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Abstract

Prediction of the initial compatibility of heterosexual individuals based on self-reported traits and preferences has not been
successful, even with significantly developed information technology. To overcome the limitations of self-reported
measures and predict compatibility, we used functional connectivity profiles from resting-state functional magnetic
resonance imaging (fMRI) data that carry rich individual-specific information sufficient to predict psychological constructs
and activation patterns during social cognitive tasks. Several days after collecting data from resting-state fMRIs,
participants undertook a speed-dating experiment in which they had a 3-min speed date with every other opposite-sex
participant. Our machine learning algorithm successfully predicted whether pairs in the experiment were compatible or
not using (dis)similarity of functional connectivity profiles obtained before the experiment. The similarity and dissimilarity
of functional connectivity between individuals and these multivariate relationships contributed to the prediction, hence
suggesting the importance of complementarity (observed as dissimilarity) as well as the similarity between an individual
and a potential partner during the initial attraction phase. The result indicates that the salience network, limbic areas, and
cerebellum are especially important for the feeling of compatibility. This research emphasizes the utility of neural
information to predict complex phenomena in a social environment that behavioral measures alone cannot predict.
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Introduction
Finding a suitable romantic partner is challenging, which is why
matchmaking services have a strong economic market (Finkel
et al. 2007, 2012). To help individuals find their soulmates, some
matchmaking services utilize algorithms that aim to predict,
based on self-reported data, potentially suitable partners for
users before they begin communication (Finkel et al. 2012; Joel

et al. 2017). However, the performance of such algorithms is cur-
rently very limited at best (Finkel et al. 2012). In such algorithms,
following research on social relationships, both similarity and
complementarity in personality are considered important for
compatibility (Finkel et al. 2012). Individuals prefer dating
those with the same personality types (Morell et al. 1989) and
complementary attachment insecurities (anxious or avoidant)
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(Kirkpatrick and Davis 1994; Holmes and Johnson 2009). They
also prefer to have dyadic interactions with partners with
complementary interpersonal styles (dominant or submissive)
(Dryer and Horowitz 1997). Thus, such psychological constructs
could help predict the compatibility of individuals.

However, a recent study showed negative results for the
prediction of compatibility (Joel et al. 2017). Participants first
completed questionnaires of more than 100 psychological
constructs. Subsequently, they attended a speed-dating event
in which they had a 4-min conversation, referred to as a
“speed date,” with every participant of the opposite sex. After
each speed date, participants filled in a three-item measure
of their romantic desires for their potential partners. The
findings showed that a machine learning algorithm, even with
more than 100 psychological constructs, could not anticipate
the degree to which individuals desired one another. This
might be due to the behavior of an individual in the speed-
dating context, which is time-constrained. Moreover, unfamiliar
situations, as in most cases of relationship initiation, do
not necessarily elicit behaviors consistent with self-reported
psychological constructs, which reflect general behavioral
tendencies. Another study also showed that the “perceived”
similarity during a dyadic interaction, but not similarity of self-
reported measures collected before meeting, was important
for predicting initial attraction (Tidwell et al. 2013). There is
an additional discrepancy between subjective preferences for
particular qualities in a partner before meeting and the qualities
in selected partners accordingly (Todd et al. 2007). Thus, to
predict compatibility of two individuals during relationship
initiation, predictive variables need to reflect behavioral ten-
dencies that the two individuals actually exhibit during dyadic
interactions.

In the last two decades, task-free, spontaneous brain activity
has been densely investigated because of the invaluable infor-
mation it carries as well as the simplicity of data collection.
Scanning no more than 10 min of task-free resting state by
functional magnetic resonance imaging (fMRI) enables one to
obtain correlation patterns of time series across regions (i.e.,
functional connectivity) and identify functional organization
(i.e., large-scale brain networks) of the human brain correspond-
ing to various task-evoked activation patterns (Cole et al. 2016).
Resting-state functional connectivity can predict not only vari-
ous psychological constructs that represent general tendencies
of behaviors and thoughts (e.g., Big Five personality traits, Nostro
et al. 2018) but also activation patterns during various social
cognitive tasks (Cole et al. 2016; Tavor et al. 2016; Ito et al.
2017; Kong et al. 2019), which require abilities essential for
dyadic interactions (e.g., emotional processing, language, and
social cognition) (Redcay and Schilbach 2019). It has also been
revealed that (dis)similarity of functional connectivity profiles
between two individuals represents (dis)similarity of psycho-
logical constructs or behavioral tendencies (Liu et al. 2019).
Furthermore, recent research has succeeded in predicting the
proximity in a real-world social network based on similarity
in resting-state functional connectivity, indicating that func-
tional connectivity may capture latent interpersonal similarities
between friends, which are otherwise not fully captured by
commonly used demographic or personality measures (Hyon
et al. 2020). Based on these findings, it is likely that (dis)similarity
of functional connectivity profiles of an individual to those of
a potential romantic partner corresponds to (dis)similarity of
behavioral tendencies during dyadic interactions. This would
enable us to predict the outcome of such interactions, that is,
the compatibility of relationship initiation.

In the present study, using a speed-dating paradigm and
fMRI, we aimed to demonstrate that the compatibility of a
female–male relationship can be predicted using the functional
connectivity profiles of individuals which was collected before
their meetings. Compatibility was predicted by a machine learn-
ing algorithm using the similarity index of functional connec-
tivity in this study. This comparable index as used by Hyon
et al. (2020) was the absolute value of the difference between
the functional connectivities of premeeting resting-state fMRIs.

We hypothesized that compatibility would be successfully
predicted using the (dis)similarity of functional connectivity
profiles. Considering that compatibility is determined not only
by the similarity but also by the complementarity of traits,
such as dominance/submissive (Dryer and Horowitz 1997) and
attachment anxiety/avoidance (Kirkpatrick and Davis 1994;
Holmes and Johnson 2009), the feature values contributing to
compatibility classification would be both positive (represents
similarity) and negative (represents dissimilarity or complemen-
tarity). Such classification-contributed features would enable us
to explore the neural foundations of compatibility.

Materials and Methods
As the present study is, to the best of our knowledge, the first to
use the similarity indices of functional connectivity as a feature
value in neuroimaging research (although a similar approach
was used for questionnaire data in social psychology, Tidwell
et al. 2013), we first assessed the utility of the index using
publicly available data from the Human Connectome Project
(HCP). In this index assessment, we attempted to classify the
pair data collected from a given individual at different time
points (self–self pair) and that of different individuals (self–other
pair) using an identical protocol. We then confirmed that the
index represents pair-specific information and enables us to dis-
tinguish pairs with different properties. Although conventional
resting-state fMRI research uses only low frequency (<0.1 Hz)
data (Lee et al. 2013), recent findings have unveiled the impor-
tance of frequency-dependent information (Sasai et al. 2014;
Park et al. 2019; Ries et al. 2019) and the link between higher-
frequency data and complex information processing (Baria et al.
2011). Therefore, we classified information using data from four
distinct frequency bands. The effective frequency bands for the
pair-data classification were also marked in the index assess-
ment using the HCP dataset.

The data and codes for data analyses in this study are
available on request from the corresponding authors S. K. and
A. I.

Identity Classification Based on Functional
Connectivity Contrast

Subjects
This test was conducted using the test-retest dataset from the
HCP. The dataset contained data on 44 healthy subjects (14
males) (This is the full sample size of the dataset as of August
2019.) who underwent two resting-state fMRI scans on different
days (mean interval = 139.3 ± 69.0 days).

Preprocessing
All preprocessing was performed using Data Processing
Assistant for Resting-State fMRI Advanced Edition (DPARSFA;
http://www.rfmri.org/DPARSF), which is based on Statistical
Parametric Mapping 12 (SPM12; http://www.fil.ion.ucl.ac.uk/
spm) and Resting-State fMRI Data Analysis Toolkit (REST; http://

http://www.rfmri.org/DPARSF
http://www.fil.ion.ucl.ac.uk/spm
http://www.fil.ion.ucl.ac.uk/spm
http://www


Brain Knows Who Is on the Same Wavelength Kajimura et al. 5079

www. restfmri.net). The first four dummy scans were discarded.
The time series of images for each subject were realigned
using a six-parameter rigid-body transformation, followed by
slice-timing correction. All volume slices were corrected for
differences in signal acquisition time by shifting the signal
measured in each slice relative to slice acquisition at the
midpoint of each time repetition (TR). Individual structural
images (T1-weighted magnetization-prepared rapid acquisition
with gradient echo [MPRAGE]) were coregistered to the mean
functional image using a rigid-body transformation. The
transformed structural images were then segmented into gray
matter, white matter, and cerebrospinal fluid (CSF). We then
conducted nuisance covariates regression in native space to
minimize the noise effects caused by cardiac and respiratory
cycles, scanner drifts, and motion. We controlled for nuisance
regressors of six head motion parameters, average white matter,
and CSF signals, and we included them in the general linear
model. We did not apply global signal regression, considering
the loss of information by the procedure (Liu et al. 2017).
Subsequently, the functional scans were spatially normalized to
the Montreal Neurological Institute (MNI) stereotactic standard
space.

Decomposing Signals into Multiple Frequency Bands
To ensure that both the identity and the compatibility classifica-
tion utilize the same frequency bands, this procedure was con-
ducted using data for compatibility classification as described in
the Decomposing Signals into Multiple Frequency Bands section
for compatibility classification. Four frequency bands (0.109–
0.199, 0.055–0.109, 0.027–0.055, and 0.014–0.027 Hz) comparable
with those used in previous studies (Achard et al. 2006; Qian et al.
2015) were defined for subsequent analysis; these frequency
bands were referred to as F1, F2, F3, and F4, respectively.

Identity Definition
The identities of two sets of data were defined by whether they
were collected from the same individual. A self–self pair con-
tained two sets of data collected from an individual at different
time points (e.g., subject A at time 1 and subject A at time 2).
A self–other pair contained two sets of data collected at different
time points from two consecutively numbered individuals (e.g.,
subject A at time 1 and subject B at time 2). Thus, we obtained
44 self–self pairs and 44 self–other pairs.

Given that the self–self pair data are considered to be more
similar than the self–other pair data, if the feature values
indeed represent individual-specific information, then the
machine learning algorithm should be able to distinguish the
self–self pairs from self–other pairs. In addition, the feature
values (explained in the next section) used for classification
should have positive coefficients because a high probability
of being a self–self pair should be related to a high degree
of similarity (and not dissimilarity) in connectivity. Thus, we
confirmed that the procedure can correctly classify pairs based
on individual-specific information, assess which frequency
bands are particularly rich in information about individuals,
and possibly predict compatibility.

Feature Values of Pair Data
Appropriate feature values are required to construct a machine
learning classifier and classify an identity label. The feature
values that potentially represent the identity of two sets of data
were calculated from functional connectivity, that is, Pearson’s
correlation of regional averaged time series data. The regions of

interest (ROIs) were defined by automated anatomical labeling
(AAL) (Tzourio-Mazoyer et al. 2002), which divides the brain
into 116 ROIs (Although this is a coarse atlas compared with
those that are proposed recently, Power et al. 2011; Glasser et al.
2016; Gordon et al. 2016, it has been broadly used for functional
connectivity research, Tommasin et al. 2018; Wegrzyk et al. 2018;
Farràs-Permanyer et al. 2019, and is better when considering the
curse of dimensionality in machine learning, Altman and Krzy-
winski 2018, as it also works as a dimension-reduction method.).
A vector of 6670 functional connectivities was obtained for each
data point. The absolute difference vector of two vectors was
then obtained as the set of feature values of a pair for each
frequency band. Below, we refer to these feature values as “the
contrast of functional connectivity” or “functional connectivity
contrast.”

Similarity of Connectivity Patterns
In addition to feature value preparation, we compared the
similarity within pairs (Pearson’s correlation of the functional
connectivity vectors) between two groups (i.e., self–self pairs
vs. self–other pairs) as an initial analysis. The statistical
significance of differences across groups was assessed using
a permutation test, which was also used for significance testing
in the other parts of the current study. This test first calculated
the to-be-tested value, which in this case was the difference
in median similarity value of each group. Next, the same
calculation was repeated 1000 times with data whose group
labels were randomized. The probability of obtaining the to-
be-tested value was then calculated. A difference between the
self–self and self–other group was considered significant if a
magnitude of difference between the groups was rarely observed
(P < 0.05) in the randomized data. The significance of this value
implies that the similarity of functional connectivity patterns
was significantly higher (or lower) in the self–self group than in
the self–other group.

Classification of Identity from Functional Connectivity Contrast
We classified identity based on the contrast of functional con-
nectivity vectors. For classification, we applied a machine learn-
ing algorithm known as sparse logistic regression with elastic-
net regularization (SLR-EN) using the scikit-learn package in
Python. The elastic net is a regularization method that enables
feature selection (i.e., dissimilarity vector of functional connec-
tivity) and prevents overfitting of the classifier, which contains
numerous parameters when compared with the number of par-
ticipants (Zou and Hastie 2005; Friedman et al. 2010; Ryali et al.
2010). Hence, the combination of the elastic-net and logistic
regression enables the extraction of a set of functional connec-
tivities whose (dis)similarity discriminates the identity from the
numerous parameters in a more generalizable way rather than
assessing the significance of each parameter by independently
applying logistic regression.

The elastic net was determined using the following equation
(Friedman et al. 2010):
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where Pα is the elastic-net penalty (Zou and Hastie 2005) with N
samples and P features and represents a compromise between
the ridge regression penalty (α = 0) and lasso penalty (α = 1).
This penalty is particularly useful when P � N or in any situation
featuring many correlated predictor variables (the current data
satisfy both situations) (Friedman et al. 2010). The best combina-
tion of hyperparameters γ (0.15, 0.50, 0.85) and α (0.0001, 0.001,
0.01) was determined to calculate the highest accuracy of the
classifier.

The classification accuracy was evaluated using a stratified
k-fold cross-validation procedure. All available samples were
partitioned into k-folds, where k − 1 folds were used to train
the classifier model (training set) and the remaining fold was
used for validation (test set). This procedure was repeated k
times such that each fold was used once as the test set. The
stratified option ensures that each fold had the same proportion
of samples from each class as in the original dataset as a whole.
In the current study, k was set to 10. The ratio of the number of
correctly classified labels was then obtained as the classification
accuracy.

Statistical Analysis
Group-level significance was assessed using the permutation
test explained in the Similarity of Connectivity Patterns section.
We created a null distribution by repeating the SLR-EN classi-
fication 1000 times with a randomized label. The group-level
classification accuracy was compared with the null distribution
to determine whether the classification was statistically signif-
icant. The same procedure was conducted for each frequency-
band data.

Compatibility Classification Based on Functional
Connectivity Contrasts

Subjects
The participants for compatibility classification consisted of 42
healthy young volunteers with no history of neurological disease
(20 females, mean age = 20.36 years, range = 20–23 years). We
could not identify any pathological findings in the brains of the
participants using magnetic resonance imaging (MRI). All partic-
ipants had normal or corrected-to-normal vision and declared
that they were heterosexual. They provided written informed
consent in accordance with the Declaration of Helsinki, and the
study was approved by the Ethical Committees of the Hokkaido
University.

Experimental Design
The participants undertook the experiment, which consisted
of three phases across 4 separate days: 1) prespeed-dating
task/resting fMRI session, 2) three speed-dating events, and
3) postspeed-dating fMRI session. As the experiment was
conducted for two purposes, one of which was reported in
another study (Ito et al. 2020) (please refer to this study for
more detailed descriptions of the experimental paradigm and
procedure), this section only elaborates on details relevant to
the current study.

First, the participants underwent a 10-min resting-state fMRI
in the prespeed-dating fMRI session. The participants were
instructed to fix their gaze on a cross during the scan. Next, they
attended the speed-dating events several days after the fMRI
session. It was held in a large open room and took approximately
3 h. Upon arrival, each participant received an identification
number and a bundle of worksheets (questionnaires). They were

asked to sit on a chair labeled with the same ID number as the
one that they were assigned. During each speed-dating session,
the participants had a 3-min unconstrained conversation with
every participant of the opposite sex. After the conversation,
all male participants moved by one individual to their left
(Fig. 1) and had a 3-min conversation with the new individual.
This process was repeated until each participant had had
conversations with every other participants of the opposite
sex. At the end of the task, the participants were asked to
choose at least half of the participants of the opposite sex
based on whether they wanted to talk to the individual again
(i.e., potential partner choice) (Fig. 1). All participants were
instructed to not reveal any personal information (e.g., name,
phone number, and email address) to other participants during
speed-dating. Regardless of the outcome of the speed-dating,
no participant received personal information of any other
participants due to security concerns.

Image Acquisition
Whole-brain imaging was performed using a 3 T MRI scanner
(MAGNETOM Prisma, Siemens) equipped with a 12-channel
head coil array for signal reception. A T2∗-weighted echo
planar imaging (EPI) sequence sensitive to blood oxygen level-
dependent (BOLD) contrast was used for functional imaging with
the following parameters: TR = 2500 ms, time echo (TE) = 30 ms,
flip angle = 90◦, acquisition matrix = 80 × 80, field of view
(FOV) = 240 mm, in-plane resolution = 3 × 3 mm, number of axial
slices = 39, slice thickness = 3 mm, and interslice gap = 0.5 mm.
An acquisition sequence tilted at 30◦ to the intercommissural
line (anterior commissure-posterior commissure) was used to
recover magnetic susceptibility-induced signal losses induced
by sinus cavities (Deichmann et al. 2003). A high-resolution
(spatial resolution 1 × 1 × 1 mm) structural image was also
acquired using a T1-weighted, MPRAGE pulse sequence. Head
motion was restricted using firm padding around the head.
Visual stimuli were presented on a mirror mounted on a
head coil by using a projector outside the scanner room. The
responses were collected using a magnet-compatible response
box. The first four scans were discarded for T1 equilibration.

Preprocessing
All data were preprocessed using the same protocol described
in the Preprocessing section for identity classification.

Decomposing Signals into Multiple Frequency Bands
Based on reports showing the frequency-specific properties of
the brain function and their associations with cognitive function
(Sasai et al. 2014; Park et al. 2019; Ries et al. 2019), we decomposed
the fMRI time series data into several frequency bands that were
defined using the wavelet transform method (Achard et al. 2006).
The wavelet transform method was applied to the regional aver-
aged time series data extracted from the 116 ROIs defined by AAL
(Tzourio-Mazoyer et al. 2002). This step decomposed the signals
into seven waveforms whose frequency bands differed across
waveforms, ROIs, and subjects. Therefore, every subject had 116
minimum values of the lower limit of waveform frequency for
each frequency band. The medians of these minimum values
were set as the lower limits of the frequency bands, and the
upper limits of the bands were defined by the lower limits of the
following frequency bands. Frequency bands lower than 0.010 Hz
were discarded because of their low informational value, and the
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Figure 1. Schematic flow of experimental paradigm.

data from four frequency bands (0.109–0.199, 0.055–0.109, 0.027–
0.055, and 0.014–0.027 Hz) were used for subsequent analysis;
these bands were referred to as F1, F2, F3, and F4, respectively.

Definition of Compatibility
The compatibility of two individuals was defined by their
impressions of each participant of the opposite sex. A pair was
labeled as compatible if both individuals chose each other as a

potential partner with whom they wanted to talk again. Other-
wise, a pair was labeled as incompatible. Following this defini-
tion, there were 158 compatible and 282 incompatible pairs.

Feature Values of Pair Data
Feature values of the pairs were obtained using the procedure
described in the Feature Values of Pair Data section for identity
classification.
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Figure 2. Results of identity classification. (A) Similarities in the overall functional connectivity profile were significantly higher for the self–self pair (dark-colored

distribution) than the self–other pair (light-colored distribution) for all frequency bands. ∗P < 0.05 after FDR correction. (B) Distribution of differences between
classification accuracy with true labels of pairs and that with a randomized label for each frequency band. Vertical lines indicate chance levels. F1: 0.109–0.199 Hz, F2:
0.055–0.109 Hz, F3: 0.027–0.055 Hz, F4: 0.014–0.027 Hz, ∗P < 0.05 after FDR correction.

Similarity of Connectivity Patterns
Similarity within pairs was compared between compatible and
incompatible groups following the procedure described in the
Similarity of Connectivity Patterns section for identity classi-
fication. The significance determined by the permutation test
implied that the similarity of functional connectivity patterns
was significantly higher (or lower) in the compatible group than
in the incompatible group.

Classification of Compatibility from Functional Connectivity Contrast
and Statistical Analysis
For the main analysis, we classified compatibility after speed-
dating from the contrast of functional connectivity vectors. This
was accomplished using the method described in the Classifica-
tion of Identity from Functional Connectivity Contrast section
for identity classification, with additional oversampling. Given
that the number of compatible and incompatible pairs was
unequal (compatible pairs = 158, incompatible pairs = 282), there
was a possible difficulty in the effective learning of the decision
boundary for the machine learning model. To solve this problem,
we augmented the compatible pair dataset with artificial data
using synthetic minority and oversampling (SMOTE) (Chawla
et al. 2002). SMOTE is the most common oversampling technique
that effectively forces the decision region of the minority class to
become more general (Chawla et al. 2002). In this technique, syn-
thetic samples are generated in the following manner (Chawla
et al. 2002): “Take the difference between the feature vector
(sample) under consideration and its nearest neighbor. Multiply
this difference by a random number between 0 and 1, and add
it to the feature vector under consideration. This causes the
selection of a random point along the line segment between two
specific features.”

Results
Results of Identity Classification Using the HCP Dataset

As predicted and shown in Figure 2A, the similarity of functional
connectivity patterns was significantly higher in the self–
self pairs than in the self–other pairs across all frequency
bands (Ps ≤ 0.001 after false discovery rate [FDR] correction).

This means that functional connectivity represents individual-
specific patterns.

The machine learning algorithm successfully classified
the self–self and self–other pairs using functional con-
nectivity contrast for most of the frequency bands (F1,
12.4% ± 5.6% above chance level, P = 0.028 after FDR correc-
tion; F2, 14.8% ± 5.7% above chance level, P = 0.010 after FDR
correction; F3, 16.3% ± 6.1% above chance level, P = 0.010 after
FDR correction), except for the lowest band (F4, −0.008% ± 5.8%
above chance level, P > 0.10 after FDR correction), as summarized
in Figure 2B. This result indicates that, except for the lowest
frequency band, the functional connectivity contrasts show
consistent patterns across different self–self pairs, thus enabling
discrimination from self–other pairs. Although the lowest
frequency band was included in the resting-state fMRI research
that succeeded in identifying individuals using patterns of
brain connectivity (Finn et al. 2015), the current result that the
classification performance was nonsignificant in the lowest
band might indicate that using only this frequency band was
insufficient for individual identification. This might be because
a period of wave in the lowest frequency band took 33.3–66.7 s,
which was too long to obtain stable correlation coefficients and
include individual-specific information within the duration of
current fMRI scans (864 s).

Negative coefficients of the functional connectivity contrasts
in the identity classification should be deliverables of over-
fitting. Therefore, we tested whether the number of positive
coefficients was significantly greater than the number of neg-
ative coefficients using binomial tests for each frequency band.
Of the top 1% coefficients (6670/100 ≈ 67) that contributed to
identity classification (Fig. 3), most coefficients were positive
in F1 (53 out of 67, P < 0.001) and F2 (52 out of 67, P < 0.001).
These results confirmed that the contrast of the functional
connectivity of these frequency bands reflected the difference in
the connectivity patterns between self–self and self–other pairs.
By contrast, F3 failed to show a significant difference (33 out
of 67, P > 0.10), indicating that significant classification in this
frequency band might be not achieved using individual-specific
information but rather by overfitting. Regarding the ratio of
classification-contributed connectivity in terms of the brain
network, functional connectivity contrasts of the cerebellum
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Figure 3. Top 100 feature values, that is, absolute values of differences between functional connectivity that contributed to identity classification for each frequency
band. Red and blue lines represent similarity- and dissimilarity-based contributions, respectively. Dots on the circle represent ROIs, whose sizes were defined by the
total number of significant feature values in which the ROIs were involved. F1: 0.109–0.199 Hz, F2: 0.055–0.109 Hz, F3: 0.027–0.055 Hz.

Figure 4. Ratio of classification-contributed connectivity in terms of the brain network. Red and blue matrices display the results of similarity- and dissimilarity-based
contributions, respectively. F1: 0.109–0.199 Hz, F2: 0.055–0.109 Hz, F3: 0.027–0.055 Hz. Vis, visual network; Som, somatosensory-motor network; Sal, salience network;
Lim, limbic system; Con, executive control network; Def, default mode network; Cer, cerebellum.

were found to be important for identity classification across all
significant frequency bands (Fig. 4).

In summary, the index assessment confirmed that the
contrast of functional connectivity in pair data, especially
for higher frequency bands (i.e., F1 and F2), represents pair-
specific information and enables distinction of pairs with
different properties. The results also indicated that information
represented in the lower frequencies (i.e., F3 and F4) was
unreliable.

Compatibility Classification Results

The results of compatibility classification show characteristic
differences from those of identity classification. First, as

shown in Figure 5A, there was no significant difference in the
overall similarity of the functional connectivity patterns
between compatible and incompatible pairs (Ps > 0.10 after FDR
correction). This indicates that the compatibility of female–male
relationships is not necessarily represented by the similarity of
functional connectivity patterns.

Second, and most importantly, compatibility was classified
with significant accuracy for F1 (5.47% ± 2.10% above chance
level, P = 0.012 after FDR correction) and F2 (4.95% ± 2.28% above
chance level, P = 0.040 after FDR correction), as summarized in
Figure 5B. This implies that the contrasts of functional con-
nectivity for these frequency bands have specific information
that enables predicting whether a given pair is compatible or
not.
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Figure 5. Results of compatibility classification. (A) Similarity of overall functional connectivity profile. There was no significant difference between compatible (dark-

colored distribution) and incompatible (light-colored distribution) pairs. (B) Distribution of differences between the classification accuracy with true labels of pairs and
that with a randomized label for each frequency band. Vertical lines indicate chance levels. F1: 0.109–0.199 Hz, F2: 0.055–0.109 Hz, F3: 0.027–0.055 Hz, F4: 0.014–0.027 Hz,
∗P < 0.05 after FDR correction.

Unlike identity classification, compatibility classification
was supported by the considerable negative coefficients of the
features (Fig. 6A, B). Binomial tests revealed that the positive
coefficients were not the majority of the top 1% coefficients in
either F1 (37 out of 67, P > 0.10) or F2 (37 out of 67, P > 0.10).
In addition, chi-square tests revealed that the difference in
positive/negative ratios was statistically significant between
the compatibility and identity classifications (F1, χ2 = 7.61,
P = 0.006; F2, χ2 = 6.56, P = 0.010). Thus, dissimilarity of functional
connectivity is as important as similarity for compatibility
classification.

The contributions of ROI to classification were represented by
the number of classification-contributed functional connectiv-
ity contrasts to which the ROI belonged. Figure 6C, E shows that
the classification-contributed ROIs tend to belong to specific
networks (not visual and sensorimotor networks) and have
laterality differences (contrasts in cerebellum). Accordingly,
we performed an exploratory analysis by using permutation
tests to test the network- and laterality-specific contributions.
In the permutation test, the ROI labels were randomized and
network- and laterality-level contributions were calculated 1000
times to assess whether the current result was significant
under the null distribution. The network-level contribution was
defined by the total contribution of ROIs belonging to a given
network. The laterality difference was also assessed for each
network.

Regarding the proportional contribution of each combination
of networks (Fig. 6D, F), the cerebellum showed a significant
overall positive contribution in F1 (P < 0.001 after FDR correction)
and the salience network showed a significant overall positive
contribution in F2 (P = 0.032 after FDR correction). In addition, the
internetwork contribution of the cerebellum and limbic areas
was significantly positive in F1 (P < 0.001 after FDR correction)
and the salience network positively contributed to the classi-
fication when combined with the limbic areas in F2 (P = 0.025
after FDR correction). With respect to the total contrast in terms
of laterality within networks (Fig. 6C, E), we did not find any
significant result (P > 0.100 after FDR correction).

Discussion
In the present study, we sought to predict the compatibility of
female–male relationships after a speed-date session by using
resting-state fMRI data. As supported by the index assessment
using the HCP test-retest dataset (identity classification), the
results demonstrated that the compatibility of relationships
was classifiable using the contrast of functional connectivity
in high-frequency bands (i.e., F1 and F2). The finding that the
similarity of the overall functional connectivity profile was not
higher in compatible pairs than in incompatible pairs and that
compatibility classification was supported by considerable dis-
similarity of functional connectivity compared with the iden-
tity classification, possibly reflected the fact that compatibility
depended on both similarity and complementarity between an
individual and a potential partner (Kirkpatrick and Davis 1994;
Dryer and Horowitz 1997; Holmes and Johnson 2009; Finkel et al.
2012). To the best of our knowledge, this is the first study that
elucidates the neural foundations of the feeling of compatibility
and highlights the potential of resting-state fMRI in predicting
the outcome of interpersonal interactions.

The collective wisdom of social relationship research
indicates that self-reported psychological constructs collected
a priori have little power to predict the outcome of dyad-
specific experiences, such as a feeling of compatibility (Joel
et al. 2017). Then, why can resting-state functional connectivity
predict compatibility, as shown by this study? This might
be because the neuroimaging data reflect information that
cannot be measured using a self-report method. Self-reported
personality traits reflect the general tendencies of behavior
and thus may have discrepancies with the personality traits
elicited by time-constrained and unfamiliar situations, such
as speed dating. Such discrepancies limit the use of the
self-reported method to predict the outcome of behaviors
in specific situations (Todd et al. 2007; Tidwell et al. 2013).
On the other hand, functional connectivity in resting-state
fMRI represents not only general tendencies of behavior (Cole
et al. 2016) but also the brain activity during various social
cognitive tasks (Cole et al. 2016; Tavor et al. 2016; Ito et al. 2017;



Brain Knows Who Is on the Same Wavelength Kajimura et al. 5085

Figure 6. Properties of features that significantly contributed to compatibility classification. (A, B) Top 100 feature values, that is, absolute values of differences between
functional connectivity that contributed to successful compatibility classification for each frequency band. Red and blue lines represent similarity- and dissimilarity-
based contributions, respectively. Dots on the circle represent the ROIs, whose size was defined by the total number of significant feature values in which the ROIs

were involved. (C, E) ROI-level contribution to classification. Warm- and cold-colored ROIs display the number of similarity- and dissimilarity-based contributions by
the ROI, respectively. (D, F) Ratio of classification-contributed connectivity in terms of the brain network. Red and blue matrices display the result of similarity- and
dissimilarity-based contributions, respectively. F1: 0.109–0.199 Hz, F2: 0.055–0.109 Hz.

Kong et al. 2019), which require abilities essential for dyadic
interactions (Redcay and Schilbach 2019). Considering these
facts and findings, the current results indicate that resting-
state functional connectivity has information about behavioral
tendencies that two individuals actually exhibit during a dyadic
interaction, which cannot be measured by self-report methods
and thus may remain hidden unless we use neuroimaging
methods concurrently.

Our finding that the resting-state fMRI was capable of pre-
dicting compatibility has important applications. If the task
fMRI paradigm is used for compatibility prediction instead of

resting-state fMRI, it needs to collect brain activation data that
appear to be associated with compatibility; for example, brain
activation while the individual is rating photos of potential
partners for attractiveness before the dates (Cooper et al. 2012).
However, this type of paradigm could not predict variables (e.g.,
compatibility of Ken with Rola) when the corresponding brain
activation patterns (e.g., brain activation when Ken was viewing
a photo of Rola) were not collected, considerably restricting the
applicability of task fMRI when predicting relationship com-
patibility. On the contrary, resting-state fMRI does not require
any specific tasks to be performed, meaning that the current
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approach can be easily applied to novel data. Once the com-
patibility classifier is prepared from the whole current data,
the newly obtained resting-state fMRI data of an individual can
be classified and the compatibility of the individuals with the
persons who were included in the current data can be predicted.
In addition, redoing the classifier preparation, including the
new data, can refine the algorithm and expand the pool of the
persons with whom compatibility could be predicted.

This is the first study to combine speed-dating and resting-
state fMRI, enabling to explore the neural underpinnings of
compatibility. The results revealed the significant involvement
of the salience network, limbic areas, and the cerebellum. The
salience network (especially the insula) and limbic areas (espe-
cially the amygdala) are already known to be necessary for
social cognition, such as processing emotionally and socially rel-
evant information (Adolphs 2010), recognizing facial emotions
of other people (Wang et al. 2014), and mentalizing (Uddin 2015).
However, the cerebellum had long been thought to contribute
purely to motor coordination (Wagner and Luo 2020). However,
recent literature has imbued the cerebellum with various social
cognitive functions in combination with limbic areas (Schmah-
mann et al. 2007; Guell et al. 2018); it plays a key role in atten-
tion, executive control, language, working memory, learning, and
emotion (Strick et al. 2009; Baumann and Mattingley 2012; Hoche
et al. 2016; Carta et al. 2019; Clausi et al. 2019; Wagner and Luo
2020), all of which are essential for effective social interactions
(Gross and Medina-DeVilliers 2020). More directly, a thorough
meta-analysis exploring the role of the cerebellum in social
cognition revealed that it is consistently involved in abstraction
processes, such as person trait inferences, projection of oneself
into the future, and recalling of autobiographical past (Overwalle
et al. 2014), all of which are likely to be involved in relationship
initiation.

Recently, several studies linked the cerebellum to the
attachment style (Donges et al. 2012; Debbané et al. 2017; Long
et al. 2020). Individuals with negative attachment-derived self-
models or high attachment anxiety showed different cerebellar
activation patterns for processing of social stimuli (Donges
et al. 2012; Debbané et al. 2017). Importantly, attachment
anxiety and avoidance are complementary; individuals with
attachment anxiety prefer those with attachment avoidance
and vice versa, depending on how well potential partners
confirm attachment-related expectations (Kirkpatrick and Davis
1994; Holmes and Johnson 2009). When placed in the context of
the findings that similarities in functional connectivity profiles
are associated with similarity of personality traits (Liu et al.
2019), dissimilarities in cerebellar functioning might represent
complementarity of attachment style, leading to a higher
compatibility.

The default mode network, although its network-level
contribution was not significant, also showed a positive
contribution for compatibility classification in F2 (Fig. 6B, F). The
default mode network is associated with a variety of personality
traits (e.g., openness to experience, Beaty et al. 2016; conscien-
tiousness, Toschi et al. 2018; neuroticism, Adelstein et al. 2011);
and egocentricity, Sheng et al. 2010), and it is engaged in social
cognitive functions, such as theory of mind, prospection, self-
reflection, and perspective-taking of others (Barrett and Satpute
2013). Furthermore, together with the salience network, the
default mode network supports the processing of the relevant
internal and external stimuli to guide social behavior (Uddin
2015). These networks work together when people use their
own internal states as a way of inferring what someone else is

thinking or feeling (i.e., self-projection, Barrett and Satpute
2013). Thus, aside from those with similar personalities,
individuals with similar connectivity patterns of these networks
might also consider the mental states of potential partners with
similar levels of self-projection.

Our research spawns four valuable future directions. First,
to advance our understanding of the neural foundations of
compatibility and interpersonal attraction or mating behavior,
the missing links between similarity of resting-state functional
connectivity, brain-to-brain coupling during dyadic interactions,
and perceived similarity should be examined. Brain-to-brain
coupling during social interaction could be captured by recruit-
ing the hyperscanning techniques that measure the activity of
multiple brains simultaneously (Koike et al. 2015; Redcay and
Schilbach 2019; Czeszumski et al. 2020; Misaki et al. 2021). In
addition to fMRI, hyperscanning with other neuroimaging tech-
niques, such as electroencephalography (EEG) and functional
near-infrared spectroscopy (fNIRS), could be valuable when con-
sidering the availability and ecological validity. Furthermore,
although EEG and fNIRS can measure only the brain surface
areas, the current results, that showed that many of the regions
contributing to compatibility classification were on the brain
surface, support the utility of these imaging techniques.

Second, the compatibility prediction performance can be
improved by utilizing task-based functional connectivity. Unlike
the situation-dependent tasks described above, functional con-
nectivity obtained from situation-independent tasks, such as
working memory or emotion processing tasks, can be treated in
the same way as the resting-state functional connectivity. It is
important to identify the right tasks; such task-based functional
connectivity has been indicated to improve the prediction per-
formance of individual traits (Greene et al. 2018). The involve-
ment of the salience network and limbic areas in compatibility
as revealed by this research indicates that the tasks that reflect
the function of these networks and areas, such as emotion
recognition (Wang et al. 2014) or theory of mind (Barrett and Sat-
pute 2013), would be appropriate for this purpose. Language style
matching has also been revealed to be important for relationship
initiation and stability (Ireland et al. 2011), indicating the utility
of tasks that measure the language style of individuals.

Third, the present study highlighted the importance of
frequency-specific (particularly >0.1 Hz) functions in social
relationships. Our result showing that the higher frequency
band has more information is in agreement with prior research
showing that regional power in terms of frequency shifts
from low frequency to high frequency during cognitive tasks
(Baria et al. 2011). Investigating the exact frequency-specific
functioning of the feeling of compatibility will deepen our
understanding of the neural underpinnings of social cognition
and improve the predictability of the outcomes of social
relationships.

Fourth, resting-state functional connectivity has been shown
to be beneficial for similarity-based predictions of pair-based
psychological constructs. As discussed above, the neural sim-
ilarity that contributes to compatibility classification has also
been associated with neural similarity in a more general context.
For example, the neural similarity of the salience network is
greater when the participants believe that they are viewing
videos with a social partner (Golland et al. 2017) and is impor-
tant for the transfer of emotional information (Anders et al.
2011). Furthermore, the relationship between similarity in the
functional connectivity profile of the default mode network and
interpersonal similarity is supported by Hyon et al. (2020), who



Brain Knows Who Is on the Same Wavelength Kajimura et al. 5087

recruited a similar similarity index as in our research and suc-
ceeded in predicting real-world social network proximity. Thus,
this methodology will provide a novel approach for research
on interpersonal relationships and can be widely used beyond
romantic relationships (e.g., friendship and working efficiency).

This study has at least two limitations. First, for ethical
restrictions, we could not allow participants to initiate inter-
actions with any of the other participants after the experiment.
This inevitably restricts the follow-up of the consequences of
long-term relationships and its predictability based on the simi-
larity of resting-state functional connectivity. Second, it remains
unknown whether adding the score of psychological constructs
improves the prediction of compatibility (unfortunately, we
omitted measuring them in our study). Although previous
research has shown the difficulty of predicting compatibility
from psychological constructs (Joel et al. 2017), the potential
of the indices, especially for long-term relationships, has also
been shown (Asendorph et al. 2011). Combining neuroimaging
data with psychological constructs will also reveal the extent to
which information neuroimaging data are unique and cannot
be measured by self-reported measures. These limitations and
possibilities should be addressed in future studies.

In summary, the current study demonstrated that initial
compatibility of heterosexual individuals, which cannot be pre-
dicted by self-reported psychological constructs, can be pre-
dicted by the functional connectivity profiles of resting-state
fMRI data. The contributions of both similarity and dissimilarity
of the functional connectivities between individuals and these
multivariate relationships indicate the importance of comple-
mentarity as well as the similarity between an individual and
a potential partner. Our study emphasizes the utility of neu-
roimaging in examining complex phenomena in a social envi-
ronment.
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