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Abstract

Mutations in the BCR-ABL1 kinase domain are an established mechanism of tyrosine kinase 

inhibitor (TKI) resistance in Philadelphia chromosome-positive leukemia, but fail to explain many 

cases of clinical TKI failure. In contrast, it is largely unknown why some patients fail TKI therapy 

despite continued suppression of BCR-ABL1 kinase activity, a situation termed BCRABL1 

kinase-independent TKI resistance. Here, we identified activation of signal transducer and 

activator of transcription 3 (STAT3) by extrinsic or intrinsic mechanisms as an essential feature of 

BCR-ABL1 kinase-independent TKI resistance. By combining synthetic chemistry, in vitro 

reporter assays, and molecular dynamics-guided rational inhibitor design and high-throughput 
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screening, we discovered BP-5-087, a potent and selective STAT3 SH2 domain inhibitor that 

reduces STAT3 phosphorylation and nuclear transactivation. Computational simulations, 

fluorescence polarization assays, and hydrogen-deuterium exchange assays establish direct 

engagement of STAT3 by BP-5-087 and provide a high-resolution view of the STAT3 SH2 

domain/BP-5-087 interface. In primary cells from CML patients with BCR-ABL1 kinase-

independent TKI resistance, BP-5-087 (1.0 μM) restored TKI sensitivity to therapy-resistant CML 

progenitor cells, including leukemic stem cells (LSCs). Our findings implicate STAT3 as a critical 

signaling node in BCR-ABL1 kinase-independent TKI resistance, and suggest that BP-5-087 has 

clinical utility for treating malignancies characterized by STAT3 activation.

INTRODUCTION

Chronic myeloid leukemia (CML) is caused by the BCR-ABL1 tyrosine kinase, the result of 

the t(9;22)(q34;q11) translocation, which is cytogenetically visible as the Philadelphia 

chromosome (Ph). Targeting BCR-ABL1 with tyrosine kinase inhibitors (TKIs) such as 

imatinib induces complete cytogenetic responses in many patients with chronic phase CML 

(CP-CML)1. However, ~20-30% of CP-CML patients fail imatinib due to primary or 

acquired resistance2, and TKI responses in patients with blastic phase CML (BP-CML) are 

not durable.

Point mutations in the BCR-ABL1 kinase domain are the most commonly cited mechanism 

of TKI resistance3, 4. Beyond imatinib, the regulatory approval of four additional TKIs with 

differing point mutation susceptibilities renders this mechanism of resistance clinically 

addressable5. However, BCR-ABL1 point mutations fail to explain many cases of clinical 

TKI failure, as many patients with resistance express exclusively native BCR-ABL1. In 

these cases, BCR-ABL1 kinase-independent mechanisms activate alternative signaling 

pathways that maintain survival despite BCR-ABL1 inhibition6. BCR-ABL1 kinase-

independent resistance likely plays a key role in preventing disease eradication in patients 

responding to therapy, as imatinib inhibits BCR-ABL1 kinase activity but does not trigger 

cell death in primitive CML cells cultured ex vivo7, 8.

Activation of signal transducer and activator of transcription 3 (STAT3) by bone marrow 

(BM)-derived factors protects CML cells upon TKI-mediated BCR-ABL1 inhibition9, 10. 

We now demonstrate that, in CML patients with BCR-ABL1 kinase-independent resistance, 

STAT3 is activated without a requirement for BM-derived factors, and represents a major 

signaling node conferring TKI resistance. We hypothesized that targeting STAT3 in addition 

to BCR-ABL1 would resensitize CML cells with kinase-independent resistance to TKI 

therapy. Using structure-activity relationship (SAR) studies and compound library screens, 

we identified BP-5-087, a potent and selective STAT3 inhibitor. Computational simulations 

and hydrogen-deuterium exchange assays confirmed binding of BP-5-087 to the STAT3 

SH2 domain. Experiments on TKI-resistant CML cell lines and primary CML stem and 

progenitor cells reveal that BP-5-087 restores TKI sensitivity in vitro and ex vivo, with no 

toxicity to normal hematopoietic stem or progenitor cells. We conclude that targeting 

STAT3 with BP-5-087 may be useful for the treatment of kinase-independent TKI resistance 

and for other malignancies driven by STAT3 activation.
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MATERIALS AND METHODS

Cell cultures and primary cells

Imatinib-resistant K562R and AR230R cells were derived by long-term culture in the 

presence of low-dose imatinib, followed by incremental increases in concentration (0.1-1.0 

μM imatinib), and maintenance of a single clone in continual 1.0 μM imatinib (isogenic 

TKI-sensitive K562S and AR230S cells were used as controls). Mononuclear cells (MNCs) 

from peripheral blood (PB) of CP-CML patients or healthy donors were CD34+ selected to 

>90% purity and kept overnight without cytokines prior to use in 96 hr inhibitor treatment 

assays. All donors gave informed consent and all studies were approved by The University 

of Utah Institutional Review Board (IRB). For additional information see Supplementary 

Materials and Methods.

Clonogenic assays

Methylcellulose colony assays were performed by plating CML cell lines or patient samples 

in 0.9% MethoCult (H4230; Stem Cell Technologies). For cell lines, 103 cells were plated in 

cytokine-free conditions +/− imatinib (1.0 μM) and/or the indicated STAT3 inhibitors. For 

patient samples, cells were treated for 96 hr in regular medium (RM) or HS-5 conditioned 

medium (CM), without additional cytokines, +/− the indicated inhibitors. Following culture, 

103 viable CD34+ cells were plated in the presence of rhIL-3 (20 ng/mL), rhIL-6 (20 ng/

mL), rhFlt-3 ligand (100 ng/mL), and rhSCF (100 ng/mL).

Immunoblot analysis

For CML cell lines, 1.5×105 cells/mL were cultured in an equal volume of either RM or 

HS-5 CM and treated with TKI for 24-36 hr. For CMLCD34+ cells, assays were performed 

with 106 cells/mL in RM or HS-5 CM containing 10% BIT9500 instead of FBS, in the 

absence of cytokines, and treated with TKI for 24 hr. For additional information see 

Supplementary Materials and Methods.

Pharmacologic inhibitors

Imatinib was a gift from Novartis. Dasatinib and nilotinib were purchased from Selleck. 

STAT3 inhibitors were produced as described in Chemical Methods. Proliferation was 

assessed by methanethiosulfonate (MTS)-based viability assay (CellTiter 96 AQueous One; 

Promega).

Fluorescence polarization (FP) assay

To assess STAT3 SH2 domain binding, a high-throughput FP assay was used as 

described11.

Chemical Methods

Synthesis and characterization of STAT3 inhibitors was performed as described in 

Supplementary Materials and Methods. Briefly, all compounds were purified by silica gel 

column chromatography, with final molecules characterized by both 1H and 13C NMR and 

high resolution mass spectrometry. Inhibitor purity was evaluated by analytical reversed-
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phase HPLC. Prior to biological testing, all compounds were subject to fluorescence 

polarization and/or luciferase inhibitor screening as described.

Luciferase inhibitor screen

To detect endogenous STAT3 activity, AR230R cells were transduced with the pGreenFire 

Lenti-Reporter system (pGF1; System Biosciences) harboring two sequential STAT3-

inducible elements (SIE) or mutated negative control (NEG) sequences (Supplementary 

Figure 3b). AR230R cells (3×105) expressing either pGF1-SIE (AR230R-SIE) or pGF1-NEG 

(AR230R-NEG) were exposed to imatinib (1.0 μM) and/or STAT3 inhibitors (5-10 μM) for 

6 hr, followed by detection of luciferase reporter activity. See Statistical Analyses and 

Supplementary Materials and Methods for details.

Docking simulations

The crystal structure of the STAT3B-DNA complex (PDB entry 1BG1) utilized for docking 

was prepared with Protein Preparation Wizard. Initial docking simulation was performed 

using Glide Extra Precision (GlideXP module, version 5.7) (Suite 2012: LigPrep, version 

2.5, Schrödinger, LLC, New York, NY, 2012), followed by induced fit docking 

simulation12. Residues within 7 Å of the initial binding pose were optimized by side chain 

reorientations in Prime module. Receptor and ligand van der Waals spheres were scaled by a 

factor of 0.5 to allow unusual contacts, then refined by Prime module to readjust orientation. 

See Supplementary Materials and Methods.

STAT3 analysis by site-specific TRESI-MS/HDX

STAT3 residues 127-688 (pET15b_STAT3, provided by Dr. Rob Laister) was subcloned 

into pMAL-c5X (New England Biolabs) to generate an N-terminal MBP-tagged fusion. 

MBPSTAT3(127-688) was expressed in E. coli BL21(DE3) and purified by amylose-affinity 

chromatography. MBP-STAT3(127-688) samples were prepared for mass spectrometry (MS) 

by buffer exchange into 100 mM ammonium acetate (pH 7.5) on a Vivaspin 20 (GE 

Healthcare). BP-5-087 (200 mM) was dissolved in DMSO. MBP-STAT3(127-688) (80 μM) 

was incubated with or without BP-5-087 (600 μM) for 2 hr on ice. Site-specific time-

resolved electrospray ionization mass spectrometry (TRESI-MS) and hydrogen-deuterium 

exchange (HDX) was conducted on a microfluidic device13 as described in Supplementary 

Materials and Methods.

Long-term culture-initiating cell (LTC-IC) assays

Following 96 hr culture +/− imatinib (2.5 μM) and/or BP-5-087 (1 μM), in the absence of 

cytokines, 5x103 viable CD34+ cells were plated in MyeloCult (H5100; Stem Cell 

Technologies) on top of irradiated (80 Gy) M210B4 cells in duplicate LTC-IC assays as 

described14, 15. Following 6 weeks of culture, cells were trypsinized, plated into 

methylcellulose colony assays (H4435; Stem Cell Technologies), and scored after 18 days. 

Colony numbers were adjusted to reflect the total number of viable LTC-ICs present 

following the 96 hr culture. BCR-ABL1+ colonies were identified by qRT-PCR for BCR-

ABL1 mRNA16.
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Cytospin and immunofluorescence

CMLCD34+ cells were cultured for 24 hr in the indicated conditions prior to cytospin. Cells 

were fixed, permeabilized, and incubated with rabbit anti-pSTAT3Y705 (Cell Signaling 

Technologies), followed by detection using an AlexaFluor 594-conjugated goat anti-rabbit 

IgG (Invitrogen). Slides were examined using a Nikon Eclipse E600 equipped with a CRI 

Nuance multispectral imaging system (model N-MSI-420-FL).

Statistical analyses

A two-tailed Student's t test was used for assays with identical cell lines and for immunoblot 

densitometry. Luminescence of SIE and NEG constructs were assessed in triplicate for 74 

inhibitors and standardized to 6 measures of luciferase control for a given construct in each 

run. A total of three such runs were independently performed. Luciferase controls were 

assessed for normality in each construct/run. One construct in the third run had a wide 

bimodal distribution, and was hence excluded from analyses based on non-uniformity of 

controls. Average values for each inhibitor's effects on SIE and NEG constructs were 

calculated and plotted to identify those with the most potent (assessed by a high negative 

SIE luminescence value) and selective (assessed by a high NEG value) luciferase inhibition. 

Patient CMLCD34+ colony data was analyzed using Welch's t-test for unequal variances. 

Data were considered statistically different when p values were <0.05. For MTS assays, 

three distinct runs each with 4 replicates per concentration were performed on unique plates 

with untreated controls. Median values for each concentration were calculated as a 

percentage of the plate's control. IC50 values were calculated from a 4-parameter variable-

slope logistic equation:  and fit by Prism Software. 

Significant differences in IC50 run values between inhibitors was calculated by Welch's t-

test.

RESULTS

STAT3 is activated in BCR-ABL1 kinase-independent TKI resistance

TKI resistance in CML occurs through reactivation of BCR-ABL1 by kinase domain 

mutations, or through mechanisms allowing survival despite continued BCR-ABL1 

inhibition, known as kinase-independent resistance. The latter may be caused through 

activation of alternative signaling pathways by extrinsic, BM-derived factors, or through 

intrinsic, cell-autonomous mechanisms. To model extrinsic resistance, we cultured 

CMLCD34+ cells from newly diagnosed patients or parental TKI-sensitive cell lines (K562S 

and AR230S) in HS-5 CM9, 10. To model intrinsic resistance without BM-derived factors, 

we used CMLCD34+ cells from patients with treatment failure on two or more TKIs, as well 

as TKI-resistant CML cell lines adapted for growth in the presence of 1.0 μM imatinib 

(K562R and AR230R). These cells demonstrate cross-resistance to nilotinib and dasatinib, 

thereby modeling resistance to multiple TKIs as observed in our patient samples 

(Supplementary Figures 1 and 2). All cells express exclusively native BCRABL1 and 

therefore harbor no detectable kinase domain mutations. For details on primary samples see 

Supplementary Table 1.

Eiring et al. Page 5

Leukemia. Author manuscript; available in PMC 2015 September 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



TKI-sensitive or TKI-resistant CML cell lines and primary CMLCD34+ cells were cultured in 

RM or HS-5 CM +/− imatinib. To identify active signaling pathways common to BCR-

ABL1 kinase-independent resistance, phosphorylated versions of canonical signaling 

proteins were examined by immunoblot analyses. Regardless of TKI sensitivity, imatinib 

suppressed BCRABL1 kinase activity (Figure 1a; Supplementary Figure 3a), verifying 

kinase-independent resistance. As expected, in extrinsic, BM-derived TKI resistance, 

pSTAT3Y705 levels were elevated in parental CMLCD34+ cells from newly diagnosed CML 

patients, as well as K562S and AR230S cells, when cultured in HS-5 CM compared to RM 

in the presence of imatinib (Figures 1a and 1b; Supplementary Figures 3b and 3c). In 

contrast, imatinib markedly reduced pSTAT5Y694 and pSTAT3S727 levels in both RM and 

HS-5 CM.

Similar to extrinsic resistance, pSTAT3Y705 levels were elevated in CD34+ cells from TKI-

resistant compared to treatment-naïve newly diagnosed CML patients, in the absence of 

exogenous cytokines (Figures 1a and 1b). Three of five samples from newly diagnosed 

patients had no detectable levels of pSTAT3Y705 when cultured in RM, whereas 

pSTAT3S727 and total STAT3 were readily detectable. In contrast, pSTAT3Y705 was highly 

detectable in all five TKI-resistant samples analyzed, in both the presence and absence of 

imatinib. However, not all samples were run on the same blot, precluding direct quantitative 

comparisons between newly diagnosed and TKI-resistant samples. In contrast to 

pSTAT3Y705, imatinib reduced the levels of pSTAT5Y694 and pSTAT3S727 in both newly 

diagnosed and TKI-resistant CML cells, implying that these sites remain under the control 

of BCR-ABL1 (Figures 1a and 1b). In intrinsically TKI-resistant K562R and AR230R cell 

lines, imatinib suppression of BCR-ABL1 kinase activity also correlated with increased 

pSTAT3Y705 levels compared to parental K562S and AR230S controls under the same 

conditions (Supplementary Figure 3a). Importantly, pSTAT3Y705 activation was maintained 

in K562R and AR230R cells treated with imatinib, nilotinib, or dasatinib (Supplementary 

Figure 2). K562R and AR230R cells demonstrated increased levels of the SRC family 

kinases, pSRCY416 and pLYNY507, which decreased with dasatinib in a concentration-

dependent manner (Supplementary Figure 2). In both cell lines, dasatinib resulted in a partial 

reduction of pSTAT3Y705 that was not further reduced with escalating dasatinib 

concentrations, consistent with partial but not full dependence on SRC family kinases 

(Supplementary Figure 2). pJAK2Y1007/1008 was also elevated in K562R and AR230R cells 

in the absence of TKIs, but were reduced to low levels in the presence of TKIs 

(Supplementary Figure 2), implying that JAK2 is not directly involved in STAT3 activation.

Altogether, we conclude that CML cells with intrinsic TKI resistance activate pSTAT3Y705 

upon BCR-ABL1 inhibition in the absence of BM-derived factors, suggesting that 

pSTAT3Y705 represents a point of convergence for extrinsic and intrinsic resistance 

pathways promoting kinase-independent resistance.

STAT3 inhibition reduces survival of TKI-resistant CML cell lines and primary CMLCD34+ 

progenitor cells

To determine whether STAT3 confers TKI resistance, we used retroviral or lentiviral 

delivery of shRNA targeting STAT3 (shSTAT3). shRNA-mediated knockdown of STAT3 
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and not STAT5 was confirmed by immunoblot analyses (Figures 2a and 2b). We initially 

showed that STAT3 is required for extrinsic resistance by infecting parental K562S cells 

with a puromycin-selectable vector harboring shSTAT3 or scrambled control (shSCR), 

followed by culture in HS-5 CM or RM +/− imatinib. As expected, shSTAT3 reduced 

colony formation and increased apoptosis of K562S cells following culture in HS-5 CM but 

not RM, thereby abolishing the protective effects of BM-derived factors (Supplementary 

Figures 4a and 4b). Consistent with STAT3 activation in intrinsic TKI resistance (Figure 1), 

shSTAT3 reduced the clonogenicity of K562R and AR230R cells by 50-60% in the presence 

of 1.0 or 2.5 μM imatinib, with no effect in TKI-sensitive parental controls (Figures 2a and 

2b). We then functionally inhibited STAT3 using dominant-negative mutants 

(dnSTAT3)17, 18, both a C-terminal truncated mutant17 and a STAT3-Y705F mutant18, 

yielding the same results. Similar to shSTAT3, dnSTAT3 reduced colony formation of 

K562R and AR230R cells by ~30-60%, without significant effects on parental TKI-sensitive 

controls, and this was correlated with reduction of pSTAT3Y705 but not pSTAT5Y694 

(Figures 2c and 2d). We consistently observed a reduction of colony formation upon 

imatinib withdrawal from K562R and AR230R cells. This is reminiscent of previous 

observations in imatinib-resistant Ba/F3 cells, where increased cell death was observed 

following drug withdrawal19.

To pharmacologically target STAT3 in TKI resistance, we used S3I-201.1066 (SF-1-066), a 

salicylic acid-based STAT3 inhibitor20. SF-1-066 was previously shown to interact with the 

STAT3 SH2 domain, to reduce phosphorylation at Y705, and to reduce DNA-binding in 

human breast and pancreatic cancer cells21, 22. We reasoned that this inhibitor, while not 

sufficiently potent for clinical applications, would facilitate direct pharmacologic targeting 

of STAT3 in primary BCR-ABL1 kinase-independent resistance. SF-1-066 (10 μM) in 

combination with imatinib (1.0 μM) reduced colony formation of TKI-resistant K562R and 

AR230R cells by ~60-70%, with no significant effects on parental TKI-sensitive controls 

(Figures 2e and 2f). These data confirm the selectivity of SF-1-066 for STAT3 over STAT5, 

since STAT5 inhibition is expected to kill TKI-sensitive CML cells23, 24. Next we tested the 

effect of SF-1-066 in CMLCD34+ cells from newly diagnosed patients. Cells were cultured 

for 96 hr in HS-5 CM or RM, without additional cytokines, +/− SF-1-066 (10 μM) and/or 

imatinib (2.5 μM). In HS-5 CM, SF-1-066 in combination with imatinib reduced colony 

formation of CMLCD34+ cells by 42.5% compared to imatinib alone, thereby abrogating its 

protective effects (Figure 2g). However, SF-1-066 resulted in slight inhibition of cells 

cultured in RM (Figure 2g), and also impaired colony formation by mononuclear cells 

(MNCs) from healthy individuals (Figure 2g). These results provide proof of principle for 

synthetic lethality by combined inhibition of STAT3 and BCRABL1 in primary kinase-

independent TKI resistance. However, the high dose of SF-1-066 (10 μM) required to 

achieve an effect, along with inhibition of normal MNCs, prompted us to identify more 

potent and selective STAT3 inhibitors.

Design, synthesis, and biochemical validation of STAT3 inhibitors

To identify more potent and selective STAT3 inhibitors, we employed an iterative SAR 

study to interrogate the effects of functional group alterations on the activity of SF-1-066 

(Supplementary Figure 5a). STAT3 SH2-domain binding was assessed using fluorescence 
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polarization (FP) assays, and cellular activity was evaluated in a luciferase reporter assay 

designed to quantify endogenous STAT3 transcriptional activity in TKI-resistant AR230R 

cells. AR230R cells were lentivirally transduced with a reporter construct harboring either 

two STAT3-inducible elements (AR230R-SIE) or a negative control reporter with two 

mutated STAT3 binding sequences (AR230R-NEG) (Supplementary Figure 5b). A 

difference in luminescence intensity in AR230RSIE cells indicates a change in potency 

compared to SF-1-066, whereas a difference in AR230R NEG cells indicates a change in 

selectivity.

We synthesized 74 putative STAT3 inhibitors and screened them in FP and/or luciferase 

reporter assays. We initially examined 10 STAT3 inhibitors based on SF-1-066 (1) and the 

more recent derivative, BP-1-102 (2)25, 26, in our luciferase assay at 10 μM. These 

compounds possessed additional functionality on the sulfonamide nitrogen position, 

designated as R1 (Supplementary Figure 5c)27. This initial screen revealed that substituting 

the sulfonamide sulfur position (designated as R2) with a pentafluorobenzene group (such as 

2a) resulted in increased potency in AR230R-SIE cells (Supplementary Figure 5d), but also 

demonstrated activity in the AR230R-NEG cells, indicating a lack of selectivity. By contrast, 

the R1=pentafluorobenzyl substituent (such as 1a) increased inhibitor potency in AR230R-

SIE cells without sacrificing selectivity in AR230R-NEG cells (Supplementary Figure 5d). 

To capitalize on this advance, we synthesized a library of 24 analogues incorporating the 

R1=pentafluorobenzyl group, imparting structural diversity at the R2 position (Figure 3a). 

Using FP for the initial screen, we selected molecules with 4-fluorobenzene and 4-

trifluoromethylbenzene in the R2 position for further modification. A focused library of 

compounds containing the best R2 substituents was also synthesized to incorporate other 

promising R1 substituents. Figure 3b summarizes the FP EC50 values and luciferase data for 

select compounds categorized by functional group. Compounds with enhanced potency and 

selectivity were identified based on a substantial difference (Δ) in luminescence intensity for 

the AR230R-SIE cells and little difference in the AR230R-NEG cells (Figures 3b). Based on 

potency and selectivity, BP-5-087 (16d) was selected for testing in the context of BCR-

ABL1 kinase-independent resistance.

BP-5-087 interacts with the SH2 domain of STAT3

To confirm binding to the STAT3 SH2 domain, we performed high resolution computational 

docking simulations. Modeling was first performed using the Glide Extra Precision 

(GlideXP) algorithm, and the estimated docking scores for BP-5-087 and SF-1-066 were 

−4.9 kcal/mol and −3.8 kcal/mol, respectively. A more negative docking score for BP-5-087 

reflects a higher propensity for ligand binding. In the second stage of simulation, Glide 

induced-fit docking was used to consider the inherent flexibility of the STAT3 SH2 domain, 

which we observed as thermal fluctuations in X-ray crystallography experiments 

(Supplementary Figures 6a and 6b). This significantly lowered the docking scores for 

BP-5-087 (−9.6 kcal/mol) and SF-1-066 (−7.6 kcal/mol), with the corresponding binding 

poses displayed in Figures 4a-e. As expected, the salicylic acid moiety common to BP-5-087 

and SF-1-066 occupied the site in which the charged phosphotyrosine (pY) of a second 

STAT3 monomer normally binds, engaging in hydrogen bonding with R609 and S613. Both 

compounds displayed similar interactions with the hydrophobic site including W623, V637, 
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and Y657, as well as hydrogen bonding with the amine group of K591. Although BP-5-087 

and SF-1-066 both interact with T622, I634, and R595, the degree of induced fit observed in 

the two cases was remarkably distinct. Upon BP-5-087 binding, the side chain of R595 

reorients, creating a more evident hydrophobic pocket. In addition, molecular modeling 

suggests that the R1=2-methylbenzyl group present in BP-5-087 may provide a stabilizing 

intramolecular aromatic interaction with the R2=4-trifluoromethylbenzene group, which 

may enhance inhibitor rigidity.

To further map the STAT3 amino acid residues important for compound action, binding of 

BP-5-087 to the STAT3 SH2 domain was experimentally confirmed by analyzing changes 

in site-specific deuterium uptake in STAT3 upon BP-5-087 binding. Specifically, we 

employed time-resolved electrospray ionization mass spectrometry (TRESI-MS) and 

hydrogen-deuterium exchange (HDX)28 to characterize the structural transitions that occur 

to STAT3 upon BP-5-087 binding. In three independent replicates, these data confirmed that 

the binding epitope for BP-5-087 is indeed located within the STAT3 SH2 domain (Figures 

4f and 4g). Fold change in deuterium uptake was analyzed for 68 peptic peptides of STAT3, 

generating a 71% sequencing coverage, and mapped onto the X-ray crystal structure of 

STAT3 (Figure 4f). Significant decreases in deuterium uptake clustered almost exclusively 

to the STAT3 SH2 domain, indicating exclusion of solvent molecules or the formation of 

new backbone hydrogen bonds in this region (Figure 4g). A number of significant decreases 

in deuterium uptake were observed in SH2 domain regions proximal to the predicted 

BP-5-087 sub-pockets, which may result from allosteric changes in STAT3 induced by drug 

binding. A model for the proposed mechanism of action for BP-5-087 is presented in 

Supplementary Figure 6c.

BP-5-087 targets TKI-resistant CMLCD34+ stem and progenitor cells

Similar to the effects of shSTAT3 or dnSTAT3 on apoptosis of AR230R cells 

(Supplementary Figure 7a), BP-5-087 (1.0 μM) increased apoptosis of AR230R cells by 

13.7% compared to SF-1-066, which had no significant effect even at 10 μM 

(Supplementary Figure 7b). Importantly, BP-5-087 had no effect on parental AR230S cells 

(Supplementary Figure 7a) or CD34+ progenitor cells from healthy individuals (Figure 5a; 

Supplementary Figure 7c), demonstrating a substantial improvement over the parent 

compound, SF-1-066.

We first assessed the effects of BP-5-087 in primary CMLCD34+ cells from newly diagnosed 

patients cultured in HS-5 CM. BP-5-087 had little effect on treatment-naïve patient cells 

cultured in RM, indicating no off-target effects on STAT5. However, BP-5-087 in 

combination with imatinib reduced colony formation of cells grown in HS-5 CM by 56%, 

thereby abrogating its protective effects (Figure 5b). We next analyzed the effects of 

BP-5-087 and imatinib on STAT3 phosphorylation and subcellular localization in 

CMLCD34+ progenitors by immunofluorescence. As expected, CMLCD34+ cells from newly 

diagnosed patients showed high levels of nuclear pSTAT3Y705 when cultured in HS-5 CM, 

but not in RM (Figure 5c). In contrast, CMLCD34+ cells from TKI-resistant patients 

demonstrated high levels of pSTAT3Y705 in the absence of BM-derived factors. In both 
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cases, BP-5-087 reduced the overall levels of nuclear pSTAT3Y705, with the remaining 

signal located within the cytoplasm (Figure 5c).

To assess the effects of BP-5-087 in intrinsic TKI resistance, CMLCD34+ cells from TKI-

resistant patients were cultured in BP-5-087 or SF-1-066 (1-10 μM) +/− imatinib (2.5 μM), 

and analyzed for colony formation following drug exposure. BP-5-087 in combination with 

imatinib reduced colony formation and increased apoptosis of TKI-resistant CMLCD34+ 

progenitors as low as 1.0 μM, a marked improvement in potency compared to SF-1-066 

(Figures 5d and 5e). These data show that BP-5-087 exhibits increased potency over 

SF-1-066, without compromising selectivity, and without toxic effects to normal controls.

Ex vivo studies have shown that CML LSCs are not ‘addicted’ to BCR-ABL1 kinase activity 

and survive despite BCR-ABL1 inhibition7, 8. To assess STAT3 activation in the relevant 

stem and progenitor cell populations, we used CD38 to distinguish between primitive 

(CD34+38−) and mature (CD34+38+) CML progenitor cells (Figure 6a). FACS-sorted cells 

from newly diagnosed or TKI-resistant CML patients were treated with imatinib (2.5 μM) 

for 4 hr followed by immunofluorescence for pSTAT3Y705. No significant pSTAT3Y705 was 

detected in untreated CD34+38− cells from newly diagnosed or TKI-resistant patients. 

However, in CD34+38-cells from TKI-resistant patients, imatinib markedly induced nuclear 

and cytoplasmic pSTAT3Y705, whereas levels remained low in samples from newly 

diagnosed patients (Figure 6a). To determine whether BP-5-087 targets this primitive cell 

population, we performed long-term culture-initiating cell (LTC-IC) assays on CMLCD34+ 

cells from newly diagnosed and TKI-resistant patients. Following ex vivo exposure to 

BP-5-087 (1.0 μM) +/− imatinib (2.5 μM), cells were cultured on irradiated M210B4 stroma 

for 6 weeks and plated in colony forming assays as described15, 29. BP-5-087 had no effect 

on LTC-IC survival of normal cord blood CD34+ cells (Figure 6b, left). In samples from 

newly diagnosed CML patients, BP-5-087 reduced the number of LTC-IC colonies alone 

and in combination with imatinib to 69.9% and 61.6% of untreated controls, respectively 

(Figure 6b, middle). In samples from TKI-resistant CML patients, neither BP-5-087 nor 

imatinib alone had any effect on LTC-IC survival, whereas dual treatment reduced LTC-IC 

colonies to 34.2% of controls (Figure 6b, right). All TKI-resistant LTC-ICs were positive 

for BCR-ABL1, consistent with the low number of normal LTC-ICs that characterizes 

advanced CML. Altogether, these data suggest that LSCs from CML patients with kinase-

independent resistance activate STAT3 upon challenge with imatinib, and that BP-5-087 

may be a novel therapeutic approach for eradicating this TKI-resistant stem cell population 

(Figure 7).

DISCUSSION

BCR-ABL1 kinase-independent TKI resistance is associated with constitutive activation of 

various signaling pathways, including SRC family kinases30-33, STAT534, PI3K/AKT35, 

and Wnt/β-catenin36-38, but no uniform picture has emerged6. Furhermore, STAT3 

activation by BM-derived factors confers TKI resistance to CML progenitor cells10, 39. 

Here, we demonstrate that STAT3 activation is a key feature of primary CML stem and 

progenitor cells with kinase-independent resistance. Using genetic, functional, and 

pharmacologic inhibition, we demonstrate that STAT3 inhibition in combination with BCR-
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ABL1 reduces survival of TKI-resistant CML stem and progenitor cells, highlighting a 

critical role for STAT3. Previous reports have implicated STAT5 in TKI resistance34, 40. 

However, in our patient specimens, pSTAT5Y694 remained under the control of BCR-ABL1 

kinase activity (Figure 1). Importantly, pSTAT3Y705 was the only signaling node activated 

in both the presence and absence of BM-derived factors (Figure 1; Supplementary Figures 3 

and 8). These data are consistent with a model whereby STAT3 is initially activated in CML 

stem cells through interaction with the BM microenvironment. However, upon long-term 

TKI challenge, cell-autonomous resistance develops when malignant cells establish intrinsic 

mechanisms to further activate STAT3 without a requirement for BM-derived factors 

(Figure 7).

STAT3 activation is implicated in malignant transformation and drug resistance in a variety 

of cancers41. In some cases, inactivation of negative STAT3 regulators has been 

demonstrated42, 43. In others, STAT3 is activated by autocrine production of IL-644 or 

through acquired activating mutations45, 46. SRC family kinases are known to activate 

STAT347, and have also been linked to imatinib resistance in CML cell lines and patient 

samples30-32, 48, 49. In both K562R and AR230R cells, treatment with dasatinib resulted in 

partial reduction of pSTAT3Y705, suggesting partial but not full dependence on SRC family 

kinases (Supplementary Figure 2). Since multiple mechanisms are known to activate 

STAT3, directly targeting STAT3 rather than upstream pathways is an attractive therapeutic 

approach50. Unlike classical enzyme active sites, the STAT3 transcription factor lacks a 

defined binding pocket, and relies on non-contiguous interactions across large surface areas 

for affinity with binding partners. The STAT3 SH2 domain is primarily hydrophobic, with a 

hydrophilic sub-pocket that binds to phosphotyrosine peptide sequences, most notably the 

one presented by its partner in the STAT3:STAT3 dimer. Precise placement of a small-

molecule inhibitor within the STAT3 SH2 domain should therefore block SH2-dependent 

dimer formation, a step subsequent to phosphorylation by kinases such as JAK or SRC51. 

Incorporating drug-like characteristics into SH2 domain binders is challenging; however, 

development of a potent STAT3 inhibitor will have therapeutic value for treatment of many 

different diseases, including TKI-resistant CML. We developed a number of lead 

compounds to optimize STAT3 inhibitor potency and selectivity. Our high throughput 

screening system allowed us to evaluate STAT3 binding affinity in biochemical FP assays 

and in a cellular context with luciferase reporter assays (Supplementary Figure 5a). 

Beginning with the parent compound, SF-1-06620, we used SAR-based drug design and 

compound library screening to identify BP-5-087 as a potent and selective salicylic acid-

based STAT3 inhibitor with activity against TKI-resistant CML. Using a computational 

induced-fit docking approach, the enhanced potency of BP-5-087 was traced to reorientation 

of the R595 side chain within the binding site (Figure 4), resulting in optimized inhibitor 

affinity. Importantly, TRESI-MS/HDX experiments precisely mapped binding of BP-5-087 

to the STAT3 SH2 domain.

BP-5-087 exerts effects on TKI-resistant CML stem and progenitor cells at 1.0 μM, 

representing a 10-fold or greater improvement in potency compared to SF-1-066, and a 

marked improvement to other recently published STAT3 inhibitors26,52,53, 54,55,56,57. The 

combination of BP-5-087 and imatinib was required to reduce survival of CML progenitors 
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and LTC-ICs from patients with kinase-independent resistance, suggesting that a situation of 

synthetic lethality is required to target these cells. The term synthetic lethality, while 

traditionally a genetics term, is more recently being used to describe combinatorial 

anticancer therapeutics6. In this particular case, the combined inhibition of both BCR-ABL1 

and STAT3 is required to kill CML stem and progenitor cells with kinase-independent TKI 

resistance, while inhibition of only BCR-ABL1 or only STAT3 has very limited effects, 

consistent with a synthetically lethal situation.

In summary, our data unveil a novel mechanism of kinase-independent TKI resistance in 

primary CML stem and progenitor cells, and suggest that the STAT3 inhibitor, BP-5-087, 

intercepts survival signals that are intrinsic and extrinsic to the CML LSC. BP-5-087 may 

therefore have utility for the treatment of TKI-resistant CML and other diseases 

characterized by STAT3 activation.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1. pSTAT3Y705 is activated in TKI-resistant CML cells in the presence of imatinib
(a) CML CD34+ cells from newly diagnosed or TKI-resistant patients lacking BCR-ABL1 

kinase domain mutations were cultured in RM or HS-5 CM with or without 2.5 μM imatinib 

for 24 hr followed by immunoblot with the specified antibodies. Activated pBCR-ABL1 was 

detected using a phosphotyrosine-specific antibody. The dose of imatinib was chosen to 

achieve near complete suppression of BCR-ABL1 kinase activity. pSTAT3Y705 was 

elevated in CD34+ cells from newly diagnosed patients when cultured in HS-5 CM (n=5), 

and in CD34+ cells from TKI-resistant patients (n=5) in the presence of imatinib. TKI-

sensitive CD34+ cells cultured in RM (n=5) were examined as controls. (b) Data presented 

in panel a are quantified by densitometry for pSTAT3Y705 and pSTAT5Y694 for both newly 

diagnosed (n=4) and TKI-resistant (n=5) patients. Error bars represent SEM. *p<0.05.
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Figure 2. Inhibition of STAT3 reduces colony formation by TKI-resistant CML cells
(a and b) TKI-resistant CML cell lines were retrovirally transduced with shRNA targeting 

STAT3 (shSTAT3) or scrambled control (shSCR), and cultured in semisolid medium +/− 

imatinib (1.0-2.5 μM). STAT3 and not STAT5 knockdown was confirmed by immunoblot 

analyses (a and b, right). shSTAT3 reduced colony formation of K562R (a, left, n=4) and 

AR230R (b, left, n=4) cells in the presence of imatinib, with no effect on parental TKI-

sensitive controls. (c and d) TKI-resistant CML cell lines were transduced with dominant-

negative STAT3 mutants (dnSTAT3) or empty vector (EV) and cultured in semisolid 

medium +/− imatinib (1.0 μM). Inhibition of pSTAT3Y705 was confirmed by immunoblot 

analyses (c and d, right). dnSTAT3 reduced colony formation of K562R (c, left, n=4) and 

AR230R (d, left, n=3) cells with no effect on parental TKI-sensitive controls (n=2). (e and f) 
K562R (e, n=4) and AR230R (f, n=4) cells were incubated in methylcellulose semisolid 

medium with SF-1-066 (1-10 μM) +/− imatinib (1.0 μM). SF-1-066 reduced colony 

formation of only TKI-resistant and not TKI-sensitive cells. (g) Mononuclear cells (MNCs) 

from peripheral blood of normal donors (n=2) or CMLCD34+ cells from newly diagnosed 

patients (n=4) were treated ex vivo with SF-1-066 (10 μM) +/− imatinib (2.5 μM) in RM or 

HS-5 CM for 96 hr followed by colony forming assays. All data are represented as percent 

of controls. Error bars represent SEM. *p<0.05; **p<0.01; ***p<0.001.
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Figure 3. A STAT3 compound library screen identifies compounds with greater potency and 
selectivity than SF-1-066
(a) A library of 24 putative STAT3 inhibitors was synthesized to incorporate the 

R1=pentafluorobenzyl group, imparting structural diversity at the R2 position. Values 

represent the EC50 of each molecule in FP assays. (b) Subsequent STAT3 inhibitor libraries 

were compared by both FP and luciferase reporter assays. For the luciferase assay, TKI-

resistant AR230R cells were transduced with a luciferase reporter harboring sequential 

STAT3-inducible elements (AR230R-SIE) or a mutated control sequence (AR230R-NEG) 

(see also Supplementary Figure 4b). For each compound, the table represents EC50 values as 

assessed by FP (top, n=3) and the percent inhibition that each compound achieved in 

AR230R-SIE versus AR230R-NEG cells at 5 μM in the presence of 1.0 μM imatinib 

(bottom, n=3).
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Figure 4. Computational modeling of STAT3 binding by BP-5-087
(a) The entire STAT3 protein is represented in grey with the SH2 domain in green and red 

within the boxed region. (b and d) The protein surface of the STAT3 SH2 domain bound to 

either SF-1-066 (b) or BP-5-087 (d) is represented depending on the electrostatic potential 

with color-coding ranging from red (negative charge) to blue (positive charge). (c and e) The 

amino acid residues of the STAT3 SH2 domain predicted to interact with SF-1-0-66 (c) or 

BP-5-087 (e) are also shown. Importantly, BP-5-087 reorients various residues within the 

binding pocket, which may optimize inhibitor complementarity. (f) Site-specific change in 

% deuterium uptake observed by TRESI-MS/HDX following BP-5-087 binding to STAT3 

in a 7:1 molar ratio color-coded onto the STAT3 X-ray crystal structure (PDB ID:1BG1; 

left). The enlarged region depicts the SH2 domain on the surface of the predicted BP-5-087 

binding site (right). (g) Relative changes in deuterium uptake observed by TRESI-MS/HDX 

following BP-5-087 binding to STAT3 and grouped by domain. Sequence coverage was 

71%. Changes considered significant (>25%) are highlighted by darker colors. The most 

pronounced decreases in deuterium uptake were observed in peptic peptides that line the 

BP-5-087 salicylic acid-binding and trifluoromethylbenzene-binding sub-pockets of the SH2 

Eiring et al. Page 19

Leukemia. Author manuscript; available in PMC 2015 September 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



domain. However, the HDX experiment sequence coverage did not extend to peptides lining 

the BP-5-087 cyclohexylbenzyl-binding sub-pocket. Data represent the average of three 

independent replicates. Error bars represent SEM.
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Figure 5. BP-5-087 impairs colony formation of TKI-resistant CML progenitor cells
(a) MNCs from healthy individuals (n=5) were plated in cytokine-supplemented 

methylcellulose semisolid medium with the indicated concentrations of BP-5-087. (b) 

CMLCD34+ cells from newly diagnosed patients (n=3) were treated ex vivo with BP-5-087 (5 

μM) and/or imatinib (2.5 μM) for 96 hr followed by colony forming assays. Error bars 

represent SEM. **p<0.01. (c) Aliquots of CML CD34+ cells from newly diagnosed and 

TKI-resistant patients were harvested after 24 hr of treatment for immunofluorescence with 

a pSTAT3Y705 antibody. BP-5-087 reduced and excluded pSTAT3Y705 from the nucleus in 

primary cells with intrinsic or extrinsic TKI resistance, which correlated with a reduction in 

colony forming ability. For TKI-resistant samples treated with BP-5-087, it was difficult to 

obtain fields with more than two cells. Therefore, ≥2 fields are shown with white dividing 

lines. One representative experiment is shown. Blue: Hoechst; Red: pSTAT3Y705; Pink: 

Overlap. (d and e) CMLCD34+ cells from TKI-resistant (n=3) patients were treated ex vivo 

with BP-5-087 (1-10 μM) and/or imatinib (2.5 μM) for 96 hr followed by colony forming 

(d) and apoptosis (e) assays. *p<0.05. Error bars represent SEM.
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Figure 6. BP-5-087 reduces survival of CML LSCs
(a) CMLCD34+ cells from newly diagnosed (n=3) or TKI-resistant (n=4) CML patients were 

sorted by FACS for primitive (CD34+38−) and mature (CD34+38+) cells followed by 

immunofluorescence with a pSTAT3Y705 antibody. In CD34+38− cells, pSTAT3Y705 was 

only detectable in samples from TKI-resistant patients following exposure to imatinib. One 

representative experiment is shown. Blue: Hoechst; Red: pSTAT3Y705; Pink: Overlap. (b) 

CD34+ cells from normal cord blood (n=3, left), newly diagnosed (n=2, middle), or TKI-

resistant (n=3, left) CML patients were treated ex vivo with BP-5-087 (1 μM) +/− imatinib 

(2.5 μM) in RM for 96 hr followed by plating in LTC-IC assays. Following 6 weeks of 

culture, remaining cells were plated in colony forming assays. Combined treatment with 

BP-5-087 and imatinib reduced LTC-IC survival in samples from newly diagnosed and TKI-

resistant patients, but not normal cord blood. Bars represent percent of untreated controls. 

Ph+ colonies are represented in red; Ph- colonies are represented in black. Error bars 

represent SEM. *p<0.05.
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Figure 7. Model of the molecular network regulating kinase-independent TKI resistance +/− 
TKIs and the STAT3 inhibitor, BP-5-087
In the absence of TKIs, BCR-ABL1 kinase activates canonical downstream signaling 

pathways, including pSTAT3S727, STAT5, ERK1/2, and PI3K, whereas pSTAT3Y705 

activation occurs through interaction with the BM microenvironment. Upon long-term 

challenge with multiple TKIs, overt resistance develops when malignant cells establish 

intrinsic mechanisms to further activate STAT3 without a requirement for BM-derived 

factors. BP-5-087 is predicted to block STAT3 activation in both scenarios of TKI 

resistance.
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