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Abstract

Introduction
Frailty is a medical syndrome, commonly affecting people aged 65 years and over and is characterized
by a greater risk of adverse outcomes following illness or injury. Electronic medical records contain
a large amount of longitudinal data that can be used for primary care research. Machine learning
can fully utilize this wide breadth of data for the detection of diseases and syndromes. The creation
of a frailty case definition using machine learning may facilitate early intervention, inform advanced
screening tests, and allow for surveillance.

Objectives
The objective of this study was to develop a validated case definition of frailty for the primary care
context, using machine learning.

Methods
Physicians participating in the Canadian Primary Care Sentinel Surveillance Network across Canada
were asked to retrospectively identify the level of frailty present in a sample of their own patients
(total n= 5,466), collected from 2015–2019. Frailty levels were dichotomized using a cut-off of
5. Extracted features included previously prescribed medications, billing codes, and other routinely
collected primary care data. We used eight supervised machine learning algorithms, with performance
assessed using a hold-out test set. A balanced training dataset was also created by oversampling.
Sensitivity analyses considered two alternative dichotomization cut-offs. Model performance was
evaluated using area under the receiver-operating characteristic curve, F1, accuracy, sensitivity,
specificity, negative predictive value and positive predictive value.

Results
The prevalence of frailty within our sample was 18.4%. Of the eight models developed to identify
frail patients, an XGBoost model achieved the highest sensitivity (78.14%) and specificity (74.41%).
The balanced training dataset did not improve classification performance. Sensitivity analyses did
not show improved performance for cut-offs other than 5.

Conclusion
Supervised machine learning was able to create well performing classification models for frailty.
Future research is needed to assess frailty inter-rater reliability, and link multiple data sources for
frailty identification.
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Introduction
Frailty is a medical syndrome, commonly affecting people aged
65 years and older, characterized by a greater risk of adverse
outcomes following illness or injury, despite accounting for age,
other diseases, and medical treatment [1]. Frailty is associated
with higher health care costs [2], greater risk of adverse events
during [3] and post-surgery [4], markedly worse quality of
life [5] and increased burden for family caregivers of frail
patients [6]. As of 2018, there were an estimated 1.5 million
Canadians living with frailty [7], and by 2025 this number is
projected to increase to over 2 million. However, studies have
demonstrated that frailty can be delayed or improved through
a variety of interventions, such as nutrient supplementation
and increased exercise [8]. Primary care is often the first point
of care for patients and thus accurate identification of frailty
in this setting may enable improved management of identified
individuals such as ensuring early initiation of interventions
[9] and informing advanced frailty screening tests [10], which
could lead to reduced downstream costs through reduced
hospitalizations [9]. There is currently no standard definition or
instrument to measure frailty, and frailty prevalence estimates
have found to vary greatly depending on the frailty instrument
used [11].

Electronic medical records (EMRs) are a rich clinical data
source for primary care research. Disease case definitions
are routinely created and validated for the identification of
patient cohorts. Machine learning has successfully been used
in the creation of case definitions for other diseases such
as hypertension and osteoarthritis in primary care that are
being used for practice reporting, quality improvement, public
health surveillance, and research [12]. Previous work using
supervised machine learning for the identification of frailty
in EMR data by Williamson et al. used data from Alberta,
Canada [13]. This study defined frailty using the Clinical Frailty
Scale [14] showed fair performance, achieving a sensitivity of
0.28 and a specificity of 0.94. Other research has been done
on the classification of frailty using machine learning methods,
but frailty was defined using other instruments. Hassler et
al. identified frailty using the Frailty Phenotype, while also
using supervised machine learning methods but not using EMR
data [15]. This research obtained sensitivity estimates ranging
between 65.7% to 86.7%, and specificity ranging between
58.1% to 85.6% [16]. Ambagtsheer et al. used the electronic
Frailty Index [17] for the identification of frailty, while also
using supervised machine learning methods on EMR data [18].
The best performing model was able to achieve a sensitivity
of 97.8% and a specificity of 89.1%.

The objective of this study was to develop a validated
case definition of frailty for the primary care context using
machine learning. The creation of a frailty case definition
using supervised machine learning for wide distribution and
deployment in Canadian primary care practices may allow
for surveillance of frailty, future research on frail cohorts, as
well as contribute to better management and care for frail
patients.

Methods
The Canadian Primary Care Sentinel Surveillance Network
(CPCSSN) is a pan-Canadian primary care database that

routinely collects and stores de-identified patient EMR data
from eight provinces and one territory across Canada, with
approximately 1.8 million unique patients in its database, and
over a thousand primary care providers [19]. Data consistently
captured within CPCSSN include diagnoses, billing codes, and
prescribed medications.

Reference set creation

Five CPCSSN networks participated in data collection and
building the reference set of frail patients: British Columbia,
Alberta, Nova Scotia, Ontario, and Manitoba. Primary care
physicians used the Rockwood Clinical Frailty Scale (CFS) to
retrospectively classify the degree of frailty observed in their
patients aged 65 and above who were seen within the last
24 months. The CFS is a validated frailty measurement tool
commonly used in primary care and is based on short written
descriptions of increasing levels of frailty [14] (Appendix I).
The CFS ranges from 1 to 9, with 1 having the label of ‘very
fit’ and 9 labelled ‘terminally ill’ (the highest degree of frailty).

Physicians were given the option of basing their
assessments on recall or querying information in their EMRs in
order to provide an accurate frailty rating. Data were gathered
in two stages, with the initial data collection being restricted
to Alberta only. Data from Alberta were gathered in 2015
for a previous study that focused on frailty identification [13],
while the other provincial sites gathered data in 2019. A total
of 5,466 patients were rated by 90 physicians in total across
the five regional CPCSSN sites located across five Canadian
provinces, with each patient receiving one CFS rating by their
physician only.

Feature engineering

We extracted patient EMR data from participating CPCSSN
sentinels with the accompanying CFS score and included
features (measured data elements representative of a patient
characteristic) that were present in all EMRs to form a unified
dataset. Patient visit diagnoses, prescribed medications, lab
results and biometrics (height, weight and body mass index)
were extracted from the past two years prior to the CFS
score assignment. For the purposes of this study, frailty was
dichotomized into frail or not frail from the original physician-
rated CFS score, with those receiving a score of 5 or higher on
the CFS being labelled as frail, and those with a score of 4 or
lower being labelled as not frail.

The following chronic conditions, detected using validated
case-detection algorithms available in CPCSSN [20], were
extracted: chronic obstructive pulmonary disease, dementia,
depression, epilepsy, hypertension, and osteoarthritis. Patient
demographics such as age and sex were also extracted.

We performed feature selection by removing features with
very low variability, as defined by the ratio of the most
common value to the second most common value being more
than a ratio of 95:5. As missing data are often observed in
EMR data, any feature with greater than 20% missing data
was also removed (with the exception of height, weight, and
BMI information as these were considered to be potentially
important), and for those with less than 20% missing data
(systolic and diastolic blood pressures), single imputation using
predictive mean matching [21] was performed. In addition
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to single imputation, missingness-indicator variables were also
created, in the event that these missing values were potentially
related to frailty status. The regional CPCSSN network the
data were collected from was also included as a feature,
as there may be regional data extraction and processing
differences. However, the inclusion of this feature limits the
generalizability of the models to only the regional CPCSSN
networks included in this study.

After the removal of features with low variance or high
correlation, no additional feature selection was performed as
this had reduced the total number of features from 5,466 to
75. The final set of features used is presented in Table 1.

Supervised machine learning

Patients were partitioned into a 30-70 split, with 70%
(n= 3,827) of patients used for training, and 30% (n= 1,639)
as the hold-out test set. Within the training set, there were
3,103 non-frail patients and 724 frail patients. The hold-out
test set had 1,360 non-frail patients and 279 frail patients.

Numeric features in both the training and test sets were
scaled and centered according to the training set to ensure
no data leakage from the validation set. Within the 70%
training set, the data were split into five random folds for
cross validation to guard against overfitting.

Imbalanced data can result in biased estimates of training
performance, especially when the class of interest is the
minority class. A model predicting everyone as non-frail will
still result in a 81.1% accuracy rate, but is actually of no
value when none of the frail patients have been identified. One
method of combating imbalanced datasets is to oversample the
minority class such that the training data becomes balanced.
As the original training data were imbalanced (18.9% frail),
synthetic minority over-sampling technique (SMOTE) [22] was
also performed to create synthetic samples of frail patients,
such that there were an equal number of frail (n= 3,103) and
non-frail (n= 3,103) patients. The specific implementation of
SMOTE used was SMOTE-Nominal Continuous (SMOTE-
NC), as there are both categorical and numerical data as
features (for the sake of simplicity, future references of
SMOTE-NC will be simplified to just SMOTE). SMOTE was
used only to create more synthetic frail observations, and no
undersampling of non-frail patients was performed.

A random search of 60 combinations was used for
hyperparameter tuning within five fold cross validation, with
the best performing model chosen by average sensitivity
across the five folds for the balanced training dataset created
by SMOTE, and average area under the receiver-operating
characteristic curve (AUC) for the imbalanced datasets.

A selection of seven commonly used binary supervised
machine learning architectures were used, including: classification
and regression tree (CaRT); elastic net logistic regression [23];
support vector machines (SVM); Naïve Bayes; feedforward
artificial neural network (NN) with five hidden layers; k-nearest
neighbours (KNN); random forest; eXtreme Gradient Boosting
(XGBoost).

The best performing algorithm resulting from each
architecture was evaluated using AUC, accuracy, sensitivity,
specificity, F1 score, negative predictive value (NPV), and
positive predictive value (PPV). AUC can be understood as
the probability that a randomly chosen non-frail patient will

have a score lower than a randomly chosen frail patient. AUC is
constructed by plotting the achieved sensitivity and specificity
of the classifier at every possible decision threshold level, and
measuring the area under the curve. AUC ranges from 0 to 1,
with 0.5 being no better than random guessing, and 1 being
a perfect classifier. Receiver-operating characteristic (ROC)
curves were also constructed and assessed. Although the
default decision threshold for binary classification is 0.5, this
threshold can also be moved along the ROC curve to account
for imbalances in the training data [24], or to maximize both
sensitivity and specificity (defined as the point on each curve
closest to the upper left corner).

This study followed the RECORD (Reporting of studies
Conducted using Observational Routinely-collected health
Data) statement [25], with the associated checklist available
in the Appendix II.

Sensitivity analyses

As the original CFS is a 9 point ordinal scale, the assigned
CFS scores were dichotomized to reduce the task to a binary
classification problem. A scoping review on the usage of CFS
in research identified that the majority of studies used a cut-
off of 5 and above to define frailty, while fewer studies used a
cut-off of 4 and above, and 2 studies used a cut-off of 6 and
above [26]. A CFS score of 5 labelled “mildly frail” is also the
first time the term “frail” appears in the corresponding label
for each frailty score. We will also use cut-off scores of 4 and
6 for sensitivity analyses. By using a cut-off of 4, patients who
were identified as ‘vulnerable’ in the CFS are now considered
to be frail, whom were previously labelled to be non-frail. This
increased the number of frail patients from the original training
set from 724 to 1362, changing the proportion of frail patients
from 18.9% to 35.6%. A cut-off of 6 would consider patients
were identified as ‘mildly frail’ to be non-frail, whom were
previously labelled frail. This increases the imbalance in the
training dataset, as the number of frail patients were reduced
from 724 to 358, changing the proportion of frail patients from
18.9% to 9.3%.

All analyses were performed in R version 4.0.4, where
the packages ‘caret’ and ‘h2o’ were used for model building
[27, 28]. SMOTE was implemented using Python 3 through R
using the package ‘reticulate’ [29].

Results

Of the 5,466 patients sampled, the median age was 74 years
(IQR: 11), with 50% of the sample falling between 69 and
80 years of age. The sample had more females than males,
with 44% (n= 2,425) of the sample being males. There
was 13.4% (n= 732) of the sample that had no known
chronic conditions as detected by CPCSSN’s validated chronic
condition case detection algorithms; of those with known
chronic conditions, the most common chronic condition was
hypertension (76.35%). The estimated prevalence of frailty
among seniors aged 65 and older in this sample of CPCSSN
patients was 18.4%.

Compared with non-frail patients (n= 4,460), frail patients
(n= 1,006) were statistically significantly likely to be older,
female, and less likely to have no known chronic conditions
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Table 1: Features used for machine learning

Features n Data type

Patient age 1 Numeric
Patient sex 1 Binary
Patient Diagnoses Received in Last 2 Years (ICD-9 Codes) 13 Numeric
CPCSSN’s Detection of 6 Chronic Conditions 6 Binary
Medications Prescribed in Last 2 Years 39 Numeric
Patient Biometrics 7 Numeric
Province 1 Categorical
Missing Medication Indicator 1 Binary
Missing Height, Weight and BMI Indicators 3 Binary
Missing Chronic Conditions Indicator 1 Binary
Missing Patient Diagnoses Indicator 1 Binary
Missing Blood Pressure Indicator 1 Binary
Total 75

Table 2: Cohort demographics

All (n= 5,466) Frail (n= 1,006) Not frail (n= 4,460) p-value

Age (Median, [Q1-Q3]) 74 [69–80] 81 [74–88] 72 [68–78] <0.001†

Sex (% Male) 2,425 (44.4%) 348 (34.6%) 2,077(46.6%) <0.001
No Known Chronic Conditions 732 (13.4%) 52 (5.2%) 680 (15.2%) <0.001
COPD∗ 534 (11.3%) 382 (10.1%) 152 (15.9%) <0.001
Dementia∗ 449 (9.5%) 238 (24.9%) 211 (5.6%) <0.001
Depression∗1,155 (24.4%) 316 (33.1%) 839 (22.2%) <0.001
Diabetes Mellitus∗ 1,866 (39.4%) 374 (39.2%) 1,492 (39.5%) 0.909
Epilepsy∗ 94 (2.0%) 24 (2.5%) 70 (1.9%) 0.237
Hypertension∗ 3,614 (76.35) 760 (79.7%) 2,854(75.5%) 0.008
Osteoarthritis∗ 2,187 (46.2%) 439 (46.2%) 1,748 (46.2%) 0.929
Mean BMI (Median [Q1–Q3]) 28.5 [25.31–32.49] 28.34 [24.52–33.17] 28.50 [25.40–32.40] 0.501†

Missing BMI 1,735 (45.3%) 436 (60.2%) 1,299 (41.9%) <0.001
Mean Height (centimetres) (Median
[Q1–Q3])

165.00 [157.47–173.15] 160.00 [152.81–168.50] 165.80 [158.15–174.00] <0.001†

Missing Height (centimetres) 1761 (46.0%) 443 (61.2%) 1318 (42.5%) <0.001
Mean Weight (kg) (Median [Q1–Q3]) 79.60 [67.39–92.60] 75.19 [64.21–90.00] 80.32 [68.40–93.00] <0.001†

Missing Weight (kg) 1,317 (34.4%) 302 (42.7%) 1,015 (32.7%) <0.001
Missing Systolic Blood Pressure
Measurement

611 (16.0%) 111 (15.3%) 500 (16.1%) 0.645

Mean Systolic Blood Pressure (Median
[Q1–Q3])

132.62 [124.50–141.28] 133.00 [125.33–141.67] 133.61 [123.95–142.00] 0.546†

Number of Clinic Visits In Most Recent
Calendar Year (Median [Q1–Q3])

5 [3–9] 7 [4–11] 5 [3–9] <0.001†

Missing Clinic Visits 296 (17.1%) 35 (4.8%) 261 (8.4%) 0.002
Number of Unique Medications
Prescribed In Last 2 Years (Median
[Q1–Q3])

6 [3–10] 5 [3–9] 7 [4–11] <0.001†

Missing Medications 249 (6.5%) 27 (3.7%) 222 (7.2%) 0.001

∗Proportions of those who has at least one known chronic condition.
†Tested using the Krusal-Wallis test.

as identified by the seven validated CPCSSN case detection
algorithms. Of those with at least one chronic condition,
frail patients were more likely to have chronic obstructive
pulmonary disease (COPD), dementia, depression, and
hypertension. Frail patients were also statistically more likely
to have a higher number of clinic visits in the most recent
calendar year of when their frailty score was given, with a

median of seven visits. The proportion of missingness was
also unevenly distributed across frailty, with frail patients
statistically significantly less likely to have missing BMI,
height, weight, clinic visitations and medications.

Figure 1 compares the ROC curves for the models trained
using the original imbalanced dataset, and a cut-off of 5 and
above as frail.
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Figure 1: Comparison of ROC curves for final models trained on original dataset

Table 3a: Performance metrics of models trained on original data using hold-out test set

Model AUC Accuracy F1 Sensitivity Specificity PPV NPV

Elastic Net Logistic Regression 81.58% 85.42%∗ 46.05% 36.56% 95.44% 62.20% 88.00%
SVM 80.75% 85.23% 49.16%∗ 41.94% 94.12% 59.39% 88.77%
KNN 66.48% 83.40% 21.84% 13.62% 97.72%∗ 55.07% 84.65%
Naïve Bayes 74.72% 70.23% 43.52% 67.38%∗ 70.81% 32.14% 91.37%∗

CaRT 77.56% 82.18% 44.70% 42.29% 90.37% 47.39% 88.42%
Random Forest 81.03% 85.11% 47.64% 39.79% 94.41% 59.36% 88.43%
XGBoost 83.18%∗ 84.87% 47.68% 40.50% 93.97% 57.95% 88.50%
Feedforward NN 78.20% 84.87% 35.32% 24.37% 97.28% 64.76%∗ 86.25%

∗Highest value achieved for each metric.

Table 3a shows the performance of the 8 supervised
machine learning models using the default threshold of 0.5. All
models were able to achieve an AUC of over 65%, ranging from
66.48% (KNN) to 83.18% (XGBoost). Sensitivity ranged from

13.62% (KNN) to 67.38% (Naïve Bayes). Specificity ranged
from 70.81% (Naïve Bayes) to 97.72% (KNN). PPV ranged
from 31.14% (Naïve Bayes) to 64.76% (neural network). NPV
ranged from 84.65% (KNN) to 91.37% (Naïve Bayes).

Table 3b: Sensitivity and specificity of models trained on original data using best threshold

Model Sensitivity Specificity Threshold

Elastic Net Logistic Regression 77.78% 72.72% 0.4730
SVM 74.55% 73.38% 0.1889
KNN 64.16% 61.69% 0.1000
Naïve Bayes 70.97% 68.60% 0.2777
CaRT 69.89% 72.79% 0.1228
Random Forest 75.27% 71.99% 0.3104
XGBoost 78.14%∗ 74.41%∗ 0.1851
Feedforward NN 73.84% 68.82% 0.2712

∗Highest value achieved for each metric.
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Table 3b shows the maximum combined sensitivity and
specificity that can be achieved by using the most optimal
thresholds determined using ROC curves. An XGBoost model
achieved the best performance using a threshold of 0.1851,
where sensitivity was 78.14% and 74.41%.

Figure 2 compares the ROC curves for the models trained
using the balanced dataset created using SMOTE, and a
cut-off score of 5 and above as frail.

Table 4a shows the performance of the eight supervised
machine learning models trained using the balanced dataset
created by SMOTE, and where the default threshold of 0.5 was
used. AUC ranged from 65.37% (KNN) to 80.53% (XGBoost).
Sensitivity ranged from 30.47% (KNN) to 67.38% (elastic net
logistic regression). Specificity ranged from 72.06% (Naïve
Bayes) to 93.80% (Random Forest). PPV ranged from
31.53% (Naïve Bayes) to 55.38% (Random Forest). NPV

Figure 2: ROC Curves of models trained on balanced data

Table 4a: Performance metrics of models trained on balanced data using default threshold

Model AUC Accuracy F1 Sensitivity Specificity PPV NPV

Elastic Net Logistic Regression 77.21% 72.79% 45.74% 67.38% 73.90% 34.62% 91.70%
SVM 77.26% 73.89% 46.10% 65.59%* 75.59% 35.53% 91.46%*
KNN 65.37% 77.67% 31.72% 30.47% 87.35% 33.07% 85.96%
Naïve Bayes 71.70% 70.47% 52.36%* 62.72% 72.06% 31.53% 90.41%
CaRT 71.27% 76.69% 46.20% 58.78% 80.37% 38.05% 90.48%
Random Forest 80.90%* 84.20%* 44.30% 36.92% 93.80%* 55.38%* 87.89%
XGBoost 80.53% 83.83% 44.44% 37.99% 93.24% 53.54% 87.99%
Feedforward NN 77.76% 83.28% 38.01% 30.11% 94.19% 51.53% 86.79%

Table 4b: Sensitivity and specificity of models trained on balanced data using best threshold

Model Sensitivity Specificity Threshold

Elastic Net Logistic Regression 74.19% 67.79% 0.4019
SVM 70.97% 71.25% 0.4429
KNN 65.95% 61.18% 0.0833
Naïve Bayes 62.01% 73.75% 0.6216
CaRT 58.78% 80.37% 0.5121
Random Forest 72.76% 76.10% 0.3525
XGBoost 77.42%* 71.84%* 0.2185
Feedforward NN 66.67% 77.72% 0.6636
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ranged from 85.96% (KNN) to 91.70% (elastic net logistic
regression).

Table 4b shows the maximum combined sensitivity and
specificity that can be achieved by using the most optimal
thresholds determined using ROC curves. XGBoost achieved
the best performance using a threshold of 0.2185, where
sensitivity was 77.42% and specificity was 71.84%.

Using a cut-off CFS score of 4 and above as frail, an
XGBoost model achieved the best performance of sensitivity
(77.42%) using a threshold of 0.3385. A CaRT model achieved
the best specificity (76.02%) using a threshold of 0.2540.
Using a cut-off CFS score of 6 and above, a CaRT model
achieved the highest sensitivity (78.85%) using a threshold
of 0.0568. An XGBoost model achieved the best specificity
(77.77%) using a threshold of 0.0875. The detailed results of
the sensitivity analyses are listed in Appendix III.

The final hyperparameters used for all models are listed in
Appendix III Table 5.

Discussion

This is the first study to use pan-Canadian primary care data
to create a frailty case definition using machine learning. We
observed a frailty prevalence of 18.4% in the data gathered,
which is similar to other reported frailty prevalence estimates
in seniors over the age of 65 [30]. A collection of eight
common supervised machine learning architectures were used
for the identification of dichotomized frailty, and performance
assessed using the hold-out test set.

XGBoost had the overall best performance across all
training datasets, achieving the highest or second highest
sensitivity in each. Using the original imbalanced dataset, an
XGBoost model was able to achieve great performance, with
78.14% sensitivity and 74.41% specificity using a decision
threshold of 0.1851.

The same XGBoost model achieved a sensitivity of 40.50%
and a specificity of 93.97% using a decision threshold of
0.5. We can compare these results with what was achieved
previously by Williamson et al, where the CPCSSN EMR data
used were only from Alberta and decision threshold used was
0.5 [13]. We can see that by using more machine learning
models and a larger dataset, sensitivity was able to improve
from 28% to 40.50%, and specificity did not suffer a loss with
both at 94%.

The balanced dataset created by SMOTE did not result in
better performance as compared with the original imbalanced
dataset. One explanation may be that no undersampling was
performed. While random undersampling used in tandem with
SMOTE can lead to increased classification performance [22],
we elected not to undersample the proportion of non-frail
patients to preserve information. This lack of undersampling
increased the number of synthetic oversampling required to
reach a balance between the number of frail and non-frail
patients. If the feature space for frail patients and non-frail
patients had areas of overlap, oversampling the frail patients
may have introduced patients whose label may in actuality be
non-frail, inadvertently introducing false positive samples to
the training dataset. As Table 2 shows, there was no significant
statistical difference in proportion between frail and non-frail
patients for diabetes mellitus, epilepsy, osteoarthritis. The

distributions of mean BMI and mean systolic blood pressure
also had sufficient overlap between that of frail and non-frail
patients to not be statistically significantly different.

The sensitivity analyses using two alternative cut-offs for
the binary classification of frailty based on the CFS scores
resulted in similar performances when the decision threshold
was determined using the ROC curves, where the highest
sensitivities ranged from 76.37% to 78.85%, and the highest
specificities ranged from 76.02% to 77.7%. Changing the cut-
off also changed the sample size in each class, affecting the
level of imbalance present. When a cut-off of 4 and above was
used to identify frailty, the number of frail patients increased.
However more noise was potentially introduced as now the
sample with the ‘frail’ label had ranged from patients that
were rated ‘vulnerable’ to those who were rated as ‘terminally
ill’. Conversely, when a cut-off of 6 and above was used the
number of frail patients decreased, resulting in a more severe
imbalance and an increase in the noise in the features of the
non-frail group.

As there was no significant classification difference between
any of the four training datasets, we propose that the best
model to use for the identification of frail patients in EMR
data is the XGBoost model trained using the original data,
with frailty defined using the standard CFS score cut-off of 5
and above. This model is readily deployable, inexpensive, and
could be used for public health surveillance and frailty research.
As the features used in the model were based on routinely
collected structured primary care EMR data, this model could
also be easily tested and used in other primary care EMRs.

While our goal was to maximize sensitivity and specificity
in tandem, it’s also possible to change the decision threshold
to other points on the ROC curve that maximize sensitivity at
the expense of specificity (and vice versa). For example, the
XGBoost model trained on the original imbalanced data with
a decision threshold of 0.5 has a sensitivity of 40.50% and a
specificity of 93.97%. This model would classify a relatively
low number of false positives, and can be used to rule-in frail
patients, as patients classified as ‘frail’ has a high certainty of
actually being frail. A model with high specificity could be used
for studies assessing the efficacy of interventions for reducing
existing level of frailty. These studies may find inconclusive
results if both non-frail and frail patients were included, as the
level of frailty is unlikely to change for non-frail patients.

The decision threshold may also be moved to achieve a
high sensitivity and low specificity, which would result in a low
number of false negatives. A model with these characteristics
could be used to create frailty screening cohorts, where the
goal is to select as many frail patients as possible at the
expense of having some false positives.

Limitations

One important limitation of this study is in the assignment
of the CFS scores. The application of the CFS to their own
patients may have varied between physicians, and as each
patient received only one CFS score, we were also not able
to assess inter-rater reliability. Previous research on the inter-
rater reliability of the CFS in an emergency care setting
showed a kappa of 0.9 between emergency department nurses
and emergency department physicians [31]. Another study
in an outpatient setting showed an inter-rater reliability of
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0.811 for the CFS between physicians [32]. Future on frailty
classification may also wish to have physicians rate the same
group of patients to assess inter-rater reliability.

Another limitation of clinicians assessing their own patients
is that they may have used recall of patient encounters and
conversations to assess frailty severity. It was very likely that
clinicians used information not recorded in EMR, such as past
experiences or intuition in their assessment of the severity of
frailty. The classification ability of any model will be hindered
if some data used to inform the label was not available.
Although this may be an ever present issue in primary care
where long-term clinician-patient relationships are common.

Selection bias may have occurred when some physicians
had selected a group of their own patients to rate, rather
than being provided a list of randomly sampled patients. These
physicians may have been more likely to select patients they
have seen frequently to better assess their level of frailty. These
patients may have higher rates of clinic visitation compared
with the average patient in the EMR. Resulting models may
be consistently poorer at classifying frailty for patients with
few clinic visitations as compared with patients with frequent
clinic visitations.

It should be noted that although the task of classification
requires a reference-standard label that represents the ground
truth, this may not be possible for diseases with unclear or
subjective diagnostic criteria. The CFS was created to allow
for room for clinical judgement [14], and this flexibility will also
introduce wanted variation between patients with the same
frailty score on the CFS. However, this variation is undesirable
for supervised machine learning. Future research may wish to
use multiple raters to assess each senior patient on their level
of frailty, and assess the differences between patients who had
varied CFS scores versus those who had consistent CFS scores.

While dichotomization is common practice in disease
identification, it reduces the amount of information that can
be used. Patients who were previously separated by frailty
severity are now one common class, where mildly frail patients
have the same label as severely frail patients. As we had
dichotomized the CFS after the physicians had rated their
patients, it is also possible that some physicians would have
disagreed with the cut-off of 5 to define frailty. This may have
been another source of variation introduced to the data. Future
work may wish to keep the original 9 point ordinal scale, or
collapsed groups of 4 or 5 levels of frailty to increase the sample
size in each category. An alternative approach could be to
assess the CFS as a continuous variable, by approximating the
underlying distribution to the distribution of the nine classes,
then creating decision boundaries for the transformation back
to the ordinal CFS to assess performance.

One of the challenges of using EMR data is the lack of
standard in how each EMR database may record, process,
and store their information [33, 34]. This study combined
data from five different regional CPCSSN networks, each one
within a unique province in Canada. Each regional CPCSSN
network had provided the most recent extraction of their
data, which had been cleaned and processed using their own
methods. Not all networks provided EMR records containing
unstructured data, thus all available data for featurization
were reduced to structured data that were collected in all
networks. This was a large limitation as while processed data
may be more readily used, unstructured free-text notes have

been shown to contain diagnostic suspicion that was not
coded [35] and potential disease incidence [36]. Kharrazi et al.
showed that geriatric syndromes were significantly more likely
to be identified using unstructured EMR notes as compared
with structured data only [37]. Specifically, the addition of
free-text notes processed using natural language processing
methods increased the detection rate of geriatric syndromes
by a factor of 3.2 times for falls, 18 for malnutrition, 3.4 for
walking difficulties, and 455.9 for lack of social support. Future
studies could link primary EMR data with other data sources,
such as hospitalization or emergency care records, or specialist
outpatient clinics EMRs to increase the amount of available
data.

Conclusion
We were able to create a supervised classification model
using XGBoost for the identification of frailty with a 78.14%
sensitivity and 74.41% specificity using routinely collected
primary care EMR data for usage in the Canadian context.
This classification model could be used for further research on
frail patients within primary care, as well as for public health
surveillance.

Neither the use of alternative cut-offs for the definition
of frailty nor the use of SMOTE for minority oversampling
resulted in a change in classification performance. Future
research may consider using physicians to rate the same
group of patients to assess for inter-rater reliability, and to
supplement primary care EMR data with data from other
sources in the healthcare system.
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Appendix I

Figure A1: Clinical frailty scale

Rockwood K, Song X, MacKnight C, Bergman H, Hogan DB, McDowell I, et al. A global clinical measure of fitness and frailty in
elderly people. CMAJ. 2005 Aug 30;173(5):489–95.
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Appendix II. The RECORD statement – checklist of items, extended from the STROBE statement that should be reported in
observational studies using routinely collected health data

Location in Location in
manuscript manuscriptItem STROBE
where items

RECORD
where itemsNo. items

are reported
items

are reported

Title and abstract

1 (a) Indicate the study’s design with a
commonly used term in the title or the
abstract (b) Provide in the abstract an
informative and balanced summary of
what was done and what was found

RECORD 1.1: The type of data used
should be specified in the title or
abstract. When possible, the name of
the databases used should be included.

RECORD 1.2: If applicable, the
geographic region and timeframe within
which the study took place should be
reported in the title or abstract.

RECORD 1.3: If linkage between
databases was conducted for the study,
this should be clearly stated in the title
or abstract.

1.1 - 1.3 are all
reported in abstract
(page 1).

Introduction

Background
rationale

2 Explain the scientific background and
rationale for the investigation being
reported

Pages 2 - 3

Objectives 3 State specific objectives, including any
prespecified hypotheses

Page 3

Methods

Study Design 4 Present key elements of study design
early in the paper

Page 4

Setting 5 Describe the setting, locations, and
relevant dates, including periods of
recruitment, exposure, follow-up, and
data collection

Page 4

Participants 6 (a) Cohort study - Give the eligibility
criteria, and the sources and methods of
selection of participants. Describe
methods of follow-up

Case-control study - Give the eligibility
criteria, and the sources and methods of
case ascertainment and control
selection. Give the rationale for the
choice of cases and controls
Cross-sectional study - Give the
eligibility criteria, and the sources and
methods of selection of participants
(b) Cohort study - For matched studies,
give matching criteria and number of
exposed and unexposed
Case-control study - For matched
studies, give matching criteria and the
number of controls per case

RECORD 6.1: The methods of study
population selection (such as codes or
algorithms used to identify subjects)
should be listed in detail. If this is not
possible, an explanation should be
provided.

RECORD 6.2: Any validation studies of
the codes or algorithms used to select
the population should be referenced. If
validation was conducted for this study
and not published elsewhere, detailed
methods and results should be provided.

RECORD 6.3: If the study involved
linkage of databases, consider use of a
flow diagram or other graphical display
to demonstrate the data linkage process,
including the number of individuals with
linked data at each stage.

Pages 4 - 5

Variables 7 Clearly define all outcomes, exposures,
predictors, potential confounders, and
effect modifiers. Give diagnostic criteria,
if applicable.

RECORD 7.1: A complete list of codes
and algorithms used to classify
exposures, outcomes, confounders, and
effect modifiers should be provided. If
these cannot be reported, an
explanation should be provided.

Page 5

Data sources/
measurement

8 For each variable of interest, give
sources of data and details of methods
of assessment (measurement).
Describe comparability of assessment
methods if there is more than one group

Page 5
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Appendix II. Continued

Location in Location in
manuscript manuscriptItem STROBE
where items

RECORD
where itemsNo. items

are reported
items

are reported

Bias 9 Describe any efforts to address potential
sources of bias

Page 6

Study size 10 Explain how the study size was arrived
at

Page 5

Quantitative
variables

11 Explain how quantitative variables were
handled in the analyses. If applicable,
describe which groupings were chosen,
and why

Page 5

Statistical methods 12 (a) Describe all statistical methods,
including those used to control for
confounding
(b) Describe any methods used to
examine subgroups and interactions
(c) Explain how missing data were
addressed
(d) Cohort study - If applicable, explain
how loss to follow-up was addressed
Case-control study - If applicable,
explain how matching of cases and
controls was addressed
Cross-sectional study - If applicable,
describe analytical methods taking
account of sampling strategy
(e) Describe any sensitivity analyses

Pages 5 - 7

Data access and
cleaning methods

.. RECORD 12.1: Authors should describe
the extent to which the investigators
had access to the database population
used to create the study population.

RECORD 12.2: Authors should provide
information on the data cleaning
methods used in the study.

Pages 4 - 5

Linkage .. RECORD 12.3: State whether the study
included person-level, institutional-level,
or other data linkage across two or more
databases. The methods of linkage and
methods of linkage quality evaluation
should be provided.

N/A

Results

Participants 13 (a) Report the numbers of individuals at
each stage of the study (e.g ., numbers
potentially eligible, examined for
eligibility, confirmed eligible, included in
the study, completing follow-up, and
analysed)
(b) Give reasons for non-participation at
each stage.
(c) Consider use of a flow diagram

RECORD 13.1: Describe in detail the
selection of the persons included in the
study (i .e., study population selection)
including filtering based on data quality,
data availability and linkage. The
selection of included persons can be
described in the text and/or by means
of the study flow diagram.

Pages 4 - 6

Descriptive data 14 (a) Give characteristics of study
participants (e.g ., demographic, clinical,
social) and information on exposures
and potential confounders
(b) Indicate the number of participants
with missing data for each variable of
interest
(c) Cohort study - summarise follow-up
time (e.g ., average and total amount)

Pages 7 - 9
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Appendix II. Continued

Location in Location in
manuscript manuscriptItem STROBE
where items

RECORD
where itemsNo. items

are reported
items

are reported

Outcome data 15 Cohort study - Report numbers of
outcome events or summary measures
over time
Case-control study - Report numbers in
each exposure category, or summary
measures of exposure
Cross-sectional study - Report numbers
of outcome events or summary measures

Page 8

fMain results 16 (a) Give unadjusted estimates and, if
applicable, confounder-adjusted
estimates and their precision (e.g., 95%
confidence interval). Make clear which
confounders were adjusted for and why
they were included
(b) Report category boundaries when
continuous variables were categorized
(c) If relevant, consider translating
estimates of relative risk into absolute
risk for a meaningful time period

Page 9 - 10

Other analyses 17 Report other analyses done—e.g.,
analyses of subgroups and interactions,
and sensitivity analyses

N/A

Discussion

Key results 18 Summarise key results with reference to
study objectives

Pages 10 - 11
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Appendix III

Figure 1: ROC Curves of models trained on original dataset (cut-off of 4)

Table 1: Performance metrics of models trained on original data using default threshold (cut-off of 4)

Model AUC Accuracy F1 Sensitivity Specificity PPV NPV

Elastic Net
Logistic
Regression

81.43% 77.30% 51.56% 70.97% 78.60% 40.49% 92.96%

SVM 79.01% 73.52% 60.62% 57.19% 82.56% 64.48% 77.70%
KNN 73.46% 72.18% 45.71% 32.88% 93.93% 75.00% 71.66%
Naïve Bayes 68.48% 66.20% 42.65% 73.84% 64.63% 29.99% 92.33%
CaRT 75.67% 82.98% 46.66% 68.82% 74.12% 35.29% 92.05%
Random Forest 79.36% 75.41% 63.50% 58.39% 85.88% 69.59% 78.85%
XGBoost 81.91% 76.08% 53.06% 73.12% 78.97% 41.63% 93.47%
Feedforward NN 79.56% 81.03% 47.02% 49.46% 87.50% 44.81% 89.41%

Table 2: Sensitivity and specificity of models trained on original data using best threshold – cut-off of 4

Model Sensitivity Specificity Threshold

Elastic Net Logistic Regression 74.55% 77.06% 0.4787
SVM 71.75% 72.51% 0.3754
KNN 65.92% 70.05% 0.2914
Naïve Bayes 61.30% 70.33% 0.0000
CaRT 64.90% 76.02%* 0.2540
Random Forest 72.26% 73.36% 0.4070
XGBoost 76.37%* 71.75% 0.3385
Feedforward NN 73.48% 74.19% 0.5534
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Figure 2: ROC Curves of models trained on original dataset (cut-off of 6)

Table 3: Performance metrics of models trained on original data using default threshold (cut-off of 6)

Model AUC Accuracy F1 Sensitivity Specificity PPV NPV

Elastic Net Logistic Regression 80.83% 84.32% 23.28% 13.98% 98.75% 69.64% 84.84%
SVM 71.49% 78.95% 39.79% 40.86% 86.76% 38.78% 87.73%
KNN 73.06% 64.92% 4.64% 2.40% 99.53% 73.68% 64.81%
Naïve Bayes 72.21% 71.63% 43.64% 64.52% 73.09% 32.97% 90.94%
CaRT 78.81% 90.85% 32.13% 32.67% 92.88% 31.61% 93.19%
Random Forest 78.86% 91.28% 11.18% 6.00% 99.87% 81.82% 91.34%
XGBoost 83.70% 91.64% 27.91% 17.20% 98.75% 73.85% 92.95%
Feedforward NN 75.04% 90.97% 11.90% 6.67% 99.46% 55.56% 91.36%

Table 4: Sensitivity and specificity of models trained on original data using best threshold – cut-off of 6

Model Sensitivity Specificity Threshold

Elastic Net Logistic Regression 73.12% 76.47% 0.0806
SVM 67.33% 72.87% 0.1277
KNN 67.33% 66.62% 0.0255
Naïve Bayes 59.33% 80.05% 0.9973
CaRT 78.85%* 71.99% 0.0568
Random Forest 70.67% 70.92% 0.2086
XGBoost 76.00% 77.77%* 0.0875
Feedforward NN 74.19% 64.34% 0.0000
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Table 5: Hyperparameters used for final models

Model Original imbalanced
data using cut-off
of 5

SMOTE balanced
data using cut-off
of 5

Original imbalanced
data using cut-off
of 4

Original imbalanced
data using cut-off
of 6

Elastic Net
Logistic
Regression

alpha = 0.5318833,
lambda =
a0.005369339

alpha = 0.1764004,
lambda =
0.002016792

alpha = 0.5600862,
lambda = 7.090597

alpha = 0.1, lambda =
0.01925033

SVM polynomial kernel,
degree = 3, scale =
0.004422882, C =
0.1504941

radial kernel, sigma =
0.02996594, C =
170.478

degree = 2, scale =
0.0005473211, C =
267.0139

linear kernel, C =
181.4091

KNN kmax = 55, distance
= 0.2262503, kernel =
triweight

kernel = rank, distance
= 1, kmax = 500

kmax = 105, distance
= 1.644928, kernel =
cos

kmax = 1043, distance
= 0.9733469, kernel =
triweight

Naïve Bayes fL = 0, usekernel =
True, adjust = 1

fL = 0.1, no kernel
usage, adjust = 0.5

fL = 0, usekernel= T,
adjust = 1

fL = 0, usekernel = F,
adjust = 1

CaRT cp = 0.0002762431 cp = 0.009829198 cp = 0.00201909 cp = 0
Random
Forest

mtry = 11, splitrule =
gini, min.node.size = 9

mtry= 3, splitrule =
gini, min.node.size = 2

mtry = 11, splitrule =
gini, min.node.size = 9

mtry = 12

XGBoost nrounds = 971,
max_adepth = 2, eta
= 0.2322766, gamma
= 5.086296,
colsample_bytree =
0.5705734,
min_child_weight =
18, subsample =
0.9047023

nrounds = 365,
max_depth = 2, eta
= 0.2394084, gamma
= 9.56787,
colsample_bytree =
0.3579414,
min_child_weight =
5, subsample =
0.6451248

nrounds = 707,
max_depth = 6, eta
= 0.06909712, gamma
= 6.766357,
colsample_bytree =
0.3710754,
min_child_wight = 1,
subsample =
0.7310282

nrounds = 714,
max_depth = 7,
eta = 0.06228869,
gamma = 7.277172,
colsample_bytree =
0.3480463,
min_child_weight =
15, subsample =
0.5177022

Feedforward
NN

epochs = 500, hidden
= c(100, 100, 100,
100, 100), activation =
’MaxoutWithDropOut’,
dropout = 50%, loss
=CrossEntropy

epochs = 500, hidden
= c(100, 100, 100,
100, 100), activation =
’MaxoutWithDropOut’,
dropout = 50%, loss
=CrossEntropy

epochs = 500, hidden
= c(100, 100, 100,
100, 100), activation =
’MaxoutWithDropOut’,
dropout = 50%, loss
=CrossEntropy

epochs = 500, hidden
= c(100, 100, 100,
100, 100), activation =
’MaxoutWithDropOut’,
dropout = 50%, loss
=CrossEntropy
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