately 172. As the costs
of recruiting patients and taking follow-up measurements should be known in advance of the trial, we do not consider
robustness to misspecification of the cost function here. However, we note that, if cost functions are liable to change
during the course of a very long longitudinal study that involves recruiting patients over a substantial period of time, then
a sensitivity analysis against different cost functions could be performed and a design chosen accordingly.
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The lower panel of Table 3 shows the corresponding D-optimal designs with four time points, but now based on an
overall sample size of 172 patients. In this case, 𝜉∗D,4 would have n1 = 72 subjects in the placebo group and n2 = 100
subjects in the treatment group, with follow-up measurements at 42, 319, and 364 days after baseline measurement.
The corresponding designs for 𝜉∗D,RI , 𝜉

∗
D,RIS, and 𝜉∗D,RISc, now assuming four time points and a sample size of 172, are also

presented here for completeness. As before, all designs select the bounds of the dose region, so 𝛿1 = 0.
We also evaluate the performance of 𝜉∗D,4 in the simulation study. The final column in Table 4 presents the D-efficiency of

all the designs considered relative to 𝜉∗D,4, the optimal design based on four time points and a sample size 172. We see that
𝜉∗D,4 outperforms all the competing designs. The original design, 𝜉 ori, would lose about 26% efficiency, the five-time-point
optimal designs for a random intercept model, 𝜉∗D and 𝜉∗D,RI , would lose about 9% efficiency and 𝜉∗D,RIS and 𝜉∗D,RISc would
lose about 18% efficiency. The loss of information by having one fewer follow-up measurement is more than compensated
for by the ability to increase the sample size, which leads to an overall increase in information. The cost ratios used
in this analysis are consistent with typical values associated with multiarm trials on Alzheimer's disease. We note that
practitioners could implement such analysis for a range of different cost scenarios to find the most suitable optimal design
for implementation. This section highlights the important role that optimal design techniques can play in obtaining the
most efficient design and hence the most information from the trial under fixed budget constraints.

5 CONCLUSION AND DISCUSSION

We have developed an optimal design framework in the presence of dropouts for a large class of linear mixed models
and have illustrated our methodology through assessing the optimal designs for two special formulations of the linear
mixed model, model Mg and model Md. In particular, our framework for model Md allows a design to be constructed,
which maximizes information about both the dose-response relationship as well as the relationship between different
dose groups over time, taking into account dropout, a hitherto uninvestigated problem. Our framework provides opti-
mal designs for multiarm studies with follow-ups and allows differential noninformative dropout processes for different
groups. Our framework accounts for dropout processes that are dependent on the design variables. This assumption is
more realistic since not only time but also the treatment may have an effect on dropout. Current literature5,11,13 could be
viewed as special cases of our framework. Moreover, for model Mg, we have studied two different experimental conditions,
ie, a restricted condition where all experimental subjects must have the same set of optimal time points of measuring
the outcome variable, and a flexible condition that allows for having different sets of optimal time points of measuring
the outcome variable on different groups. We found that, in some scenarios where the missing mechanisms of differ-
ent groups vary significantly, the flexible designs could be more efficient. So, we recommend their use in practice unless
this is prevented by conflicts with secondary objectives of the study or implementation issues such as double blinding
in a clinical trial. We note that this experimental condition could also be considered when finding an optimal design for
model Md.

We have applied our methodology to a real-world example by redesigning a clinical trial for Alzheimer's disease.14 To
this end, we investigated the design problem from two different angles. First, we generated optimal designs for the exact
scenario (five time points) of the trial under consideration and found that, if an optimal design had been employed in the
original study, almost 19% of the experimental effort (and thus experimental costs) could have been saved while obtaining
the same amount of information from the resulting data. The optimal designs for this scenario had several time points
clustered relatively close together, which may be impractical (repeated visits to the clinic at short time intervals). This
suggested that we may not need five time points for the trial. Hence, we investigated this problem within a cost-efficiency
framework and found that optimal designs with four time points and increased sample size such that the overall cost of
the trial is kept fixed can lead to more efficient designs, and thus more information to be gleaned from the data.

We have illustrated our methodology using D-optimality, as one of the most commonly used optimality criteria, which
reflects a situation where there is equal interest in estimating all mean model parameters accurately while treating the
variance components as nuisance parameters. In practice, the criterion that best reflects the purpose of the experiment
should be chosen. If there is more than one such objective, a compound criterion can be selected. In all these cases, our
methodology can be followed analogously, with the obvious adjustments to the numerical design search routine.

We have shown that the presence of dropouts has considerable impact on the locally optimal designs for studies involv-
ing multiple comparison groups and several follow-up sessions. Only locally optimal designs are available for the linear
mixed models as the dropout processes and the covariance structure of the repeated measurements are unknown at the
design stage of an experiment. Nevertheless, locally optimal designs are important as benchmarks, against which all other
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candidate designs can be assessed. Using data from historical/pilot studies, we can estimate the covariance structure as
well as the dropout processes for constructing an optimal design for a future study. In our investigations, we assume
an AR(1) process for the observational errors of the experimental subjects to capture the within-subject correlation. By
trying different sets of values for the variance of random coefficients, we find that the structure of D, ie, the covariance
matrix of random coefficients, rather than the values of its elements has more impact on the trends of the optimal time
points across the range of realistic values for the serial correlation parameter 𝜌. Section 4 illustrated the sensitivity anal-
ysis of different locally optimal designs using simulation. We note that further robustness checks could be performed
depending on the context. These include robustness to misspecification of the missing data mechanism, misspecifica-
tion of the serial correlation structure of the errors in the repeated measurements, and misspecification of the covariance
structure of random coefficients. If sensitivity analyses flag up a lack of robustness to different parameter values or mod-
els, a way to address this could be through an extension of our framework to Bayesian24 designs or maximin efficient12

designs.
For finding optimal designs, we have combined the concepts of cost functions based on financial considerations and

patient drop-out based on time and treatment. It might be interesting to also factor in a willingness to come function,
potentially based on the total number and on the frequency of visits. This could be estimated using historical trial data or
a questionnaire administered prior to the start of the trial. For example, some patients may find a large number of visits
or visits within a few weeks of each other excessive and may be less likely to attend all of them.

It has been our primary intention to propose a flexible framework for trial designs that allows the possibility for differ-
ent arms to have different designs. From our point of view, blinded trials could be less efficient than the flexible design
that has different schedules for different groups, in terms of collecting sufficient observations given the same resources
and potentially different dropout mechanisms. In this context, the flexible design can be viewed as a benchmark—the
best we can achieve, but not necessarily applicable in practice. Simulation studies could be conducted to investigate the
information loss of the restricted design for blinded trials, which might be negligible especially when the dropout mecha-
nisms of the two groups have similar characteristics. We recognize that, apart from blinding, there may be further reasons
for restricting both groups to have the same treatment regimen, eg, when interim analyses are planned or when testing
certain underlying assumptions between the two groups. We would argue that, if this was of primary interest, then this
should be reflected in the optimality criterion, ultimately leading to a different design. We do note that there is literature
that suggests that using a linear mixed model would not be adversely impacted by different designs in the different arms,
such as if there were unequal time points, eg, see the work of Hickey et al.25

For future research, we suggest considering the impact of an intermittent missing data pattern on the optimal designs for
linear mixed models. It may also be interesting to relax the usual convention5 of automatically selecting the pre-specified
end of trial as the latest time point for measurements. In particular, in the situation where dropout is high, an optimal
design may select an earlier time point to be the last time point, so that more responses could be observed at this earlier
time than at the end of the trial. This could be a feature of an adaptive trial in which the design could be adapted based on
interim analysis. In this case, the design framework would need to be extended to include interim updates on the model
parameters and hence update the design. Feasibility of this approach would, of course, depend on the research question
of the trial.

We note that other missing data analysis approaches, such as multiple imputation or pattern mixture models,17 could
also be applied to the longitudinal data for making inferences. Developing a design framework for these approaches
would be substantially more challenging. These problems have not even been tackled yet for the simpler setting of fixed
effects models. A further interesting extension of our work would be to consider generalized linear mixed models in the
presence of dropouts. The key challenge to considering these suggestions is to find (a good approximation to) the expected
information matrix (or to the covariance matrix) for the corresponding models, having accounted for the features of
the missing data analysis approach at the design stage of an experiment. Furthermore, more sophisticated optimization
algorithms might be required to solve the potentially considerably more complex optimization problems.
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APPENDIX

GLOSSARY

Table A1 presents an explanation for the notations used in this paper. Table A2 gives the details of the class of models
considered in this paper. Table A3 explains the restricted and flexible design conditions. Tables A4 and A5 explain the
definition of models Mg and Md, respectively.
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TABLE A1 Notation used in this paper

Notation Definition Assumption

yT
i = (𝑦i1, 𝑦i2, … , 𝑦iq) q repeated measurements of subject i. There are N subjects: i = 1, … ,N

𝛿k Treatment dose of group k. Could be continuous or categorical.
The number of groups, c, is pre-specified.

t′k = {tk1, tk2, … , tkq} A vector of q time points of a subject in group k. The number of time points, q, is pre-specified.

tk1 < tk2 < · · · < tkq

wk Proportion of subjects in group k. 0 ≤ wk ≤ 1,
∑c

k=1 wk = 1.
𝜷 A vector of fixed effect parameters. Unknown values that are estimated by the

maximum likelihood method.
Xi (Fixed effect) design matrix of subject i. Could depend on t′k and 𝛿k.

Zi (Random effect) design matrix of subject i. Could depend on t′k and 𝛿k.

bi A vector of random effect parameters of subject i. bi follows a multivariate normal distribution
with mean zero and covariance matrix
D; bi, i = 1, … ,N, are independent
and identically distributed.

D Covariance matrix of random coefficients bi. Can be conjectured at design stage, using
eg, historical studies.

𝛜i A vector of observational errors of repeated 𝛜i follows a multivariate normal distribution
measurements on subject i. with mean zero and covariance

matrix 𝜎2𝚿; 𝛜i, i = 1, … ,N, are independent
and identically distributed, and are independent
of bi, i = 1, … ,N.

𝜎2𝚿 Covariance matrix of observational errors Can be conjectured at design stage, using
of repeated measurements. eg, historical studies.

Vi = ZiDZT
i + 𝜎2𝚿 Covariance matrix of yi

pk,obs(tkj, 𝛿k) Probability of having a response observed Could depend on t′k and 𝛿k. Can be conjectured

on a subject in group k at time point j. at design stage, using, eg, historical studies.
gk,j Number of subjects in group k who have Unknown at design stage.

exactly j repeated measurements.
mk,j = E[gk,j] Expected number of subjects in group k Could depend on t′k and 𝛿k.

who have exactly j repeated measurements.
𝜉∗D,m D-optimal design for a class of model Maximises the determinant of

denoted by m. the information matrix of m.

TABLE A2 Details of the statistical models considered in this paper

Class of models with random effect parameters, bi = (b0i,b1i)T,

which have covariance matrix D =
(

var(b𝟎i) cov(b𝟎i,b1i)
cov(b0i,b1i) var(b1i)

)
=
(

d11 d12
d12 d22

)
Fixed effects model: Random intercept model: Random intercept and slope model: Correlated random intercept and slope model:
d11 = d22 = d12 = 0 d11 > 0, d22 = d12 = 0 d11 > 0, d22 > 0, d12 = 0 d11, d22 > 0, d12 ≠ 0

TABLE A3 Explanation of the restricted and flexible design conditions used in the paper

Restricted Design Condition Flexible Design Condition
t′k are the same ∀k, k = 1, … , c. t′k could be different.

All subjects are measured at the same time. Different groups of subjects are
measured at different time points.

Suitable for longitudinal studies or blinded trials. Only suitable for open label or unblinded trials.
Simpler in terms of logistic and administrative arrangements. Requires different arrangements for different groups.
Less observations might be collected especially when the More information could be collected in particularly
response rates of the groups are significantly different. when time is the major factor that causes dropout.
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TABLE A4 Definition of model Mg

Notation Definition/Usage
Mg yi = XiKi𝜷 + Zibi + 𝝐i, where Ki is a group indicator matrix.

• For studies that have comparable baseline measurements,
and aim to investigate time effect on different groups.

• Information matrix in the presence of time dependent
dropouts is

∑c
k=1

∑q
𝑗=1 mk,𝑗KT

k XT
k[𝑗]V

−1
k[𝑗]Xk[𝑗]Kk.

• Design problem is to choose t′k and wk.

• Section 3.1: Illustration example with c = 2, q = 4. One group has a quadratic p1,obs(t1j, 𝛿1)
and the other has a linear p2,obs(t2j, 𝛿2) response probability function. Both response
probabilities depend only on the time points. We consider cases with AR(1) serial correlation
which have different values of 𝜌, 0 ≤ 𝜌 ≤ 0.9 (and difference of 0.1 between each case) and
𝜎2 = 1. Standardized time design region [−1, 1] that reflects the interval between follow-up visits.

• Models in illustration have d11 = 1, d22 = 3, d12 = 0.8
√

3 unless the
models required some (or all of these) to be set to 0.

• Figure 1 shows the D-optimal time points with restricted design condition (top row)
and flexible design condition (bottom row), respectively.

• Table 1 shows the maximum and minimum weights across the 10 considered
cases of 𝜌. For 𝜌 > 0, D-optimal designs generally have more experimental units in the
group that has a higher response rate within the time region.

TABLE A5 Definition of model Md

Notation Definition/Usage
Md yij = 𝛽0 + tkj𝛽1 + 𝛿k𝛽2 + b0i + tkjb1i + 𝜖ij

• For studies that investigate time effect and treatment effect on the population.

• Information matrix in the presence of dropouts is
c∑

k=1

q∑
𝑗=1

mk,𝑗XT
k[𝑗](t, 𝛿)V

−1
k[𝑗]Xk[𝑗](t, 𝛿).

• Design problem is to choose 𝛿k, t′k and wk.

• Section 3.2: Illustration example with c = 2, q = 5, and a logistic function for response
probability that depends on time point and dose level. We consider cases with AR(1) serial
correlation, which have different values of 𝜌, 0 ≤ 𝜌 ≤ 0.9 (and difference of 0.1 between each case)
and 𝜎2 = 10. The design region for 𝛿k is [0, 100] and time region is [0, 365] days.

• Models in the illustration have d11 = 1, d22 = 3, d12 = 0.8
√

3 unless the models required
some (or all of these) to be set to 0. Figure 2 shows the D-optimal time points (first row), optimal
dose (second row), and optimal weight (third row), with restricted design condition.

• Section 4 shows how to verify some potential optimal designs for a case study. Table 3 presents
the D-optimal time points and weights for various version of this model, which have five time
points and four time points, respectively. Table 4 shows the simulation performance
of the design candidates.

• Models in Section 4 consider {�̂�, d̂11, d̂22, d̂12} = {0.3326, 2.6612, 0, 0}, {0.3326 × 2, (2.661 × 2)2, 0, 0},
{0.3326, 2.6612, 2, 0}, and {0.3326, 2.6612, 2, − 1}, respectively.
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