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We investigated the performance of multiple radiomics feature extractors/software on predicting epidermal
growth factor receptor mutation status in 228 patients with non–small cell lung cancer from publicly available
data sets in The Cancer Imaging Archive. The imaging and clinical data were split into training (n =105)
and validation cohorts (n =123). Two of the most cited open-source feature extractors, IBEX (1563 features)
and Pyradiomics (1319 features), and our in-house software, Columbia Image Feature Extractor (CIFE) (1160
features), were used to extract radiomics features. Univariate and multivariate analyses were performed
sequentially to predict EGFR mutation status using each individual feature extractor. Our univariate analysis
integrated an unsupervised clustering method to identify nonredundant and informative candidate features for
the creation of prediction models by multivariate analyses. In training, unsupervised clustering-based univari-
ate analysis identified 5, 6, and 4 features from IBEX, Pyradiomics, and CIFE as candidate features, respec-
tively. Multivariate prediction models using these features from IBEX, Pyradiomics, and CIFE yielded similar
areas under the receiver operating characteristic curve of 0.68, 0.67, and 0.69. However, in validation,
areas under the receiver operating characteristic curve of multivariate prediction models from IBEX,
Pyradiomics, and CIFE decreased to 0.54, 0.56 and 0.64, respectively. Different feature extractors select dif-
ferent radiomics features, which leads to prediction models with varying performance. However, correlation
between those selected features from different extractors may indicate these features measure similar imaging
phenotypes associated with similar biological characteristics. Overall, attention should be paid to the gener-
alizability of individual radiomics features and radiomics prediction models.

INTRODUCTION
Radiomics is a rapidly evolving field aiming to link phenotypes
characterized from medical images with clinical data, including
but not limited to, diagnostic, prognostic, and genomic informa-
tion (1–7). Quantitative image features (also known as, radiomics
features) have been shown, for example, to be associated with
distant metastasis in lung adenocarcinoma (8–10), pathological
response in a variety of cancer types (11–15), cancer recurrence
after radiation therapy (16–19), and disease-free survival (20–
23), and even with genotypes in many different cancer types (1,
24–31). Although there are many published prediction models

related to both disease and treatment, there is no standardized
evaluation of the performance (2), such as, but not limited to, the
use of publicly available data and open-source feature extractors.
The need for repeatability and reproducibility in radiomics has
been increasingly emphasized (32, 33).

Therefore, the National Institutes of Health has encouraged
medical imaging researchers to publicly share their data to stim-
ulate open-science collaboration, and The Cancer Imaging
Archive (TCIA) has evolved into a leading public database (34).
TCIA is a service that hosts a large archive of medical images of
cancer accessible for public download. Researchers nationwide
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are encouraged to submit data sets, and the current collection
contains projects sponsored by private institutions and national
programs. The Cancer Genome Atlas (TCGA) program is one such
project that has generated a huge database of genomic, epige-
nomic, transcriptomic, and proteomic data from >20,000 sam-
ples spanning 33 cancer types (35). Clinical, genetic, and
pathological data are stored on the Genomic Data Commons
(GDC) data portal, while the radiological data reside in TCIA.

Many research groups have developed and also released
open-source software packages with the hopes of establishing
standardization to enhance reproducibility and comparability of
radiomics results (36–41). The use of textural features for image
classification dates back to 1973 (42), and image pattern recogni-
tion technologies have been widely deployed in computer-aided
detection and diagnosis for the past 3 decades (43). A standard
lexicon has been adopted as reference—the Image Biomarker
Standardization Initiative (IBSI), version 9, available as of May
19, 2019 (44). Still, differences in image acquisition and prepro-
cessing parameters may impact feature extraction (32, 45–48).
Different radiomics software have also been shown to have var-
ied algorithm implementation, which results in different feature
values and poor agreement (49–50).

To the best of our knowledge, it is unknown how differences
in feature extractor selection and feature calculation may impact
the overall classification performance. The purpose of this study

was to investigate differences in the overall radiogenomic classi-
fication performance on publicly available computed tomogra-
phy (CT) images of patients with non–small cell lung cancer
(NSCLC) owing to the use of different feature extractors. We also
reported in detail our experience in the use of public data sets
and open-source feature extractors.

MATERIALS AND METHODS
Study Design
The basic study design diagram is shown in Figure 1. Public
imaging data from TCIA relevant to our experiment were col-
lected and split into training and validation cohorts. TCIA data
consisted of 3 shared projects, NSCLC-Radiogenomics (51),
TCGA-Lung Adenocarcinoma (TCGA-LUAD) (52), and TCGA-
Lung Squamous Cell Carcinoma (TCGA-LUSC) (53). The training
cohort was created using part of NSCLC-Radiogenomics (data
collected from 2 institutions with relatively homogenous CT
scanning parameters), while the validation cohort was created
using a mix of data from the 3 projects (data collected from 7
institutions with diverse CT scanning parameters). This split
aimed to test the generalization ability of radiomics features/
models from a relatively homogenous data set to a more hetero-
geneous data set. Three feature extractors were used for feature
extraction. Univariate and multivariate analyses were performed
sequentially on predicting epidermal growth factor receptor

Figure 1. Study design diagram. The design consists of 4 modules. First, projects NSCLC Radiogenomics and The
Cancer Genome Atlas-Lung Adenocarcinoma (TGCA-LUSC)/TGCA-Lung Squamous Cell Carcinoma (TCGA/LUAD)
were obtained from The Cancer Imaging Archive (TCIA) and split into a homogenous training cohort and a heterogene-
ous validation cohort. Second, features were extracted from all imaging cases using 3 different feature extractors: IBEX,
Pyradiomics, and CIFE. Third, univariate and multivariate analyses are sequentially conducted on features from each ex-
tractor to create prediction models for epidermal growth factor receptor (EGFR) mutation status. “x3”means the univari-
ate and multivariate analyses were performed identically 3 times by using the features from IBEX, Pyradiomics, and CIFE.
Finally, the best classifier models and optimal features are compared between the 3 individual extractors.
1NSCLC Radiogenomics was produced by Bakr et al. with 211 patients with NSCLC from Stanford University School of
Medicine and the Palo Alto Veteran Affairs Healthcare System.
2TCGA-LUSC and -LUAD are projects of TCGA, consisting of lung squamous cell carcinoma and lung adenocarcinoma
cases. Imaging is available from 5 centers in the United States (Washington University, University of Pittsburgh, UNC,
Roswell Park, and Lahey Health Home).
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(EGFR) mutant status by using each individual extractor, and
performance was compared between the 3.

Patient Imaging and Clinical Data
The 3 data sets, NSCLC-Radiogenomics, TCGA-LUAD and TCGA-
LUSC, were obtained through TCIA website. The NSCLC
Radiogenomics data set was produced and described in detail by
Bakr et al. (51). The NSCLC Radiogenomics data set included 211
cases with 129 EGFR wildtypes, 43 EGFR mutants, and 39
unknowns. TCGA-LUAD (52) and TCGA-LUSC (53) data collec-
tions provide clinical images to matched subjects in TCGA.
TCGA-LUAD data set included 69 cases with 52 EGFR wildtypes,
11 EGFR mutants, and 6 unknowns. TCGA-LUSC data set
included 37 cases with 36 EGFR wildtypes and 1 EGFR mutant.
Imaging data for TCGA was collected from many sites worldwide
and is very heterogeneous in terms of scanner modalities, manu-
facturers, and acquisition protocols. We included all patients
that had a chest CT scan and a known EGFR mutation status.
We excluded cases that had no noticeable lesion, cases with arti-
facts such as a biopsy needle in the lesion, and cases with multi-
ple lesions and no provided segmentation. In some cases,
Pyradiomics and IBEX produced an error during feature extrac-
tion, and these cases were excluded as well. Additional details
are provided in online supplemental Section S3. In total, 149
cases from NSCLC Radiogenomics and 79 cases from TCGA
LUAD and LUSC data sets were ultimately included in the study.
Further details regarding all data, including information about
scanning parameters, are included in the online supplemental
Section S1A.

Training and Validation Set Split
The training and validation cohorts were split by data set and
adjusted in order to maintain a balance of EGFR mutants and
wildtypes in each cohort. The training cohort consisted of a
random subset of the NSCLC Radiogenomics–included cases,
totaling 105, with 27 mutant and 78 wildtype cases. The vali-
dation cohort included the remaining 44 cases from NSCLC
Radiogenomics and the cases from TCGA-LUAD and TGCA-
LUSC, totaling 123, with 18 mutant and 105 wildtype cases.
The validation cohort had a much more heterogeneous sam-
ple owing to contribution from 3 data sets. Figure 1 details
this split visually.

The validation cohort was also split into 3 subgroups corre-
sponding to the 3 data sets. The NSCLC Radiogenomics subgroup
had 44 cases with 33 EGFR wildtypes and 11 EGFR mutants. The
TCGA-LUAD subgroup had 46 cases with 39 EGFR wildtypes and
7 EGFR mutants. The TCGA-LUSC subgroup had 33 EGFR wild-
type cases only.

Tumor Segmentation
The NSCLC Radiogenomics data set provided segmentation for
only 144 out of 211 cases. The remaining 67 cases and the
TCGA-LUAD/-LUSC cases were segmented semiautomatically
using a published segmentation algorithm incorporated into an
open-source image viewing platform, WEASIS (54–55). The
available and newly created segmentations were reviewed by an
experienced thoracic radiologist (LE) and manually adjusted if
necessary.

Feature Extraction
Three feature extractors were used to extract radiomics features
from the segmented tumor volumes. The radiomics feature extrac-
tors included 2 open-source software packages, Pyradiomics,
developed by Aerts’ group (36), and the Imaging Biomarker
Explorer (IBEX), developed by Court’s group (37), and our in-
house extractor, Columbia Image Feature Extractor (CIFE) devel-
oped by Zhao’s group (32). Conditions between the 3 packages
were controlled by using the recommended or if not available, the
default settings.

Pyradiomics V2.1.2 (36) is an open-source Python package
for the extraction of radiomics features from medical imaging. In
total, 1319 features were extracted from each segmented tumor
using Pyradiomics.

IBEX version 1.0b (37) is an open-source MATLAB and
C/Cþþ software platform designed to support common radio-
mics workflow tasks, including but not limited to feature extrac-
tion. All available features were extracted without image
preprocessing filters. In total, 1767 features were extracted from
each segmented tumor using IBEX.

CIFE (32) is our in-house software package based on
MATLAB 2016b (The MathWorks, Natick, MA) designed to
extract radiomics features from medical imaging. In total, 1126
features were extracted from each segmented tumor using CIFE.
(See online supplemental Section S1B for further details about
settings of each feature extractor.)

Statistical Analysis
Analysis was run separately and identically on the 3 different
feature sets computed from the 3 feature extractors. In this work,
the univariate and multivariate analyses were performed sequen-
tially on the feature sets. The univariate analysis was performed
on only the training cohort to select features, and the multivari-
ate analysis was performed on the training cohort and validated
in the validation cohort.

First, a large number of redundant (ie, highly correlated) and
noninformative features were removed using unsupervised clus-
tering and receiver operating characteristic analysis. The unsu-
pervised hierarchical clustering was performed in 3 steps:

1. Spearman rank correlations were calculated between
features.

2. Features were organized into a hierarchical clustering tree
based on these correlations.

3. Features were separated into groups based on a set correla-
tion threshold.

Within each group containing redundant features, the corre-
lation threshold was set to<0.2, and only features satisfying that
criteria were selected as nonredundant (56). Nonredundant fea-
tures were then examined in the univariate analysis using the
area under the receiver operating characteristic curve (AUC) to
indicate prediction performance for each feature. Only features
with AUC > 0.6 were selected as informative features. Because
the data set we used were relatively small, we used an unsuper-
vised clustering–based algorithm instead of other widely used
supervised feature selection algorithms (eg, mRMR and Relief)
which might result in high risk of overfitting (56–58).
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In the multivariate analysis, features attained from the uni-
variate analysis were used to build models on the training set
using 4 widely used machine-learning classification algorithms:
k-nearest neighbors (KNN), least absolute shrinkage and selection
operator (LASSO), support vector machine (SVM), and random
forest classifier techniques. Fivefold cross-validation was applied
on the training cohort to establish a performance baseline. In the
5-fold cross-validation, the training cohort was randomly sepa-
rated into 5 subsets. One subset was used as a testing set, whereas
the other 4 subsets were used as the training set. The training and
testing procedures were repeated 5 times until each sample in the
data set was used as a testing sample exactly once. The same 5-
fold subsets were used for every model. The final training AUC
for the prediction model was estimated using the average of 5
prediction performance.

The performance of model was then evaluated on the in-
dependent validation cohort. No samples in the independent
validation cohort had ever been seen during training. The
input to each model was the selected feature values and the
output was the EGFR mutation status. A bootstrap approach
reported by Aerts et al. (1) was used to calculate the signifi-
cance on comparing models attained from each feature ex-
tractor. For 100 times, we calculated the AUC from 100
randomly selected samples, and the Wilcoxon test was used
to assess significance.

All statistical analysis was performed on MATLAB 2016b
platform (The MathWorks). A 2-sided P value of <.05 was
regarded as statistically significant.

RESULTS
Patient Characteristics
The clinical characteristics of the 228 patients included in our
experiment are presented in Tables 1 and 2. Statistically signifi-
cant differences were tested using the chi-square test for categor-
ical data and the t test for continuous data. There was no
significant difference between the training and validation
cohorts in terms of age, sex, or tumor stage (P= .98, .74, and .39,
respectively). The histological diagnosis showed a significant dif-
ference between the 2 cohorts, likely due to differences in data
set origin (detailed in the Materials and Methods section).
Although not statistically significant, there is a trend toward a
difference between the training and validation cohorts in terms
of proportion of EGFR mutants and wildtypes (P= .54) owing to
the increased number of EGFR wildtypes in the validation cohort.

Univariate Analysis
For the 3 sets of features from each feature extractor, we selected
candidate features with a correlation coefficient <0.2 and an
AUC > 0.6. These features are presented in Table 2. The defini-
tions of these features are presented in online supplemental
Section S1B. From Pyradiomics, IBEX, and CIFE, 6, 5, and 4 fea-
tures were identified, respectively.

Most of the features selected from each extractor were differ-
ent. Pyradiomics and our CIFE both used forms of intensity mini-
mum and skewness, but owing to the use of image preprocession,
Laplacian of Gaussian (LoG) filtering, in Pyradiomics, these

Table 1. Patient Characteristics in Training and Validation Cohorts E

Training Cohort Validation Cohort P-Value

Subjects (N) 105 123

Age (Years) 67.96 6 8.9 67.92 6 10.77 .98

Sex .74

Female 40 (38%) 45 (37%)

Male 65 (62%) 55 (45%)

Unknown 0 (0%) 23 (19%)

Histology <.001

Adenocarcinoma 92 (88%) 84 (68%)

Squamous Cell Carcinoma 11 (10%) 38 (31%)

NOS (Not Otherwise Specified) 2 (2%) 1 (1%)

Stage .39

Unknown 22 (21%) 34 (28%)

0 1 (1%) 2 (2%)

I 49 (46%) 40 (32%)

II 18 (17%) 24 (20%)

III 13 (12%) 18 (14%)

IV 2 (2%) 4 (3%)

EGFR Mutation .054

EGFR-Mutant 27 (26%) 18 (15%)

EGFR-Wildtype 78 (74%) 105 (85%)

P-value: chi-square test for categorical data and t test for continuous data.
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values are not interchangeable. The distribution for every feature
is included in the online supplemental Section S2B.

Moreover, we performed nonparametric Wilcoxon rank sum
test to test the significance of feature distribution between EGFR
wildtype and mutant for each individual candidate feature, and
the results are shown in the online supplemental Figures S2–S4.
All feature values originally had a significant difference in distri-
bution between the wildtype and mutant subsets of the training
cohort. However, 5/5 IBEX features, 6/6 Pyradiomics features,
and 3/4 CIFE features did not have a significant difference in the
wildtype and mutant subsets of the validation cohort. Only CIFE:
intensity skewness had a significant difference between wildtype
and mutant subsets of both the training and validation cohorts
(P= .0072, P= .014) (see online supplemental Figure S4.4).

A correlogram of all features selected is shown in the online
supplemental Figure S5 of Section S2C. There is little correlation
between features from the same extractor, and there is some cor-
relation between features from different extractors.

MultivariateModel Performance on Differentiating Lung
Cancer EGFR Subtypes
The performance of multivariate models built from each feature ex-
tractor is summarized by the AUC value and is presented in Table 3.

The optimal model from each feature extractor, determined by per-
formance on the validation cohort, was produced using random for-
est classifier techniques. The performances from IBEX, Pyradiomics,
and CIFE random forest models on the validation cohort were AUCs
of 0.54, 0.56, and 0.64, respectively.

A pairwise comparison between each of the best models is
shown in the online supplemental Table S2A. Comparisons were
done using the bootstrap approach previously reported by Aerts et al.
(1). Although the results of IBEX and Pyradiomics were not signifi-
cantly different (P= .19), CIFE produced results significantly different
from those of IBEX (p=1.54e-14) and Pyradiomics (p=2.02e-10).

A comparison between the performances of the best models on
the training versus the validation data sets is shown in the online
supplemental Table S2B. All models had significant differences in
performance between the training and validation sets, but the trend
for IBEX and Pyradiomics seems to have a greater difference.

DISCUSSION
In this study, we aimed to use different feature extractors on public
imaging data to compare classification performance. The radio-
mics feature extractors included 2 open-source software packages,
Pyradiomics (36) and IBEX (37), and our in-house extractor, CIFE
(32). These software packages have seen extensive use by research-
ers worldwide in experiments to predict diagnostic, genomic,
prognostic, and response outcomes for a wide range of diseases,
and proved ideal candidates for our comparison (8, 13, 15, 59–67).

We initially extracted 1767, 1319, and 1126 features from
IBEX, Pyradiomics, and CIFE, respectively. After removing for re-
dundancy and selecting clinical informative features, we ultimately
isolated 6, 5, and 4 candidate features for the 3 feature extractors
respectively. This result is consistent with that of a previous report
that there is a large amount of redundancy within feature extractors
(68). Notably, the selected features differed mostly from each group,
but there were some similarities. Intensity minimum and skewness
features were chosen from Pyradiomics and CIFE, although the
implementation of the 2 is not exactly the same. There was some
correlation between features from different extractors. This may
suggest that similar biological characteristics are described.

Our results match those of existing literature on EGFR radio-
genomic classification. Zhang et al. and Li et al. have found

Table 2. Nonredundant and Informative
Features from Each Feature Extractor

Feature Name
Univariate Analysis

(AUC)

IBEX

135-1Correlation 0.74

LocalRangeStd 0.72

1GaussAmplitude 0.66

VoxelSize 0.62

-333-4ClusterShade 0.62

Pyradiomics

log-s -2-0-mm-3D_firstorder_
Minimum

0.72

log- s2-0-mm-3D_glszm_Size
ZoneNonUniformityNormalized

0.70

log-s2-0-mm-3D_glcm_Inverse
Variance

0.68

wavelet-LHL_firstorder_Skewness 0.67

wavelet-LHH_firstorder_Skewness 0.65

wavelet-HHH_glszm_Small
AreaEmphasis

0.65

CIFE

DWF_Z_H 0.72

Intensity_Minimum 0.71

Gabor_Max_Z 0.68

Intensity_Skewness 0.65

Optimal features are listed for each individual extractor. These
features are then used to build prediction models in the multivariate
analysis. Each feature has a correlation coefficient <0.2 and an
AUC > 0.6.

Table 3. Performance of Multivariate Models
from Each Feature Set in the Training and
Validation Cohorts

IBEX PY CIFE

Classification
Algorithm T V T V T V

KNN 0.620 0.54 0.66 0.54 0.67 0.60

SVM 0.59 0.48 0.57 0.52 0.60 0.51

Random Forests 0.68 0.54a 0.67 0.56a 0.68 0.64a

Bagging 0.66 0.53 0.67 0.53 0.69 0.63
a Optimal model based on validation performance from each feature set,
which was random forest for all extractors. T and V columns represent
AUC scores for the indicated model from the training and validation
cohorts, respectively. Performance values are presented as AUC values.
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skewness to be predictive of EGFR mutation status and subtypes
(69–70). Mei et al. also used the Pyradiomics feature extractor
and similarly found that Size Zone NonUniformity Normalized
was a predictor for EGFR mutation status (71).

We next used these selected nonredundant and informative
candidate features to build multivariate prediction models using
4 commonly used machine-learning classification algorithms: k-
nearest neighbors, support vector machine, random forest, and
bagging. The best models created from IBEX, Pyradiomics, and
CIFE features achieved similar training performance with cross-
validated AUCs of 0.68, 0.67, and 0.69, respectively.

>However, in validation, the performances from IBEX,
Pyradiomics, and CIFE were AUCs of 0.54, 0.555, and 0.638 respec-
tively. The validation performances were significantly decreased
from the cross-validated training performance for models created
from all 3 feature extractors. A pairwise comparison showed that
CIFE had a significantly different validation performance than both
IBEX and Pyradiomics, whereas the performance between IBEX and
Pyradiomics was not significantly different. Our data were split into
training and validation cohorts using a single data set for the train-
ing cohort and a mix of 3 data sets for the validation cohort.
Therefore, the validation cohort will naturally be relatively more het-
erogeneous in terms of imaging parameters than the training cohort,
as the cases come from 7 different institutions. Furthermore, the CT
imaging parameters are more lung cancer–specific in the training
data than those in the validation data. We believe that the splitting
strategy used in our work would allow us to discover better model
performance. This may explain the decrease in performance of radio-
frequency (RF) models from all groups from the training cohort to
the validation cohort. In addition, the trend toward a difference in
proportion of EGFR wildtype and mutant cases between the training
and validation cohorts may have also affected the performance.
Although a decrease in performance from training to validation is
commonly seen in machine-learning experiments (72), it is interest-
ing that the performance of RF models built from IBEX and
Pyradiomics features decreased more than the performance of the RF
model built from CIFE features.

Our study has several limitations. For the open-source feature
extractors, features were extracted as suggested by online docu-
mentation or by using the default settings of the features’ parame-
ters. Other researchers may find different results if they, for
example, use different image preprocessing parameters. In addi-
tion, although we found 3 data sets with the information for our
case example, our data size is still limited. The validation cohort
consists of 3 different data sets, which may have affected the per-
formance of our model. Although it would be interesting to see the

individual performances of each subgroup within the validation
cohort, this analysis was not feasible owing to the limited number
of cases and imbalances of mutant and wildtype cases. We did not
consider the effect of imaging heterogeneity and segmentation on
our results because the purpose of our study was to compare
extractors rather than assess the potential effects of segmentation.
Although we had a mix of provided segmentation and our own
in-house-generated contours, we used the same data set images
and tumor segmentation for all different extractors. In addition,
the definitions of the implemented features are available, but some
are hard for us to fully explain the meanings.

It is important to note that the purpose of the study was to
not compare these feature extractors in terms of their capabilities
of building prediction models, but to show that differences can
exist when applying different feature extractors to the same clin-
ical application.

Future work may include optimization of machine-learning
models, larger data sets, and other clinical applications.
Generating a combined model from features of all 3 extractors
may also potentially increase performance. In addition, although
the CIFE feature extractor has been used in several published
studies, it has yet to be released to the public.

Overall our experience with public data sets and open-source
feature extraction software has been quite smooth. The majority of
data cases fulfilled our inclusion criteria for our experiment and are
easily accessible and ready for use. We could extract features for the
majority of cases with all software packages and had clear docu-
mentation to facilitate use by a beginner. Further details regarding
our experience are included in the online supplemental Section S3.

CONCLUSION
Different radiomics features were selected from different feature
extractors to predict EGFR mutation status in patients with NSCLC,
which resulted in varying prediction performance. Correlation
between features from different extractors may indicate similar bi-
ological characteristics are measured. However, attention should be
paid to the generalizability of both individual radiomics features
and radiomics prediction models. In the future, radiomics feature
extraction techniques will undoubtedly improve and may further
standardize, but for now researchers may find it useful to use mul-
tiple packages for their clinical applications.

Supplemental Material
Supplemental Information: https://doi.org/10.18383/j.tom.2020.
00017.sup.01
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