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Abstract: Mitogen-activated protein kinases (MAPKs) form tightly controlled signaling cascades that
play essential roles in plant growth, development, and defense response. However, the molecular
mechanisms underlying MAPK cascades are still very elusive, largely because of our poor under-
standing of how they relay the signals. The MAPK cascade is composed of MAPK, MAPKK, and
MAPKKK. They transfer signals through the phosphorylation of MAPKKK, MAPKK, and MAPK in
turn. MAPKs are organized into a complex network for efficient transmission of specific stimuli. This
review summarizes the research progress in recent years on the classification and functions of MAPK
cascades under various conditions in plants, especially the research status and general methods
available for identifying MAPK substrates, and provides suggestions for future research directions.

Keywords: MAPK cascades; signal transduction; substrates; abiotic stress; biotic stress; docking site

1. Introduction

The mitogen-activated protein kinase (MAPK and MPK) family is the largest group
of transferases in eukaryotes, phosphorylating corresponding serine/threonine (Ser/Thr)
residues, which are activated by both environmental and developmental signals [1,2]. The
MAPK cascade pathway involves three kinases: mitogen-activated protein kinase kinase
kinases (MAPKKKs, MKKKs, MAP3Ks, and MEKKs), mitogen-activated protein kinase
kinases (MAPKKs, MKKs, and MAP2Ks), and MAPKs. In general, extracellular signals
activate MAP3Ks, which, in turn, phosphorylate and activate the S/T-X3-5-S/T motif of
downstream MAPKKs, and then, the activated MAPKKs also phosphorylate and activate
MAPKs at their TXY activation loop and transfer the signal into the nucleus [3,4]. There-
fore, highly ordered protein–protein interactions (PPIs) are the basis of MAPK-mediated
signal transduction.

Since the first MAPK gene was identified in the model plant Arabidopsis thaliana
in 1993, many MAPK cascades have been identified in A. thaliana, rice, Brachypodium
distachyon, tobacco, and other plants [5–7]. In theory, these kinases can form different
combinations involved in multiple biotic and abiotic stresses as well as cell division and
development. However, the genetic evidence for random MAPK cascade combinations
remains elusive [1,8]. In addition, a comparative study of the evolutionary history of
the MAPK gene found that the specific cascade is a limited combination retained in the
evolutionary process [9].
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As is well-known, the research and understanding of MAPK cascade substrates in
plants are limited. Genetic interaction methods are generally used to identify MAPK cas-
cades [10], and large-scale screening methods have also been established [11,12]. Moreover,
the interaction between MAPK and its substrate was verified by various kinase experiments,
and the properties of MAPK as a proline-oriented Ser/Thr kinase were used to predict
the substrate [13]. Recently, mass spectrometry-based phosphoproteomics has been used
for the identification of plant kinase substrates [14–16], and great progress has been made
in the MAPK cascade regulation of plant development and adaptation to environmental
changes. In addition, computational methods based on evolutionary information, protein
structure, physical and chemical characteristics, and 3D structural energy values have
also been applied to the identification of plant kinase substrates [17]. The role in plant
signal transduction has attracted more and more attention with the further study of the
MAPK pathway.

2. Composition and Classification of MAPK Cascades in Plants

In the A. thaliana genome, 20 coding MAPK genes have been identified and can be
divided into four subfamilies (A–D) according to their characteristics and phylogenetic
relationships (Table 1). In addition to TEY (Thr-Glu-Tyr) and TDY (Thr-Asp-Tyr), the con-
served phosphorylation sites also include MEY (Met-Glu-Tyr), TEM (Thr-Glu-Met), TQM
(Thr-Gln-Met), TRM (Thr-Arg-Met), TVY(Thr-Val-Tyr), TSY (Thr-Ser-Tyr), TEC (Thr-Glu-
Cys), and TQY (Thr-Gln-Tyr), according to the comparison of MAPK sequences in different
plants (Figure 1) [6]. Many MAPK genes have been identified from higher plants, most of
which have high homology with the mammalian MAP kinase ERK family. The interaction
between protein kinases is usually achieved by docking the interacting sites or scaffold pro-
teins [18]. The C-terminal of MAPK proteins contains an evolutionally conserved common
docking (CD) site, which acts as a docking site (D-site) for MKK, phosphatase, and substrate
proteins. Ichimura et al. integrated identified MAPKs (Arabidopsis, alfalfa, tobacco, rice
and barley, etc.) and developed a taxonomic nomenclature [19]. However, Mohanta et al.
proposed a more complete taxonomic nomenclature, which provided a reference for the
classification and nomenclature of newly identified MAPKs in other species on the basis of
the diversity of 589 conserved MAPK sequences and variable differences of active loops in
40 plant species [6].

Table 1. Composition and classification of MAPK cascades in Arabidopsis.

Family Number Group Named Members Active Sites * References

MAPK 20

A MPK3/6/10 TEY, TQY

[5,6]
B MPK4/5/11/12/13 TEY, MEY, TVY, TEC
C MPK1/2/7/14 TEY
D MPK8/9/15/16/17/18/19/20 TDY

MAPKK 10

A MKK1/2/6 S/T-X5-S/T

[5,20]
B MKK3 S/T-X5-S/T
C MKK4/5 S/T-X5-S/T
D MKK7/8/9 S/T-X5-S/T
E MKK10 R-X5-S/T

MAPKKK 80
MEKK MEKK1, YDA,

ANP1/2/3
G (T/S) Px (W/F)

MAPEV
[21,22]Raf MKD1, EDR1, CTR1 GTxx (W/Y) MAPE

ZIK ZIK1 GTPEFMAPE
(L/V/M)(Y/F)

Note: * indicates all formation in plants, x represents any amino acid.
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Figure 1. Schematic representation of MAPK cascade. A signal transduction cascade navigates the
signal from MAPKKK to MAPK by triggering a series of Thr/Tyrosine (Tyr) and Ser/Thr phospho-
rylation events. Eventually, the activated MAPK is transported to the nucleus, where it is involved
in the phosphorylation of transcription factors (TFs) and reconfigures a specific response related
to transcriptional reprogramming. Phosphorylated substrates can be degraded by 26S proteasome
or activated, and they can thus change the binding affinity with the promoter of the target gene to
suppress or promote its expression. MAPKKK can fall into three subfamilies: MEKK, Raf (Rapidly Ac-
celerated Fibrosarcoma), and ZIK (ZR1-interacting kinase). Compared with typical MKKs, the active
loop of MKK10 displayed only a partially conserved Ser/Thr site (R-X5-S/T). The phosphorylation
sites of MAPKs at their TXY activation loop include various forms, such as TEY (Thr-Glu-Tyr), TDY
(Thr-Asp-Tyr), MEY (Met-Glu-Tyr), TEM (Thr-Glu-Met), TQM (Thr-Gln-Met), TRM (Thr-Arg-Met),
TVY(Thr-Val-Tyr), TSY (Thr-Ser-Tyr), TEC (Thr-Glu-Cys), and TQY (Thr-Gln-Tyr). The circled P
indicates phosphorylation; the blue circle indicates degraded protein.

There are ten genes encoding MKKs in the Arabidopsis genome divided into four
groups (A–D), only half as many as the number of MAPKs, suggesting that one MKK
can activate different MAPKs. Hence, the cross-network of various signal transduction
pathways is mainly concentrated at this level in plant MAPK cascades. However, phyloge-
netic analysis of MKKs in 51 plants suggested that the previous group D (MKK7/8/9/10)
should be subdivided into group D (MKK7/8/9) and Group E (MKK10) (Table 1) [20].
The active loop of MKK10 showed only partially conserved motifs (R-X5-S/T) (Figure 1).
Although the active loop of Group E MKK10 is incomplete, it still has a biological function.
For example, both mkk10/mpk3 and mkk10/mpk6 double mutants had higher root growth
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rates than either single mutant [23]. MKK10 is involved in the rice defense response and
maize (Zea mays) ethylene (ET)-mediated cell death and can phosphorylate MPK3 and
MPK6 in vivo [24,25]. In addition, MKK10 paralogs from ancient tandem duplicates may be
responsible for functional divergence in monocots, such as B. distachyon [26]. Moreover, the
C-terminal region of MKK3 contains a specific nuclear transport signal peptide 2 (NTF2),
which indicates that there may be a transport process from the cytoplasm to the nucleus
during the response of the MKK family to stress. Further analysis showed that the gradual
loss of MKK3’s cytoplasmic nucleus transport function may be related to more and more
refined functions of plants during the evolution process [20,27].

It is predicted that there are 80 MAPKKK gene members in the Arabidopsis genome,
which can be divided into three groups: MEKK (21 members), Raf (Rapidly Accelerated
Fibrosarcoma; 48 members), and ZIK (ZR1-interacting kinase; 11 members), according
to the analysis of amino acid correlation in the catalytic region of the protein kinase
(Table 1 and Figure 1). Most MEKK gene members contain a typical conserved catalytic
domain that activates downstream MKKs in response to stress. Raf consists of more than
half of MAPKKKs and contains a specific polypeptide signal, GTxx(W/Y)MAPE [21].
Arabidopsis Constitutive Triple Response 1 (CTR1) and Enhanced Disease Resistance 1
(EDR1) are homologous to mammalian Raf MAPKKKs and are involved in ET and pathogen
resistance-mediated signal transduction and the defense response, respectively. The plant
ZIK subfamily, originally named ZIK1, is a predicted MAPKKK associated with the MPK
regulatory protein ZR1. Although Raf and ZIK are typical MAPKKK family genes, their
phosphorylation sites have not been confirmed in plants [28]. However, they have shown
an ability to interact with MKKs in Brassica napus [29].

3. MAPK Cascades Are Involved in a Variety of Signal Transduction
Pathways in Plants
3.1. MAPK Cascades in ROS Signaling

One of the ways that plants respond to environmental stress is to activate the MAPK
pathway by producing reactive oxygen species (ROS) [30], and the identification of the
initial site of ROS generation is the premise of studying this signal transduction event.
When plants respond to stresses, such as pathogen or mechanical damage, ROS are first
produced in the extracellular body [31], but the production sites in the chloroplasts, per-
oxisomes, or mitochondria have not been identified [32]. There are data that suggest that
different ROS-dependent MPK signaling pathways are activated in plants in response to
environmental stress. The OXI1 (oxidative stress inducible 1)-MPK3/6 signaling pathway
is activated by ROS treatment in A. thaliana [33]. After H2O2 treatment, the MPK4 activity
of Arabidopsis mekk1 mutants decreased, while the MPK3, MPK4, and MPK6 activity
increased. In addition, Medicago OMTK1 (oxidative stress-activated MAP triple-kinase
1), highly homologous to Arabidopsis MEKK1, is also activated by ROS induction [34]. It
was reported that ROS accumulation induced by abscisic acid (ABA) activation can induce
stomatal closure through calcium channels in the plasma membrane of guard cells in A.
thaliana [35]. AIK1 (ABA-INSENSITIVE PROTEIN KINASE 1), induced by ABA, regulates
the differentiation and elongation of Arabidopsis root cells and the stomatal response
through the MKK5–MPK6 pathway [36]. NtMPK4-silenced tobacco (Nicotiana tabacum)
is hypersensitive to ROS, suggesting that NtMPK4 may function in the early stages of
ROS signaling by controlling ROS absorption. Arabidopsis YODA (YDA) can form a
signaling pathway with its downstream kinases, MKK4/5 and MAPK3/6, to regulate
stomatal phenotypes in epidermal cells (Figure 2) [37]. The NtMEK2-SIPK (salicylic acid
(SA)-induced protein kinase) and NTMEK1-NTF6 (Nicotiana Fus-3-like kinase 6) signaling
pathways can regulate the expression of the NbRBOHB (Nicotiana benthamiana Respiratory
Burst Oxidase Homolog B) gene and the production of RBOH-dependent ROS. The potato
(Solanum tuberosum) StMEK2 gene can also regulate cell death and ROS production caused
by the hypersensitivity response (HR) by inducing NbRBOHB gene expression [38]. In ad-
dition, MPK8 can regulate the Ca2+ and ROS produced in response to early damage, avoid
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excessive ROS accumulation in cells, and maintain the balance of intracellular ROS [39].
Salt intolerance gene 1 (SIT1) can also induce ROS accumulation and activate MPK3 and
MPK6 in rice, which are mainly expressed in root epidermal cells and induced by NaCl [40].
In other plant species, maize ZmMPK5 is also known to suppress ROS synthesis and
ROS-induced damage, improving plant tolerance to cold stress [41], and wheat (Triticum
aestivum) TaMPK14 can modulate ROS homeostasis under N-starvation stress [42].
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Figure 2. Overview of the functions of different MAPK cascades in stress responses as well as their
regulation and possible downstream consequences. Upon sensing the tissue/cell-specific input
signaling molecules, the MAPK cascade is activated in a spatiotemporal-specific manner. Activated
MAPKs phosphorylate their substrate(s), ultimately leading to tissue-specific cell proliferation or
differentiation at specific developmental stages or in response to specific external stimuli, thereby
regulating plant growth, development, and stress responses. Arrows with uninterrupted lines
indicate interactions supported by genetic and/or biochemical evidence, while arrows with dashed
lines represent putative signaling pathways. One arrow may represent multiple steps because of
unknown components in the signaling pathways. PAD4, Phytoalexin Deficient 4; EDS1, Enhanced
Disease Susceptibility 1; ACS, 1-aminocyclopropane-1-carboxylic acid synthase; MKD1, MAPKKK
δ-1; SUMO, small ubiquitin-like modifier; GST, glutathione S-transferase; ROS, reactive oxygen
species; KLP, kinesin-like protein; NPK1, nucleus- and phragmoplast-localized protein kinase 1; ANP,
Arabidopsis NPK1-related protein kinases; SA, salicylic acid; JA, jasmonic acid; ET, ethylene; ABA,
abscisic acid. See text for details.

3.2. MAPK Cascade in Hormone Signaling

1-Aminocyclopropane-1-carboxylic acid synthase (ACS) is a rate-limiting enzyme
for ET synthesis. AtMPK6 can inhibit the degradation of ACS2/6 by 26S proteasome
and then promote ET synthesis (Figure 2) [43]. After DEX treatment, the MKK4DD and
MKK5DD plants showed significant increases in MAPK6 and ACS activity [44], suggesting
that the MKK4/5-MPK3/6-ACS2/6 pathway is involved in ET synthesis. In addition,
the dephosphorylation of ABI1 (ABA insensitive 1; a protein phosphatase 2C (PP2C)) is
involved in regulating the degradation of the ACS6 proteasome [45]. The mkk9 mutant has
a similar phenotype to the double mutant ein3eil1 in the ET signal transduction pathway
and is not sensitive to ET [46]. ET can activate the MKK9–MAPK3/MAPK6 pathway, which
in turn activates the 174th amino acid of EIN (ETHYLENE INSENSITIVE 2) protein and
keeps EIN3 stable. CTR1 can activate the 569th amino acid on the EIN protein through an
unknown pathway, thereby degrading EIN3. Mechanical damage-induced ET synthesis
is associated with MKK6–MPK3/6. Among them, ACS6 and ACS7 were rapidly induced
30 min after damage, while ACS2 and ACS8 reached their maximum value at 2–6 h
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later [47]. In addition, activated rose (Rosa hybrida) RhMPK6 phosphorylates and stabilizes
RhACS1 and stimulates ET production in the pistils of roses. Further analysis found that
RhMKK9 could regulate the expression and activity of RhMPK6 and RhACS1, suggesting
that RhMKK9 is the activator of RhMPK6–RhACS1 [48].

Recent studies have found that MKK3 and MPK6 act as negative regulators of the
jasmonic acid (JA) signal [49]; MPK1 and MPK2 can be activated by methylated JA (Me-
JA) [50]. MPK7 and MPK14, belonging to subgroup C MAPKs, can interact physiologically
with MKK3. In comparison with MPK6, the AtMKKK14–MKK3–MPK1/2/7/14 signal-
ing pathway may play a major role in JA-dependent signaling [51], while AtMPK9 and
AtMPK12 jointly participate in JA-induced stomatal closure (Figure 2) [52]. The induc-
tion of the transcriptional level of OsMPK7, OsMPK20-5, and OsMPK16 by JA treatment
has been confirmed in rice [53]. Similarly, NtMPK1, NtMPK5, NtMPK8, NtMPK10, and
NtMPK16 of tobacco and BdMPK7-1 and BdMPK20-5 of Brachypodium were induced after
JA treatment [22,54].

MPK4 is involved in the regulation of the balance between the SA- and JA/ET-related
defense response [55]. Enhanced disease susceptibility 1 (EDS1) and phytoalexin deficient 4
(PAD4) are the core antagonists between the SA and ET/JA defense signaling pathways to
a certain extent, serving as positive regulators of SA accumulation and negative regulators
of ET/JA signaling pathways. Specifically, mpk4 mutants showed SA accumulation and
sustained expression of the SA-related gene PR (pathogenesis-related), which regulated
the expression of endoplasmic reticulum (ER)- and Me-JA-related genes. Interestingly,
eds1 and pad4 mutants and MPK4-overexpressing transgenic plants can reduce SA content
and partially recover the phenotype of mpk4. The double mutant also reduced the plant
dwarf phenotype, reduced the SA content, and partially recovered the expression of the
Me-JA-dependent PLANT DEFENSIN1.2 (PDF1.2) gene. These results suggest that MPK4
regulates hormone balance in plants through EDS1/PAD4 (Figure 2) [55]. In the yeast
two-hybrid (Y2H) system, MEKK1 interacts with MAPK4, and MEKK1 regulates defense-
related hormone balance by regulating MAPK4. In addition, continuously activated MKK7
can cause SA accumulation, PR1 gene continuous expression, and an increase in pathogen
resistance [56], suggesting that there may be another MAPK cascade pathway antagonizing
the effects of MPK4 in plants. The activity of AtMPK3 and AtEDR1 is regulated by SA, in
which AtMPK3 functions as a negative regulator of SA accumulation induced by Flag22 [57].
Heterologous expression of inactive maize ZmMKK6 induces SA accumulation and SA-
dependent leaf senescence in A. thaliana [58], and ZmMKK6 also activates ZmMPK4-1 and
AtMPK4 in vitro.

MKK7 positively regulates polar auxin transport (PAT), while the overexpression
of MKK7 causes a lack of PAT, leading to malformation changes in A. thaliana [59]. In-
terestingly, PAT is regulated by PIN-FORMED proteins (PINs) and reversible protein
phosphorylation, including protein kinases and protein phosphatases that mediate the
activity of auxin transporters, such as MPK4 and MKK7/MPK6 modules [60]. AtMKK3–
MPK1–RBK1 (ROP binding protein kinase 1) regulates auxin-dependent cell expansion [61].
MKKK17/18, a known upstream kinase of MKK3, is associated with ABA signaling [62],
suggesting that the ABA-activated MKKK17/18–MKK3–MPK1/2/7/14 cascade is cross-
talk between ABA and auxin signaling (Figure 2). Raf10 phosphorylates and enhances
sucrose non-fermenting 1 (SNF1)-related protein kinase (SnRK2.3) activity and may facili-
tate its release from negative regulators in response to ABA signaling [63]. ZmMPK6 plays
a role in ABA-induced antioxidant defense by phosphorylating ZmWRKY104 in maize [64].

3.3. MAPK Cascades in Biotic Stress

Higher plants have developed mechanisms to detect and rapidly respond to pathogen
invasion using their own immune systems in the evolutionary process. There are two
MAPK cascade pathways, MEKK1–MKK4/5–MAPK3/6–WRKY22/29 [65] and MEKK1–
MKK1/2–MPK4 [66], activated by bacterial flagellin Flg22 in A. thaliana. Both mpk4 and
mekk1 mutants had short stature, spontaneous cell death in leaves, and sustained expression
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of pathogen-related genes, such as PR1 and PDF1.2, and showed resistance to pathogen
infection [67]. Meanwhile, it was found that MPK4 could bind and phosphorylate its direct
substrate MKS1 (MAP kinase 4 substrate 1), which could bind WRKY33 [11]. In conclusion,
MEKK1 and MPK4 play an important role in perceiving and responding to Flag22 infection
and negatively regulate the programmed cell death (PCD) process induced by pathogens
or pathogen-associated molecular pattern (PAMP). Additionally, the acetylation of MKK7
also contributes to plant immunity in response to Flg22-induced ROS burst [68]. MKS1
is one of the target proteins of MPK4, which is similar to WRKY25 and WRKY33 TFs. In
response to the pathogen infection process, plants produce phytoalexins, such as camalexin
(3-thiazol-2-yl-indole), to enhance disease resistance. MAPKKKα/MEKK1–MKK4/MKK5–
MPK3/MPK6 plays a key role in camalexin production [69]. AtMKK9 is also required for
the activation of MPK3 and AtMPK6 to generate camalexin (Figure 2) [70]. A recent study
also showed that the MAPKKK δ-1 (MKD1)–MKK1/MKK5–MPK3/MPK6-dependent sig-
naling cascade is involved in the full immune responses against both Pseudomonas syringae
pv. tomato DC3000 (PstDC3000) and Fusarium sporotrichioides infection [71]. In addition,
OsMKK10-2-OsMPK6 responds to SA-mediated plant pathogen defense responses through
the phosphorylation of WRKY45 [72], and OsRLCK185 (receptor-like cytoplasmic kinase)
converts immune signals perceived by PAMP effector rice chitin elicitor receptor kinase
1 (OsCERK1) and activates the downstream OsMAPKKKε–OsMKK4–OsMPK3/6 path-
way [73]. Studies have also shown that OsMKK3–OsMPK7–OsWRKY30 and OsMKKK43-
OsMKK4–OsMPK6 can promote rice bacterial blight resistance [74–76], while OsMPK15
plays a negative role in Magnaporthe oryza and Xoo tolerance through the SA and JA signal-
ing pathways [77]. The OsMKK2–OsMPK1 module positively regulates ROS-dependent
blast disease (susceptibility)-related cell death in M. oryzae infection [78]. Moreover, the
increased activity of the GhMKK6–GhMPK4 cascade can improve cotton’s (Gossypium
hirsutum) resistance to Fusarium oxysporum [79]. In addition to the defense response to
bacterial and fungal infection, MAPK cascades also participate in counteracting insect
feeding. For example, the MKK3–MPK1/2/7 module participates in the inhibition of insect
feeding (Figure 2) [51].

3.4. MAPK Cascades in Abiotic Stress

In A. thaliana, the best-studied MAPK cascades responding to abiotic stress are MEKK1–
MKK2–MPK4/MPK6 (Figure 2) [80]. The target kinases MPK4 and MPK6 downstream of
Arabidopsis MKK2 were isolated by functional complement of osmotic-sensitive yeast mu-
tants, and MKK2 is also activated by MEKK1 induced by cold and salt stress in Arabidopsis
protoplasts [80]. MEKK1 mRNA has massive accumulation in response to abiotic stress,
such as low temperature, high salt, or mechanical damage. The overexpression of MKK2
resulted in sustained MPK4 and MPK6 activity and the up-regulated expression of stress-
induced marker genes, thus enhancing plant tolerance to freezing damage and salt stress.
By contrast, in mkk2 plants, MPK4 and MPK6 activity was impaired and showed hypersen-
sitivity to salt and cold stress. MPK6 plays a role in negatively regulating plasma membrane
fluidity in the process of cold acclimation and controlling stomatal opening and closing un-
der ozone exposure [81]. Further studies revealed that the MPK3/6–ICE1 (Inducer of CBF
expression 1)–CBF (C-repeat-binding factor)–COR (cold-responsive) module plays a critical
role in freezing acclimation. AtMPK3 and AtMPK6 directly phosphorylate AtICE1, affect-
ing its transcriptional activity and thereby attenuating the binding ability of the AtCBF3
promoter [82,83]. In addition, MKK1 is activated by salt, drought, and mechanical damage
stress and thus phosphorylated MPK4, suggesting that the MAPK cascade is involved in
plant abiotic stress signals. Low temperature, low humidity, hyper-osmosis, salt stress,
touch, and wounding can rapidly induce AtMPK4 and AtMPK6 activity, but their mRNA
and protein levels are not changed, indicating that they regulate the signal mainly through
post-transcriptional protein modification [84]. On the contrary, the mRNA of AtMPK1 in-
creased under salt stress. The overexpression of rice DSM1 (drought-hypersensitive mutant
1; a class of Raf MAPKKK) can improve plants’ resistance to drought and hyper-oxygen
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stress [85]. Transgenic tobacco with exogenous overexpression of ZmMPK7 significantly
increased resistance to osmotic damage by the ROS-mediated peroxidase (POX) defense
system [86]. Moreover, wheat TaMAPK enzymes regulate the heat stress response by
ROS-activated signaling sensors under heat stress [87]. Other studies have shown that
AtMKKK18 responds to drought stress by activating downstream AtMKK3 [88], and over-
expression of BnMPK1 can enhance the tolerance of B. napus to drought stress [89]. Similarly,
maize ZmMKK1, rice OsMKKK63, and cotton GhRaf19 can respond to salt stress [90–92],
while cotton GhMAP3K14–GhMKK11 –GhMPK31 and maize ZmMPK6–ZmWRKY104 are
involved in drought stress [64,93]. More obviously, GhRaf4 and GhMEKK12 display a
positive tolerance to drought stress [94]. In addition, other proteins may also participate
in response to various environmental stresses with MAPK cascades. For example, it was
reported that Raf could directly phosphorylate SnRK2s in response to drought/simulated
drought stress [95,96]. OsPP2C27 directly dephosphorylates OsMPK3 and OsICE1 and
thus plays a negative regulatory role under cold stress in rice [97]. However, banana (Musa
acuminata) MusaMPK5 can respond to cold stress by phosphorylating the downstream
NAC (NAM/ATAF1/2/CUC2) TFs MusaNAC042 and MusaSNAC67 [98].

3.5. MAPK Cascades in Cell Division and Differentiation

Scientists found that a class of MAPK cascade, nucleus- and phragmoplast-localized
protein kinase 1 (NPK1)–NQK1/MEK1–NRK1/MPK1, is involved in the cell division
process of tobacco [99,100]. During cell division, MAPKK kinase NPK1 specifically phos-
phorylates NtMEK1 by binding to two microtubule driving proteins (NPK1-activating
kinase-like protein1, NACK1 (NPK1-activating kinesin-like protein 1), and NACK2, which
belong to the kinesin-like protein (KLP) family, which control cells to form normal cell
plates in late M (Figure 2) [101]. Similarly, Medicago MMK3 activity is enhanced by micro-
tubules in membrane formation during mitosis anaphase. The three kinases of Arabidopsis,
ANP1/ANP2/ANP3, orthologous genes of tobacco NPK1, are highly expressed in the
active region of cell division and participate in the cell division process together with
downstream MKK6/ANQ1 and MPK4 (Figure 2) [102]. They influence the structural orga-
nization of mitosis through reversible phosphorylation of MAP65 (Microtubule-binding
protein 65) proteins [103]. In brief, the MAPK cascade controls microtubule continuous
remodeling during cell plate formation and the phragmoplast period [104]. Moreover,
YDA–MKK4/MKK5–MPK3/MPK6 regulates the inflorescence structure by promoting cell
proliferation downstream of RLKs (receptor-like protein kinases) [105]. YDA and MPK6
can also affect the direction of cell division and cytoplasm movement in the main lateral
roots [106]. Furthermore, Resveratrol (RSV)-mediated MPK-1 activation was found to
prolong reproductive life and delay reproductive senescence by maintaining mitotic germ
cells [107].

It was confirmed that YDA plays a critical role in cellular differentiation during early
embryonic development and stomatal formation [37]. In yda mutants, the zygotes did not
differentiate into suspensors, and the surviving mutant plants differentiated irregularly
during epidermal development, resulting in the destruction of cell spacers in stomata and
the formation of stomata clusters [37]. The transcript levels of CPFS (cell plate fusion site)
markers [specifically microtubule binding protein TANGLED1 (TAN ) and phragmoplast
orienting kinesin 1(POK1)] were also deregulated [106]. The expression of 4N-YDA leads
to the excessive growth of stipe and inhibits embryonic development and stomatal for-
mation. Reverse genetics showed that the downstream YDA genes MKK4/MKK5 and
MPK3/MPK6 also have the function of regulating the stomatal phenotype. Similarly, root
growth in the manner of the continuous division of cells in the apical meristem is also
associated with the YDA–MKK4/MKK5–MPK3/MPK6 signaling cascade [108,109]. In
addition, similar to the yda mutant, the zygotes of the mpk3/mpk6 double mutant showed
a similar phenotype of cell differentiation, suggesting that MPK3/MPK6 is downstream
of YDA [110]. Another study also showed that only MKK4/5/7/9 of the ten Arabidopsis
MKKs affect stomatal development [111]. Furthermore, another MAPK pathway may
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be involved in cell division; although details of microtubule-related substrates are some-
what elusive, these substrates may justify the role of MPK18 and the MAPK phosphatase
PROPYZAMIDE HYPERSENSITIVE 1 (PHS1) in microtubule regulation [112].

4. Substrates Identification of MAPKs
4.1. Interaction Domains of MAPKs and Their Substrates

The specific docking interaction is the precondition of complex formation between
MAPK and its connate activator, substrate, scaffold, or inactivator [113]. The docking
interactions potentially contribute to the increased specificity of molecular recognition and
enzymatic activity [114]. The CD domain of MAPKs is at the C-terminal region outside the
catalytic domain, which is characterized by a cluster of negatively charged amino acids that
can bind to the basic residues at the N-terminal D-site of the MAPK-interacting protein,
such as substrates [115]. The D-site sequence is characterized by a cluster of basic residues
and a hydrophobic motif, which usually harbors Leu (L), Ile (I), or Val (V), separated by
one residue (R/K1–3-X1–6-ϕ-X-ϕ) (ϕ is any hydrophobic residue; Figure 3) [116]. The
two hydrophobic residues at the distal end of the D-site in MAPKKs may determine the
specificity of MAPK docking interactions [117]. All MAPKs have three (not two as originally
thought) hydrophobic pockets on their surface, which together form a shallow “docking
groove” that interacts with linear binding motifs LxLxL/I of their substrates [118,119]
(Figure 3). Hydrophobic pockets exist in other variations, such as DEF (Asp-Glu-Phe), DFY
(Asp-Phe-Tyr), and IYT (Ile-Tyr-Thr) motif, among others [17,120,121]. Therefore, proteins
with similar D-site structures can be used as candidate MAPK substrates.
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pockets (A, B and C; B and C were earlier described as “-x-groove”), and the acidic region, known
as the “common docking” (CD) site, which binds to the basic residues at the N-terminus of the
docking motifs.

4.2. General Strategy and Research Status of MAPK Substrate Identification

A large number of possible substrates for MAPK have been identified by Y2H, high-
throughput protein array, and phosphoproteomic analysis [12,14,122]. In addition, the
direct labeling of kinase substrates with ATP or kinase-sensitive analogs, such as ATP-γ-S,
was reported [123]. Peptide library screening, similar to the protein microarray approach,
is phosphorylated in vivo by the incubation of peptides rather than proteins. The phos-
phorylation sites were determined by proteomic analysis, and the possible substrates were
inferred [124]. If a phosphorylation event is associated with MAPK activity, it is easier
to determine the role of the kinases involved. In this case, the MAPK cascade-specific
inhibitor U0126 is usually used to display the MAPK associated with phosphorylation
events [125]. Both phosphoproteomic and affinity purification coupled with mass spec-
trometry (AP–MS) are screening methods based on MS. The former approach compares the
overall levels of phosphorylation measured by quantitative phosphoproteomics in plants
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with and without MAPK activity. Proteins with significantly high phosphorylation can be
considered as substrates for MAPK. For AP–MS, proteins that interact with labeled kinases
and are extracted by affinity purification are identified by proteomics. Moreover, proximity
labeling (PL) combined with MS can be used for more precise prediction in studying tran-
sient PPIs [126]. PL–MS has the potential to accurately examine hydrophobic interactions
under native conditions in living cells and is based on the principle that proteins must be
physically close [127]. MAPK–substrate interactions can also be detected by in silico pre-
diction, immunoprecipitation, BN-PAGE (blue native polyacrylamide gel electrophoresis),
co-localization of GFP (green fluorescent protein) or YFP (yellow fluorescent protein), SEC
(size exclusion chromatography), BiFC (bimolecular fluorescence complementation), and
FRET (fluorescence resonance energy transfer) [128,129].

Although we identified a large number of possible substrates for MAPK through
these methods mentioned above, only a few of them passed functional verification [130]
(Figure 4). The first MAPK–substrate pair identified in plants was MPK6–ACS6. The phos-
phorylation of ACS6 by MPK6 enhances the stability and activity of ACS6, thus inducing
ET biosynthesis [44]. SPCH (Speechless) is a class of basic helix-loop-helix (bHLH) TFs that
initiate asymmetric cell differentiation to form stomata. Genetic analysis showed that yda
mutants had a hyper-stomatal phenotype in the spch background, indicating that SPCH is
downstream of the YDA–MKK4/MKK5–MPK3/MPK6 cascade [110]. In addition, YDA and
HSP90.1 (heat shock protein 90.1) are epistatic and affect the phosphorylation of MPK6 and
SPCH under acute heat stress [131]. MPK3/MPK6 phosphorylates several Ser/Thr residues
of SPCH in vitro [132]. In vivo, mutations or deletions of SPCH phosphorylation sites
can enhance stomatal formation activity. Therefore, MAPK phosphorylates SPCH, which
makes the SPCH protein unstable and inhibits stomatal formation. MPK3 and MPK6 are
functionally redundant in many physiological processes, but not all of them. For example,
ET response factor 104 (ERF104) has been shown to be phosphorylated by MPK6 in vivo,
while MPK3 has not [133], a process confirmed in FRET experiments. Flag22 stimulates
MPK6 to phosphorylate ERF104, leading to its release, which subsequently regulates the
expression of a target gene in the ET signaling pathway. Moreover, pollen-specific WRKY
TF WRKY34 can be phosphorylated by MPK3/6 in the pollen double/triple cell stage [134].
Mutations of WRKY34 and WRKY2 lead to pollen defect phenotypes, including reduced
pollen fertility, germination, and pollen tube development. Mutations at the MAPK3/6
phosphorylation site (Ser to alanine) at WRKY34 complement the wrky2wrky34 double
mutant phenotype, demonstrating the importance of the MPK3/6 phosphorylation site for
preserving WRKY34 function. The ectopic dominant analysis confirmed that both MPK6
and WRKY34/WRKY2 belonged to the same signaling pathway. In addition, AtMPK3/6
also phosphorylates AtICE1 and AtMYB15, which induces rapid degradation of AtICE1
and inhibits the binding affinity of AtMYB15, which, in turn, weakens AtCBF3 transcrip-
tion to enhance plant tolerance to freezing stress [83,135]. Furthermore, ZmWRKY104, a
substrate of ZmMPK6, physically interacts with ZmMPK6 and is phosphorylated by it
in maize [64]. OsWRKY53 is a direct substrate of the OsMKKK10–OsMKK4-OsMAPK6
cascade and regulates leaf angle and seed size control in rice [136].

The first substrate to be identified for MPK4 is MKS1. MKS1 may mediate MPK4
interaction with TFs to initiate plant defense responses [11]. Two subsequent studies
proved that the phosphorylation of MKS1 by MPK4 is a prerequisite for the expression
and activation of WRKY33 and PAD3 (PHYTOALEXIN DEFICIENT 3) [67]. In addition
to MKS1, Y2H experiments also identified another MPK4 substrate, PAT1 (protein asso-
ciated with Topoisomerase II 1), which is required for mRNA uncapping [10]. MAP65 is
required for protein stability in the spindle central region during late cell division and
is the target protein of the NPK1–NQK1–NRK1 pathway of the tobacco MAPK cascade
and the homologous A. thaliana pathway. The phosphorylation of Thr-579 residues in the
microtubule-binding domain of MAP65-1 by NRK1 can increase the affinity of MAP65-1
to microtubules. Conversely, it leads to overturning and instability of microtubules near
the membrane formation body [137]. MAP65-1, MAP65-2, and MAP65-3 can all be phos-
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phorylated by MAPK4 during cell division in Arabidopsis [138], while MAP65-1 is also
phosphorylated by MPK6 in vivo [14,137]. Moreover, the newly identified MPK4 substrate
is a transcription suppressor, ASR3 (ARABIDOPSIS SH4-RELATED3), which can enhance
its DNA binding after phosphorylation by MPK4, thus inhibiting gene expression [125].
Some research has also indicated that OsVQ14 (valine-glutamine) and OsVQ32 act as sub-
strates of the OsMPKK6–OsMPK4 cascade to improve rice tolerance to Xoo [76]. OsMPK4
phosphorylates OsVQ14 and OsVQ32 and can interact with them in vitro and in vivo.
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5. Concluding Remarks and Future Perspectives

The unequal number of MAPK components and the bias to different stimuli make it
difficult to find the interacting proteins of plant MAPKs. Gel kinase activity assay showed
that not all MAPKs were active, especially TDY kinases, and inactive A- and B-class MAPKs
are also usually ignored. A functional deletion mutant of the MAPK gene may be unable
to accurately detect the gene function because of functional redundancy, and only some
indirect evidence can be obtained. Similarly, MAPKs may have problems activating tags
during post-translational modification. So far, MAPK substrates have mostly been reported
only in Arabidopsis, and it is interesting to see how the knowledge we have gained from
model plants can be better applied to crops. In addition, far fewer MAPKs substrates have
been identified than predicted. As the number of plants with whole-genome sequencing
increases, we can identify new substrates by comparative analysis of MAPK cascades
between plant species. Quantitative phosphoproteomic also provides a very useful method
for the identification of kinase substrates.

A major challenge for our next step is to confirm the phosphorylation function of
MAPK–substrate interactions in biological processes. In fact, our functional characteriza-
tion of substrates lags far behind large-scale MAPK characterization. Genetic, biochemical,
and structural analysis methods have been applied. In addition, MAPK kinase N-terminal
binding domain and scaffold proteins play an important role in controlling the specificity
of cell signaling. Fortunately, MAPK cascades are very conserved in all eukaryotes, so
techniques and achievements in animals and yeast can be applied to plant science. Another
challenge is the complex cross-network between MAPK and other signaling pathways, in
which different signals can be transmitted through the same pathway. There is also evi-
dence that protein phosphorylation depends on post-translational modification to regulate
substrate function, but the mode and network of action remain unclear. Therefore, the
overall understanding of PPIs in MAPK signal transduction is still a direction and challenge
for future research.
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