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Due to the complexity of biological tissue and variations in staining procedures, features that are based on the explicit extraction of
properties from subglandular structures in tissue imagesmay have difficulty generalizing well over an unrestricted set of images and
staining variations. We circumvent this problem by an implicit representation that is both robust and highly descriptive, especially
when combined with a multiple instance learning approach to image classification. The new feature method is able to describe
tissue architecture based on glandular structure. It is based on statistically representing the relative distribution of tissue components
around lumen regions, while preserving spatial and quantitative information, as a basis for diagnosing and analyzing different areas
within an image. We demonstrate the efficacy of the method in extracting discriminative features for obtaining high classification
rates for tubular formation in both healthy and cancerous tissue, which is an important component in Gleason and tubule-based
Elston grading. The proposed method may be used for glandular classification, also in other tissue types, in addition to general
applicability as a region-based feature descriptor in image analysis where the image represents a bag with a certain label (or grade)
and the region-based feature vectors represent instances.

1. Introduction

There have been many attempts over the past decades for
automating cancer grading in tissue, most notably in breast
and prostate tissue, where the standard scoring systems in
use are the Elston [1] and Gleason [2] grading systems,
respectively.The first computerized grading of prostate tissue
was published in 1978 [3]. More recently, high classification
rates were obtained for the simple case of discriminating
between low-grade and high-grade cancer in prostate tissue
[4–7]. There have been attempts in [4, 5] at performing the
classification task and extracting a large and diverse fea-
ture set including color, texture, morphometric, fractal, and
wavelet features. Often this is followed by a feature reduction
method such as sequential forward feature selection as
in [4] or similar greedy algorithms, which, though being
suboptimal approaches, are motivated by the fact that the
feature set is large and a brute force or branch-and-bound
method may become intractable or computationally ineffi-
cient.

Often a main factor that limits automated classification
lies not in the choice of classifier but in the choice of feature
set. The discriminative ability of a classifier is limited by the
extent to which the classes themselves are separate in feature
space. For well-represented classes, the intrinsic overlap and
proximity of the classes in feature space determine the upper
limit on the classification rate. The chosen features define
the extent to which the classes overlap. The selection of a
large number of different types of features is common in
practice and is often an indication of lack of knowledge as
to what features exactly have discriminative power; instead
it reflects speculation over which features may prove useful
or may have a contributing role [8]. However, choosing a
plethora of features, whether informative or not, increases the
dimensionality of the feature space and often exposes the clas-
sification task to the peaking phenomenon [9]. Furthermore,
this shifts the burden of the problem toward feature selection
or extraction which is often difficult to solve in a manner
that is true to the final objective (i.e., the final classification
rate), and this is due to computational limitations and
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the prevalence of either suboptimal criteria or criteria that
are often not aligned with the final objective. It is therefore
important to select a discriminative set of features that is able
to separate among the different classes.

Automated tissue grading is very difficult for several
reasons. One reason lies in the difficulty of translating the
experience and observations of the human expert, that is,
the trained pathologist, into well-defined features that can
be extracted automatically from the image. Moreover, due
to the complexity of the tissue structure and subjectivity
of the grading process, especially among the intermediate
grades, there is no clear consensus as to which features or
combination of features is to be used consistently. Upon
deeper examination, we find that experts’ rules tend to even-
tually branch out into increasingly complicated conditions
and exceptions.This leads to countless if-else situationswhere
exceptions eventually outgrow the norm.There is therefore a
problem in identifying features explicitly, and moreover even
when such features have been suggested by pathologists, the
complexity and variability of the images and tissue structures
in addition to variables relating to stain absorption can still
obstruct the extraction of such features in a reliable manner
that allows for automation.

In general, there is a sensitive balance between overadapt-
ing to the complexity of the problem on the one hand and
weakly accounting for it on the other hand such as the case
when extracting global texture features without taking into
account any knowledge of tissue architecture. Both of these
extreme approaches may lead to inadequate results and an
inability to generalize well. In the approach that we propose,
we avoid the explicit extraction of structure properties (such
as nuclei shape, glandular unit shape, and thickness of
epithelium layer) beyond a rough decomposition of images
into a few classes based on the staining. Yet, themethod is still
strongly founded on the architecture of glandular tissue (such
as breast or prostate) and relies upon detecting glandular
lumen and tissue components as a starting point. We use
sequential region expansion to sample the space around
lumen regions in the form of rings and preserve the statistics
and component ratios within these rings in order to describe
and represent these regions in an implicitmanner. During the
progression of cancer into advanced stages, when a glandular
unit transforms into cribriform shape or splits into multiple
lumen regions, such a phenomenon should be detected by
the method due to the unusual presence of lumen and other
structures in the outer sampling rings which reflects on the
shape of the extracted profile curve and consequently on its
classification and labeling.

As opposed to most local neighborhood sampling or
bag of features methods that either are patch-based or result
in orderless, histogram-based features [10, 11], the method
we propose does the sampling around a given (lumen)
region as opposed to a pixel, while preserving the region’s
boundary shape and encoding spatial distance from it. The
contributions of our work can be stated as follows.

(1) We present a new approach to encode features in
complex tissue images such as prostate and breast.The
approach called statistical proximity sampling relies

on a method of boundary expansion around lumen
regions; it uses rings or neighborhood strips around
these regions while preserving the boundary shapes.

(2) The method is able to simultaneously encode the
relative quantitative proportions of each tissue type
around a lumen region as well as the spatial distri-
bution of these proportions from the central lumen
region, resulting in highly descriptive and discrimi-
native features.

(3) Combining this neighborhood-based feature descrip-
tion with multiple-instance learning, we are able
to represent complex images in an efficient and
information-preserving manner, which is more con-
sequential than representing an entire image with a
single feature vector.

To highlight the context of our work, we briefly describe
below the Elston and Gleason grading systems and how our
method relates to some important aspects of these.

The Elston score is based on three different components.
The first is tubular formation or “tubularity,” where the pres-
ence of glandular tissue in the sample is given a score from
1 to 3, ranging, respectively, from healthy tissue (prevalently
glandular) to solid tumors (scarcely glandular). The second
component is nuclear pleomorphism and is concerned with
nuclear size, shape, and chromatin texture; this attribute
is also assigned a score from 1 to 3 depending on the
morphological irregularities of nuclei. The third component
of grading is mitotic activity which corresponds to growth
rate and is determined by counting dividing cells, ranging
from a low cell count (score 1) to a high cell count (score 3).
The final, high-level Elston grade is then derived by summing
up the individual scores from the three parts: a sum of 3–5
points is defined as Elston grade I, 6-7 as grade II, and 8-9 as
grade III.

Analogously, Gleason grading for prostate is based on
five patterns, which are highly dependent on tissue archi-
tecture and the description of glandular units. The patterns
from 1 to 5 are described by how glands alter form while
transitioning from small, well-defined, and closely packed
units, corresponding to well-differentiated carcinoma (pat-
tern 1), to larger glandular units with increased interglandular
distances, corresponding to moderately differentiated carci-
noma (pattern 2), until the glands are no longer recognizable
and cells start to invade surrounding tissue in neoplastic
clumps. In pattern 5, the tissue does not have any, or only a
few, recognizable glands.

Thus, in conclusion, both Gleason grading and the first
component of Elston grading are based on patterns that are
defined by the amount and architecture of glandular units and
tubules present in the tissue sample. The ability to identify
tubules and glandular structures is an essential requirement
for both grading systems. While there is a lot of work on
identifying nuclear pleomorphism andmitotic count, asmost
recently in [12], our contribution in this paper is to propose
a new effective way of extracting information concerning
glandular architecture, which is directly related to the first
component in Elston grading and is an essential part of
Gleason grading. In particular, what we present in this paper
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Figure 1: An image of prostate tissue (a) is decomposed into four classes: lumen, epithelium, nuclei, and stromal regions. The probability
maps in this example were thresholded at a level of 10% for enhancing visibility.

(a) (b)

Figure 2: The sampling rings growing away from each lumen region for the example in Figure 1. Each ring is obtained by first dilating the
lumen region and then subtracting it from the dilated version. This is done sequentially and the number of rings in this example is 30.

is a method that enables us to distinguish between images
with tubular structures, denoted by 𝐶1, and images lacking
tubular structures, denoted by 𝐶0, where these images are
taken from both healthy and cancerous breast tissue, since we
want to be able to identify tubules in both healthy and cancer
tissue samples.

2. Materials and Methods

2.1. Statistical Proximity Sampling. The grading of cancerous
tissue of glandular organs such as prostate and breast is to
a large extent based on the tissue architecture around the
glandular lumen regions. In previous work [13, 14], we have
presented automated methods for color decomposition and
pattern-based image segmentation that result in density or
probability maps, one per stained tissue type. In the current
work, we present a method that uses such types of maps
as input for deriving a set of features based on statistically
sampling the neighborhood of lumen regions. The purpose
is to discriminate between tubule and nontubule regions in
breast tissue sections.

Our method proceeds in the following manner.

(1) A tissue image is softly classified into a set of𝐾 prob-
ability maps using any method such as color decom-
position (see [14]) or a pattern analysis approach (see
[13]); an example is shown in Figure 1, where the 𝐾
tissue types correspond to lumen, epithelium, nuclei,
and stroma.

(2) Starting from the lumen regions, each region is
separately dilated by a square structuring element in
sequential unit steps forming a set of rings or annuli
around the original lumen space (see Figure 2).These
rings are regarded as neighborhood strips fromwhich
we will gather statistics on the quantity and location
of surrounding tissue types. The boundary shape is
preserved within a reasonable number of sampling
rings.

(3) Within each ring, we compute the proportions of the
different tissue types (lumen, epithelium, nuclei, and
stroma) using the derived probability maps. Thus,
for each ring, we obtain a vector of length 𝐾. For
instance, a vector such as [0.2, 0.4, 0.1, 0.3] in a given
ring indicates that the relative proportions of lumen,
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Figure 3: The lumen class from the original image shown in Figure 1 is extracted. The different regions are labeled according to their 4-
connectivity. These regions form the basis and starting point of our algorithm for deriving features.

epithelium, nuclei, and stroma are 20%, 40%, 10%,
and 30%, respectively.

(4) The vectors obtained in step (3) are stacked, forming
a single vector of length 𝑅×𝐾, where 𝑅 is the number
of rings used, that is, neighborhood strips. Thus each
lumen region from step (1) will be represented by
such a feature vector of length 𝑅 × 𝐾. An example
of these vectors is shown in Figure 4, where there
are 4 lumen regions and consequently 4 such feature
vectors plotted using different colors.

(5) We present each image as a bag or collection of
feature vectors corresponding to lumen regions in
the image. Thus, we use multiple-instance learning
to represent an image using a collection of feature
vectors and perform the classification of each image
based on its contents.We also use the bag dissimilarity
approach [15] to decouple the classification task from
the multiple-instance formulation, allowing us to use
any type of classifier without difficulty.

In step (2), it is possible to use dilations with larger steps or
with a larger structuring element when deriving the rings.
This would make the collected statistics less noisy but would
also decrease the spatial resolution of the collected data
(analogous to the effect of applying a moving average filter).

The method is designed to be applicable to any glandular
tissue type. We have developed and tested it on breast
and prostate tissue. We begin by explaining the method
through an example for the case of prostate tissue. Figure 1
shows a cross-section of prostate tissue that has been stained
with a Sirius-hematoxylin stain combination along with the
resulting image decomposition into four probability maps
which represent in this case the classes corresponding to
lumen, epithelium, nuclei, and stromal regions. Note that the
decomposition method used for prostate tissue follows from
our previous work in [14]. The proximity sampling method
takes as input the probability maps generated from the
decomposition, regardless of which method was employed
for the latter. The image selected for decomposition in
Figure 1 is a cropped image of size 183 × 339 and was chosen
to contain only a small number of lumen regions so that the
number of feature profiles that follow remains tractable for
display. The probability maps were automatically rearranged
according to a descending order of mean intensity value.This

allows the automatic selection of the lumen class as the first
image in this ordered sequence.

In what follows, we discuss in detail how the main
feature vector of the statistical proximity sampling method is
obtained. The method proceeds by statistically sampling the
neighborhood around each lumen in terms of class compo-
nent quantities. By sequential dilation of the lumen region
and subtraction of the preceding area, we obtain concentric
rings or annuli progressing spatially away from the lumen
in either inward, outward, or both directions, extending the
lumen shape (see Figure 2). Within each ring, the fraction
of each class component, that is, lumen, epithelium, nuclei,
and stroma, is computed as a ratio of the sum of class
posterior probabilities within the ring to the total area of
the ring. These are then concatenated into a vector with
𝐾 = 4 parts, where 𝐾 is the number of classes. The number
of dilations or rings we have used in this case for illustration
was 30. This creates a profile of how these class quantities
are changing spatially as one moves away from the lumen
within its neighborhood. As cancer progresses from benign
to malignant, the different grades of cancer are expected to
exhibit different patterns in terms of the quantities and order
of these class components around the lumen which would
result in different profile curves sampled from these rings.
The features represent fractional values in the range [0, 1].
The shape of the curve captures spatial (order) information
and represents statistical quantification of the classes.

Figure 3 shows lumen regions extracted from the cor-
responding posterior map and labeled according to their
4-connected neighborhood; that is, pixels that are adjacent
diagonally are not considered neighbors. Figure 4 shows the
profile curves obtained, one for each of the four lumen
regions.The first 30 elements represent the changing amount
of neighboring lumen within those rings; the second part
consisting of another 30 elements represents that of epithe-
lium, the third part that of nuclei, and the fourth that
of stroma. To validate and understand what the curves
represent, one should compare the profile of each lumen
to its spatial neighborhood shown in Figure 3. The colors
shown in Figure 4 have been set tomatch those lumen regions
shown in Figure 3. For example, the cyan curve represents
the cyan colored lumen region. From Figure 3, we notice that
the sampling rings should contain a considerable fraction of
lumen due to the large neighboring lumen region shown in
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Figure 4: Feature vectors are shown, one for each of the four lumen
regions illustrated in Figure 3. The vectors are divided into 4 parts
delineated by black vertical lines: the first part depicts the first 30
elements representing the fraction of lumen within the 30 sampling
rings, the second part depicts those for the epithelium component,
the third part depicts those for the nuclei component, and the fourth
part depicts those for the stromal component.

red color. Consequently, the first part of the cyan curve shows
high values. Similar analysis follows for the other parts of the
curve in which one can see how each class component varies
as one moves away from the lumen region. The fourth part
of the curve is particularly easy to notice since there is no
stromal component close enough to the cyan luminal region.

Alternatively, in order to show how the different luminal
regions compare to each other in terms of the spatial
composition of their proximities, we replot the curves of
Figure 4 such that the proportions of the four different tissue
types (lumen, epithelium, nuclei, and stroma) across the rings
are shown in a relative frequency pie chart for each luminal
region separately. This is illustrated in Figure 5, where each
subplot represents a luminal region indicated by the color
of the central rectangle, and we note here that each of these
exhibits a different profile.

We note that the previous example was based on the
spectral decomposition of tissue that was specifically stained
(using Sirius-hematoxylin) in order to express the different
relevant tissue components (see [14]). However, in order to
illustrate that the proposed concept is robust and generally
applicable, we have also applied it to images of breast cancer
tissues from theHuman Protein Atlas database [16] which are
stained using hematoxylin-eosin + DAB to visualize general
background tissue structures and specific proteins. As an
example, we show a cropped image region of size 362 ×
450 selected from the case “Group 𝑅”—𝐶1 in [13]. Figure 6
shows the decomposition of the image into four classes
corresponding to lumen, stroma, nuclei, and DAB. Figure 7
shows four selected lumen regions from the posterior map
of the lumen class in order to display their respective feature
curves as based on the proximity samplingmethod described
above. Finally, Figure 8 shows the profile curves for this
example, where the number of sampling rings around each
lumen was set to 10. In a similar manner to the previous
example, several detailed conclusions may be drawn from
these figures; however the most general one is that these
feature curves capture the statistical distribution of the classes
around each lumen region and may therefore be used to
classify those regions.

2.2. Bag Dissimilarity for Classification. To test our method,
we used a dataset consisting of images of breast tissue sections
obtained from the Human Protein Atlas project [16], where
every image has been assigned a malignancy grade by an
expert. The assigned class labels denoted by 𝐶0 and 𝐶1 are
associated with the tubule-based Elston grading, where the
main factor is the absence (𝐶0) or presence (𝐶1) of milk
ducts in the tissue. Sample images of the dataset are shown in
Figure 9. Note that all microscopy images of the given dataset
were acquired under the samemagnification level of×40.The
dataset consists of tissue sections containing cells, glands, and
luminal regions, and the proximity samplingmethodwe have
proposed applies in general also for images of tissue types that
contain similar structures in living organisms.

In the dataset, an image may contain several lumen
regions. A feature vector is derived for each of these lumen
regions using the proximity sampling method described.
The aim is to train a classifier on the labeled, that is,
graded, images in order to predict the label of a new image
automatically.Thus, there is an inherent relation between the
formulation of this problem and multiple-instance learning
[17]. In the context of the latter, the feature vectors derived
from the lumen regions in an image may be regarded as
“instances” or objects and the image itself as a “bag” or
compound object consisting of one or more instances. The
instances themselves are not labeled, but rather only the bag
carries a label, which in this case is the tubule-based grade
assigned by the pathologists. Also different bags may contain
a different number of instances. Some of the instances in a
bag may be less important in contributing to the bag label,
whereas one or more may be key instances, belonging to
the so-called “concept,” that significantly define the bag label.
For example, an image may contain one gland unit that
characterizes a grade 3 cancer region, in addition to several
noncontributing, background lumen regions. In such a case,
one of the instances belongs to the “concept” that contributes
to the grade 3 label.

The multiple-instance learning approach is more flexible
than standard classification approaches in that the represen-
tation allows us to encode more information from a single
image by considering it as a collection of feature vectors
rather than encoding the entire image by a single feature
vector. Images of real life objects (such as tissue sections)
often contain a lot of important subregions with different
characteristics andmay be therefore too complex to be repre-
sented by a single feature vector [15]. The multiple-instance
representation is highly informative in this situation since
it encodes information from different regions in an image,
each of which may contribute to the final grade or label of
the image as a whole.

However, the classification task that ensues becomesmore
complex as a classifier is trained and optimized over the
dataset. Therefore, in order not to add complexity to the
construction of a classifier and preserve the flexibility of the
task, we follow the bag dissimilarity approach described in
[15], which does not attempt to locate a “concept” but rather
uses a similarity measure across bags, which are seen as sets
of instances. The dissimilarities computed between the bags
become the new features, and this allows us to construct
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Figure 5: The four parts of each feature vector illustrated in Figure 4 are depicted in a relative frequency graph for each luminal region in
this example. The color of the central rectangle in each subplot indicates the corresponding lumen region shown in Figure 3.

any classifier in this new feature space, thus decoupling the
original multiple-instance problem from the classification
task itself. Moreover, the bag dissimilarity approach allows us
to consider multiclass data, that is, data with several grades,
whereas in the traditional multiple-instance learning prob-
lem only two classes, namely, a positive and a negative class,
are considered at any given time, and a one-against-one or
one-against-all approach is often used in the classification of
multiclass situations.

2.3. Additional Lumen Shape Features. Insofar, we have pre-
sented a new vectorial proximity-based feature for describing

tissue architecture around glands, and we proceed in the next
section to demonstrate its usefulness as a feature descriptor.
However, in order to evaluate whether more conventional
scalar features add any information to the new feature, we
have implemented four classical, well-known scalar features
that are simple to compute from each lumen region. The first
is the size of the region, while the other measures relate to
its shape and are the bending energy, area-to-perimeter ratio,
and convexity ratio. Bending energy [18] is defined around
the lumen perimeter based on the chain code sequence and
is given by 𝐸𝑏 = ∑

𝑃𝑓

𝑝=1
𝜅
2
(𝑝), where 𝜅(𝑝) is a smoothed
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Figure 6: An image of breast tissue and its resulting decomposition into four classes: lumen, stroma, nuclei, and DAB regions.

(a) (b)

Figure 7: A few selected regions from the lumen class of the original image shown in Figure 6 are extracted.The different regions are labeled
according to their 4-connectivity and shown using different colors.
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Figure 8: A feature vector is shown, one for each of the lumen
regions illustrated in Figure 7. The vectors are divided into 4 parts
delineated by black vertical lines: the first part depicts the first 10
elements representing the fraction of lumen within the 10 sampling
rings, the second part depicts those for the stroma component, the
third part depicts those for the nuclei component, and the fourth
part depicts those for the DAB component.

version of the curvature signal 𝜃(𝑝) = tan−1((𝑦𝑐(𝑝) − 𝑦𝑐(𝑝 −
1))/(𝑥𝑐(𝑝) − 𝑥𝑐(𝑝 − 1))), where (𝑥𝑐(𝑝 − 1), 𝑦𝑐(𝑝 − 1)) and
(𝑥𝑐(𝑝), 𝑦𝑐(𝑝)) are two consecutive points of the curvature.
The minimum value is 2𝜋/𝑅 and is attained for a circle of
radius𝑅.This feature is an indicator of convexity/concavity of
the lumen boundary. The area-to-perimeter ratio is defined
as (4𝜋𝐴)/𝑃2, where 𝑃 is the perimeter and 𝐴 the area of
the lumen region. Convexity is defined as 𝐴 lumen/𝐴convex hull,
where𝐴 lumen is the area of the lumen region and𝐴convex hull is
the area covered by the convex hull encompassing the lumen
region. This ratio is in the range [0, 1] and is closer to 1
when the lumen shape is convex and closer to 0 when highly
irregular such as the case of cribriform grade 3-4 glandular
units in prostate tissue, for instance. These lumen shape
features are then compared with the main proximity feature
vector, and classification results are presented in Section 3.
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Figure 9: A few sample cases of the breast dataset consisting of images of breast tissue sections labeled as 𝐶1 and 𝐶0 based on the presence
or absence of milk ducts, respectively.

Table 1: Summary statistics concerning the dataset used in this paper.

Dataset Number of instances Dimensionality Number of bags Number of instances per bag
Minimum Median Maximum

Breast 1309 40 104 1 10 37

3. Results and Discussion

For each image in the dataset, we have used our proximity-
based feature method to obtain a set of descriptive features.
Then we used multiple-instance learning to represent each
image as a bag of instances and transform the feature space
into a dissimilarity space by computing the distances among
the different bags. The MIL toolbox and various classifiers
were used for this purpose [19, 20]. Our dissimilarity matrix
is computed among the bags based on the linear assignment
distance measured between sets [15, 21]. The dataset is then
randomly split into a training set and a test set, and cross-
validation procedures are used throughout. The mean error
and standard deviation are then reported for both datasets.
The characteristics of our dataset are summarized in Table 1.
Note that ten sampling rings were used for the statistical
proximity sampling method throughout all cases resulting in
40-element feature vectors for the case of the breast dataset
since the number of classes was four using the hematoxylin-
eosin + DAB stain.

Figure 10 shows the classification rates and classifier
learning curves using only the features derived by the statisti-
cal proximity sampling method. Note that the parameters for
the support vector classifier and 𝑘-nearest neighbor classifier
were optimized using leave-one-out cross-validation over a
training set comprising randomly 25% of the original dataset.
The 10-fold cross-validation rates for all classifiers over the
remaining test set are then computed. The entire process is
further repeated in 5 experiments. The results are presented

Table 2: Classification rates for the breast dataset using different
classifiers. Classificationwas done using 10-fold cross-validation and
results are reported as percentage of correct classification± standard
deviation.

Classifier Classification rate
Proximity features (Figure 10)

SVC 94.2 ± 2.0
KNN 93.4 ± 0.8
Logistic 80.5 ± 1.3
LDC 61.7 ± 1.2

in Table 2. The highest classification rates were obtained
using the 𝑘-nearest neighbor classifier and the support vector
classifier with 93.4% and 94.2% correct classification for
the breast dataset, respectively. Note that assigning misclas-
sification costs for different classes may be set as desired
through the regularization parameter of SVC if needed.
For comparison, a similar procedure was applied, however,
using only the 4 classical lumen shape features that were
described in Section 2.3. The classification rates obtained
were much lower with the best performance at 62.69%.

3.1. Unsupervised Approach. Although we do not explore
unsupervised methods for malignancy grading in this paper,
we would like to highlight the possibility of applying a
clustering-based approach coupled with an information cri-
terion for classifying images.We demonstrate in what follows
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Figure 10: Classification results for the breast dataset, using only the features derived by statistical proximity sampling. Classifiers used
are the linear support vector classifier (SVC), 𝑘-nearest neighbor classifier (KNN), the logistic classifier (Logistic), and normal-based linear
discriminant classifier (LDC). (a) 10-fold cross-validation error. (b) Classifier learning curves. Error bars represent one standard deviation.

how clustering may be applied to classify instances in the
absence of bag labels. In other words, we attempt to identify
and locate key clusters or groups of instances forming main
clusters. A bag label (i.e., image grade) may then be obtained
using a voting scheme over the cluster labels of the instances
that belong to it. To study whether there may be an inherent
number of clusters in the data possibly due to a certain
fixed number of neighborhood descriptions that tend to recur
around lumen regions, we used the Bayesian information
criterion (BIC). We clustered the breast dataset using the
Gaussianmixturemodel (GMM) several times with a varying
number of clusters 𝑘 ranging from 1 to 10, and we computed
the BIC values as defined by BIC = −2 ln(𝐿)+𝑘 ln(𝑛), where 𝑛
is the number of objects in the data, 𝐿 is the likelihood value
of the mixture fit, and 𝑘 is the number of clusters. Note that
the mixture model was initialized randomly 10 times for each
value of 𝑘. As the number of clusters increases, we expect the
log-likelihood to increase monotonically; however the BIC
measure also includes themodel parameters into the tradeoff,
which in this case is the number of clusters 𝑘. The optimal
mixture model would have a high log-likelihood yet at a
lowest possible complexity 𝑘. A plot of the BIC values versus
the number of clusters is shown in Figure 11. We deduce in
this case that for the breast dataset the optimal number of
clusters at which the BIC curve attains a minimum is 2. This
result does not necessarily imply that there are 2 clusters in the
data in an absolute sense.Whenusing theAkaike information
criterion (AIC), we note in Figure 11 that the optimal number
of clusters at which the curve attains a minimum becomes 4,
since AIC in this case penalizesmodel complexity less heavily
than BIC and thus results in the selection of a larger model.
Conclusively, this might suggest that a model selection of 2,
3, or 4 classes in this case is a reasonable choice.

4. Conclusions

We have presented a general and simple method for sta-
tistically describing the distribution of glandular structures
around lumen regions. The method makes use of sampling
based on an iterative region expansion procedure that pre-
serves the shape of the lumen areas. One advantage of this
approach is that, by analyzing the neighborhoods of lumen
regions and preserving the spatial and statistical information
in these proximities, we avoid the need to extract explicit fea-
tures concerning the underlying tissue structures themselves.
The result is a set of feature vectors containing spatial and
statistical information that may be used to describe regions
in tissue images for a large variety of purposes, among which
is tubule-based grading, as we have demonstrated in this
paper. The input required for the method can be either a
set of probability or binary maps derived from soft or crisp
classification regardless of the supervised or unsupervised
method (e.g., [13, 14]) used to generate these maps. The
method is also robust and its dependence on the quality of
these maps is minimal since the approach does not attempt
to derive any precise cellular or subcellular features, which
would require accurate image segmentation.

Due to the natural complexity of biological tissue and the
grading process, we have avoided the single feature vector
based representation used in standard pattern recognition.
Automated gradingwas instead done using a bag dissimilarity
approach while treating the problem in a similar manner to
multiple-instance learning. Since images of tissue sections
often contain various spatial subregions which may have
completely different properties and characteristics, such an
approach is more capable of encoding the diverse con-
tent and level of information represented in these images.



10 International Journal of Biomedical Imaging

0 2 4 6 8 10 12
−2.75

−2.7

−2.65

−2.6

−2.55

−2.5

−2.45

−2.4

−2.35

−2.3

×10
5

BI
C

Number of clusters (k)

(a)

0 2 4 6 8 10 12
−2.9

−2.85

−2.8

−2.75

−2.7

−2.65

Number of clusters (k)

A
IC

×10
5

(b)

Figure 11: Optimal number of clusters using the Bayesian information criterion (BIC) and Akaike information criterion (AIC) over the breast
dataset. The error bars represent the standard deviation at each value of “𝑘.”

Classification results using cross-validation have shown that
the statistical proximity sampling method presented is able
to provide a set of discriminative features for tubule-based
cancer grading.

A possible drawback of the dissimilarity approach we
have used in our classification is that although the classifi-
cation task itself is accomplished and the diagnosis is auto-
mated, no single “concept” is identified during the process,
as it remains hidden. However, alternative multiple-instance
learning methods that are based on the notion of finding
a “concept” may be used for this purpose if needed. The
advantage of identifying a “concept” is that it becomes then
possible to visually map the “concept” or its instances back to
the corresponding regions in the image.This could be a basis
for future work.

The results obtained for the HPA dataset in this paper are
meant to illustrate the potential of our approach in feature
extraction and grading and its prospect for further extended
studies over large datasets and possible combination with
complementary approaches that address other aspects of
grading (such as nuclear pleomorphism and mitotic count),
possibly leading to applications in the clinical context. A com-
prehensive automated system that would be able to eventually
assign high-level grading akin to that by pathologists would
undoubtedly have to incorporate, in addition to the work
described in this paper, methods that are designed to address
nuclear pleomorphism andmitotic count (as most recently in
[12]). The final aim is to aid pathologists in the malignancy
grading of cancer. As a first step towards that goal, we
have in this paper addressed tubule-based grading, which
contributes to one of the three components for malignancy
grading under the Ellis-Elston system and which is also
considered an important factor in Gleason grading.
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