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Abstract

The isoquinolinamine FX-9 is a novel potential chemotherapeutic agent showing antiproli-

ferative effects against hematologic and prostate cancer cell lines such as B- and T-acute

lymphoblastic leukemia and prostate cancer (PC) of different species. Interestingly, FX-9

shows no hemolytic activity and low toxicity in benign adherent cells. The detailed FX-9

molecular mode of action is currently not fully understood. But application on neoplastic cells

induces pro-apoptotic and antimitotic effects. Canine prostate cancer (cPC) represents a

unique spontaneous occurring animal model for human androgen-independent PC. Human

androgen-independent PC as well as cPC are currently not satisfactorily treatable with che-

motherapeutic protocols. Accordingly, the evaluation of novel agent combinations bears sig-

nificant potential for identifying novel treatment strategies. In this study, we combined FX-9

with the currently approved therapeutic agents doxorubicin, carboplatin, the demethylating

substance azacitidine as well as further potentially antitumorigenic agents such as dichloroa-

cetic acid (DCA) in order to evaluate the respective synergistic potential. The combinations

with 1–5 μM FX-9 were evaluated regarding the effect after 72 hours on cell viability, cell

count and apoptotic/necrotic cells in two human prostate cancer cell lines (LNCaP, PC-3)

and a canine prostate cancer cell line (Adcarc1258) representing androgen-dependent and

-independent PC/cPC forms. FX-9 in combination with azacitidine decreases cell viability

and increases cell death with positive Bliss values. Furthermore, this decreases the cell

count with neutral Bliss values on PC-3. Carboplatin in combination with FX-9 reduces cell

viability with a neutral Bliss value and increases cell death on LNCaP with calculated positive

Bliss values. DCA or doxorubicin in combination with FX-9 do not show synergistic or addi-

tive effects on the cell viability. Based on these results, azacitidine or carboplatin in combina-

tion with FX-9 offers synergistic/additive efficacy against prostate adenocarcinoma cell lines

in vitro. The beneficial effects of both combinations are worth further investigation.
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Introduction

FX-9 (3-(p-Tolyl)isoquinolin-1-amine) is a synthesized amino-substituted isoquinoline [1].

Agents of this substance family are antimalarial [2], antifungal [3] and active against different

tumors [4–6]. In previous studies, we were able to demonstrate that FX-9 shows an antiproli-

ferative effect on lymphoblastic leukemia cells, inducing morphological changes and apoptosis.

Interestingly, cytotoxicity and hemolytic activity against non-neoplastic blood cells were not

observed [7]. Furthermore, we reported a pro-apoptotic and anti-mitotic effect of FX-9 on

prostate cancer cells of both human and canine origin, with decreased cytotoxic activity in

non-malignant chondrocytes and fibroblasts [8].

Therapeutic approaches using compound combinations have been effectively introduced in

several treatment protocols in order to increase therapeutic efficacy. Accordingly, combined

applications allow resistance mechanisms to be addressed and the enhancement of drug sensi-

tivity against individual agents [9]. Moreover, the agents may act synergistically or additively,

allowing lower therapeutic concentrations of the combined agents to be administered, poten-

tially reducing side effects [10]. In this study, FX-9 was combined with four agents with differ-

ent acting mechanisms. Three of these chemotherapeutic agents were approved by the U.S.

Food and Drug Administration (FDA) for the treatment of human cancers: Azacitidine [11],

doxorubicin [12] and carboplatin [13]. Azacitidine is used as a DNA-hypomethylating agent

in first-line treatment for higher-risk myelodysplastic syndrome (MDS) in humans [14]. A

preclinical phase I trial in dogs with urothelial cancer and in vitro studies on canine mammary

cancer cell lines showed therapeutic potential of this agent [15, 16]. The anthracycline doxoru-

bicin employs many mechanisms of action, of which the basic described mechanism for cell

killing is the intercalation into DNA [17]. Therapy with doxorubicin is used for solid tumors

and hematological malignancies in both species [18, 19]. Carboplatin, a platinum-based drug,

binds to DNA, thereby inhibiting replication and transcription and inducing cell death [20]. It

is used in the treatment of solid tumors, for example in humans with ovarian cancer [21] and

in dogs with osteosarcomas [22]. Dichloroacetic acid (DCA) inhibits the pyruvate dehydroge-

nase kinase and has an antiproliferative effect on canine prostate cancer cells [23]. In humans,

DCA is not yet in clinical use, but there is a growing body of literature supporting the efficacy

of DCA against cancer [24]. Currently, it is not approved by the FDA and not used in the treat-

ment of prostate cancer.

Prostate cancer occurs spontaneously in humans and dogs. A total of 10–20% of human

patients develop castration-resistant prostate cancer (CRPC) within five years of diagnosis,

and over 84% of CRPC patients have bone metastases [25]. CRPC is currently not treatable,

except by surgery or radiation therapy. Taxanes are currently recommended as first option for

symptomatic patients with metastatic CRPC [26]. Progression to taxane-resistant prostate can-

cer, however, occurs in 29% of patients while still receiving docetaxel and in 45% of patients in

the first three months after last docetaxel treatment [27]. Dogs showed severe hypersensitivity

reactions when treated with the taxane formulations containing the excipient cremophor [28].

Alternative formulations (for example Paccal Vet1) were developed to lower hypersensitivity

reactions but also side effects such as leucopenia and neutropenia [29]. Paccal Vet1 was with-

drawn by the pharmaceutical company [30, 31] due to the benefit-risk balance. Combination

of FX-9 with taxanes was not performed in the present study as subsequent in vivo research in

dogs is currently unlikely due to known side effects of taxanes. The diagnosis in most dogs is a

very aggressive late stage metastatic cancer, leading to short-term mortality. CRPC in men and

the disease in male dogs are comparable, as they share many similarities, e.g., the embryonic

development, the homologous growth, the microscopic anatomy, the occurrence of bone

metastases and androgen independency [32]. Therefore, dogs have become a model organism
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for studying CRPC in humans, and both species could benefit from improved treatment

options [32]. In the present study, the well characterized androgen-dependent (LNCaP) and

androgen-independent (PC-3) human cell lines, as well as the androgen-independent canine

cell line Adcarc1258 were chosen, these being the most common types of prostate cancer in

both species.

The aim of the study was to investigate in vitro on two human prostate carcinoma cell lines

and one canine prostate carcinoma cell line at which FX-9 dosage a combination with azaciti-

dine, DCA, doxorubicin or carboplatin could provide synergistic or additive effects.

Materials and methods

Test agents

FX-9 (Leibniz Institute for Catalyses, University of Rostock, Germany) 10 mM stock solution

was dissolved in dimethylsulfoxide (DMSO; Merck KGaA, Darmstadt, Germany).

Azacitidine (Absource Diagnostic GmbH, Munich, Germany) 10 mM stock solution was

dissolved in DMSO (Merck KGaA).

Dichloroacetic acid (DCA; Merck KGaA, Darmstadt, Germany) was used in� 99% purity

and a lot-specific concentration of 1.547 g/mL. A 1 M stock solution was prepared and stored

at -4˚C for up to four weeks. For the working solution, the DCA stock solution was dissolved

in distilled water and adjusted to pH 7 with a sodium hydroxide solution. The final solution

was filtered through a 0.22 μm filter.

Doxorubicin (Doxo-Cell 2 mg/mL, STADAPHARM GmbH, Bad Vilbel, Germany) 100 μM

stock solution and carboplatin (Carbo-CELL 10 mg/mL, STADAPHARM GmbH) 10 mM

stock solution were prepared with culture medium (medium 199 (Gibco™, Thermo Fisher Sci-

entific GmbH, Darmstadt, Germany), 10% FBS superior (Biochrom GmbH, Berlin, Germany),

2% penicillin-streptomycin (Biochrom GmbH)) and divided into aliquots.

All test agents were stored at -20˚C and different concentrations were prepared directly

before each experiment. The FX-9 concentrations 1 μM, 2 μM, 3 μM, 4 μM, 5 μM were in

accordance with our preliminary study [8]. The concentrations of the combination partners

were chosen to reduce cell viability by approximately 50% (IC50) to show possible effects of

the combination with FX-9. In case the respective IC50 exceeded the maximum achievable or

tolerable in vivo plasma concentration, the respective maximum concentration was used.

Dihydrotestosterone (DHT; Absource Diagnostic GmbH) was prepared in a 1 mM stock

solution by dissolving 5 mg solid DHT in 17.21 mL ethanol absolute (EtOH).

Cell lines and culture

TiHoDProAdcarc1258 (Adcarc1258) is a canine cell line, derived from a prostate adenocarci-

noma of a ten-year-old male Briard [33, 34]. LNCaP is an androgen-sensitive human cell line

of a prostate carcinoma metastasis. The cells originate from the left supraclavicular lymph

node of a 50-year-old Caucasian man [35]. PC-3 is an androgen-insensitive human cell line

derived from bone metastasis from a prostate carcinoma of a 62-year-old man [36]. The cell

lines were cultivated in 25 cm2 cell culture flasks in medium 199 (Gibco™) with 10% FBS supe-

rior (Biochrom GmbH) and 2% penicillin-streptomycin (Biochrom GmbH). The cell cultures

were cultivated at 37˚C and 5% CO2 in a humidified atmosphere.

Cell viability

Metabolic activity was measured using the CellTiter 961 AQueous One Solution Cell Prolifer-

ation Assay (Promega GmbH, Walldorf, Germany). Cells were seeded in 96 well plates at a
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density of 7,500 cells per well and allowed to adhere overnight. Cells were exposed to 1 μM,

2 μM, 3 μM, 4 μM and 5 μM FX-9 single application and in combination with 3 μM azaciti-

dine, 3 mM DCA, as well as cell line specific dosages of 75 nM (Adcarc1258)/100 nM doxoru-

bicin (PC-3 and LNCaP) or 20 μM (Adcarc1258)/60 μM (PC-3)/80 μM (LNCaP) carboplatin.

Single applications of Azacitidine, DCA, doxorubicin and carboplatin were tested at the con-

centrations outlined above. After 72 hours, 100 μL of MTS (3-(4,5-dimethylthiazol-2-yl)-5-

(3-carboxymethoxyphenyl)-2-(4-sulfophenyl)-2H-tetrazolium, inner salt) dissolved in culture

medium were added to each well. After two hours of incubation, the absorbance at 490 nm

was measured with the Multi-Mode Reader Synergy 2 (BioTek Instruments GmbH, Bad Frie-

drichshall, Germany). The amount of formazan produced by the cells by reducing MTS is pro-

portional to the viability of the cells. The mean value of four wells was used per concentration

and per experiment. The experiment was performed in triplicates.

Bliss independence model

Synergistic effects of drug combinations were calculated using the Bliss independence model.

This mathematical method is used to compare the predicted effect (EP) with the observed effect

(EO). EP is calculated according to the formula: EP = Ea + Eb—EaEb. Ea and Eb represent the

effects of the single application of the agents. The difference between the predicted and

observed effect is the Bliss value, which determines the degree of synergy. Bliss values greater

than zero indicate a synergistic effect, equal to zero an additive effect and less than zero an

antagonistic effect [37]. Synergistic or additive effects were confirmed by a significant higher

efficacy of the combined agents compared to the single application of FX-9 and of azacitidine,

DCA, doxorubicin or carboplatin.

Cell count

The three cell lines were seeded in 6-well plates at a density of 100,000 cells per well in culture

medium and allowed to adhere overnight. The cells were exposed to 1 μM, 2 μM and 3 μM

FX-9 single application and in combination with 3 μM azacitidine or 20 μM (Adcarc1258)/

80 μM (LNCaP) carboplatin. Single applications of azacitidine and carboplatin were tested in

aforementioned concentrations. The cells were incubated at 37˚C and 5% CO2 in a humidified

atmosphere. After 72 hours, the cells were harvested with TrypLE™ Express Enzyme (Gibco™,

Thermo Fisher Scientific GmbH) and counted with an automatic cell counter (Cellometer™
Auto T4, Nexcelom Bioscience LLC, Lawrence, MA, USA). The mean value of three wells was

used per concentration and per experiment. The experiment was performed in biological

triplicate.

Analysis of apoptosis

The apoptosis rate was analyzed by flow cytometry in all three cell lines after 72 hours of com-

pound exposure. Adherent cells and culture medium were collected to analyze the non-

attached cells as well. Samples were pelleted and resuspended in 250 μL binding buffer

(Annexin V-FITC Detection Kit plus, PromoCell GmbH, Heidelberg, Germany) before being

filtered through a 70 μm filter. Subsequently, 2.5 μL Annexin V-FITC (PromoCell GmbH) and

0.5 μL TO-PRO-3 iodide (Thermo Fisher Scientific Inc., Waltham, MA, USA) were pipetted

onto each sample. MACSQuant1 Analyzer 10 (Miltenyi Biotec B.V. & Co. KG, Bergisch Glad-

bach, Germany) was used for the flow cytometric measurements. Data analysis was performed

with the software FlowJo 7.6.5 (FlowJo, LLC, Ashland, OR, USA). The mean value of three

wells was used per concentration and per experiment. The experiment was performed in bio-

logical triplicate.
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Androgen sensitivity

The cell lines Adcarc1258, PC-3 and LNCaP were seeded in 6-well plates at different seeding

densities (25,000 cells (Adcarc1258)/15,000 cells (PC-3)/100,000 cells (LNCaP) per well) due

to different growth behavior and exclusion of growth inhibition by cell contacts. Cells adhered

over night and were exposed to 10 nM DHT [35] or with an equivalent volume of EtOH in cul-

ture medium over a 120-hours period in a humidified atmosphere with 37˚C and 5% CO2.

After incubation, the cells were harvested by TrypLE™ Express Enzyme (Gibco™, ThermoFisher

Scientific GmbH) and counted with an automatic cell counter (Cellometer™ Auto T4, Nexce-

lom Bioscience LLC). The mean value of three wells per concentration and per experiment

was used. The experiment was performed in biological quadruplicate.

Statistics

Statistical analysis was performed with SAS Enterprise Guide 7.1 (SAS Institute Inc., Cary, NC,

USA). The values of the measurements were tested for normal distribution. The student’s t-

test was used for LNCaP and Adcarc1258, and the Wilcoxon test for PC-3 to calculate p-values

in the androgen sensitivity experiment. Dunnett’s t-test was used to calculate p-values in the

remaining experiments. p< 0.05 was considered statistically significant.

Results

Combination of FX-9 with azacitidine or carboplatin provides higher

efficacy in cell viability

A dose-dependent decrease in viability was observed in all cell lines by FX-9 single application

starting at 1 μM/2 μM (LNCaP, Adcarc1258) and 4 μM (PC-3). The combinations with azaciti-

dine, DCA, doxorubicin and carboplatin resulted in a dose-dependent and cell line-specific

significant decrease in cell viability compared to the single application of the two combined

agents (Fig 1).

In detail, the combination of all tested FX-9 concentrations with azacitidine decreased cell

viability significant to the respective DMSO-controls in PC-3, LNCaP and Adcarc1258 (S1

Table). Compared to the single applications of FX-9, 1–3 μM (PC-3)/1-2 μM (LNCaP)/1 μM

(Adcarc1258) FX-9 with azacitidine resulted in a reduction in cell viability. A reduction in cell

viability was shown in all three cell lines starting 2 μM FX-9 compared to azacitidine single

application.

All tested FX-9 concentrations with DCA reduced cell viability in LNCaP and Adcarc1258

compared to the DMSO control, whereas in PC-3, the reduction started at 3 μM FX-9. The

combination with DCA decreased the cell viability significantly only with 2 μM FX-9 com-

pared to FX-9 single application in PC-3. FX-9 combinations 3–5 μM (PC-3)/2-5 μM

(LNCaP)/1-5 μM (Adcarc1258) with DCA resulted in a reduction in cell viability compared to

the single application of DCA.

The combination of all tested FX-9 concentrations with doxorubicin decreased the cell via-

bility to the respective DMSO-controls in PC-3, LNCaP and Adcarc1258 significantly. Doxoru-

bicin with 1–2 μM (PC-3, LNCaP)/1 μM (Adcarc1258) FX-9 caused a lower cell viability than

FX-9 single applications. FX-9 combinations starting at 4 μM (PC-3) or 3 μM (LNCaP,

Adcarc1258) resulted in reduced cell viabilities compared to a single application of doxorubicin.

The combination of all tested FX-9 concentrations with carboplatin decreased cell viability

significant to the respective DMSO-controls in PC-3, LNCaP and Adcarc1258. Carboplatin

with 1–4 μM (PC-3)/1-3 μM (LNCaP)/1 μM (Adcarc1258) FX-9 decreased cell viability com-

pared to single application of FX-9. In comparison with the single application of carboplatin,
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no combination with FX-9 in PC-3 and combination with 2–5 μM FX-9 in LNCaP and

Adcarc1258 caused a reduction in cell viability.

Synergistic interactions for FX-9 with azacitidine, additive effects of FX-9

and carboplatin

Bliss values for the combination of FX-9 with azacitidine gave positive values for 1 μM FX-9

on Adcarc1258 and 2 μM, 3 μM, 4 μM FX-9 on PC-3 (Table 1). For 1 μM and 5 μM FX-9

Fig 1. Cell viability of PC-3, LNCaP and Adcarc1258 after single application of FX-9, azacitidine, DCA, doxorubicin or carboplatin and

the combinations. The results are expressed as a percentage of DMSO-controls and are plotted as mean ± standard deviation (SD) of three

independent experiments. Significance of an effect compared to the single application of FX-9, azacitidine, DCA, doxorubicin, carboplatin or

control was calculated by the Dunnett’s t-test. �:p<0.05, ��:p<0.01, ���:p<0.001, black �: Significant difference between combination and FX-9

single application, colored �: Significant difference between combination and azacitidine, DCA, doxorubicin or carboplatin single application; x:

p<0.01, X:p<0.001, black X: significant difference between single application of FX-9 and DMSO-control, colored X: Significant difference

between single application of azacitidine, DCA, doxorubicin or carboplatin and DMSO-control.

https://doi.org/10.1371/journal.pone.0256468.g001
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combined with azacitidine on PC-3, neutral Bliss values were calculated. Bliss values for the

combination of 2–5 μM FX-9 with DCA were positive on PC-3. The combination of 2 μm FX-

9 (LNCaP) or 1 μM FX-9 (Adcarc1258) with DCA also resulted in positive Bliss values. Neutral

Bliss values were calculated for the combination of 1 μM FX-9 (PC-3), 3–4 μM FX-9 (LNCaP),

2 μM and 5 μM FX-9 (Adcarc1258) with DCA. The combination of 1 μM or 2 μM FX-9 with

doxorubicin resulted in neutral Bliss values in LNCaP. The combination of 1 μM FX-9 with

carboplatin gave a positive Bliss value. Neutral Bliss values were calculated for the combina-

tions of 1–3 μM (PC-3)/2 μM (LNCaP)/1 μM (Adcarc1258) FX-9 with carboplatin. The Bliss

values of the combinations of FX-9 with the different substances, which were not previously

mentioned in detail, were negative.

Table 1. Bliss evaluation of the results of cell viability of FX-9 combination with azacitidine, DCA, doxorubicin or carboplatin in PC-3, LNCaP and Adcarc1258.

3 μM azacitidine + PC-3 LNCaP Adcarc1258
A B Bliss value A B Bliss value A B Bliss value

1 μM FX-9 ��� - 0 �� - -0.1 ��� - 0.1

2 μM FX-9 ��� � 0.1 � � -0.1 - ��� -0.1

3 μM FX-9 � ��� 0.1 - ��� -0.1 - ��� -0.1

4 μM FX-9 - ��� 0.1 - ��� -0.1 - ��� -0.1

5 μM FX-9 - ��� 0 - ��� -0.1 - ��� -0.1

3 mM DCA + PC-3 LNCaP Adcarc1258

A B Bliss value A B Bliss value A B Bliss value

1 μM FX-9 - - 0 - - -0.1 - ��� 0.3

2 μM FX-9 � - 0.1 - ��� 0.1 - ��� 0

3 μM FX-9 - �� 0.2 - ��� 0 - ��� -0.1

4 μM FX-9 - ��� 0.2 - ��� 0 - ��� -0.1

5 μM FX-9 - ��� 0.1 - ��� 0 - ��� 0

100/75 nM doxorubicin + PC-3 LNCaP Adcarc1258

A B Bliss value A B Bliss value A B Bliss value

1 μM FX-9 � - -0.1 ��� - 0 �� - -0.1

2 μM FX-9 �� - -0.1 �� - 0 - - -0.1

3 μM FX-9 - - -0.1 - �� -0.1 - �� -0.1

4 μM FX-9 - � -0.2 - �� -0.2 - �� -0.1

5 μM FX-9 - �� -0.2 - �� -0.2 - �� -0.1

60/80/20 μM carboplatin + PC-3 LNCaP Adcarc1258

A B Bliss value A B Bliss value A B Bliss value

1 μM FX-9 �� - 0 ��� - 0.1 �� - 0

2 μM FX-9 ��� - 0 �� � 0 - ��� -0.1

3 μM FX-9 �� - 0 � ��� -0.1 - ��� -0.1

4 μM FX-9 � - -0.1 - ��� -0.1 - ��� -0.1

5 μM FX-9 - - -0.1 - ��� -0.1 - ��� -0.1

A: higher efficacy compared to the single application of FX-9, B: higher efficacy to the single application of azacitidine, DCA, doxorubicin or carboplatin. Bliss values >0

represent a synergistic effect, Bliss values = 0 represent an additive effect and Bliss values <0 represent an antagonistic effect. Synergism or additivity requires a higher

efficacy compared to the combined two agents single application and a positive or neutral Bliss value. Significance of an effect compared to the single application of FX-

9, azacitidine, DCA, doxorubicin or carboplatin was calculated by the Dunnett’s t-test.

�:p<0.05,

��:p<0.01,

���:p<0.001,

-:no significance.

https://doi.org/10.1371/journal.pone.0256468.t001
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FX-9 with azacitidine decreases cell count in PC-3

The concentrations of FX-9 with azacitidine or carboplatin that significantly decreased cell via-

bility with positive or neutral Bliss values in the human cell lines (PC-3, LNCaP) were further

tested using cell count. As an interspecific comparison, the canine cell line Adcarc1258 was

also tested. A dose-dependent reduction in cell count after single application of FX-9 was

observed starting at 1 μM FX-9 in Adcarc1258, and at 2 μM FX-9 in PC-3 and LNCaP (Fig 2).

The combination with azacitidine or carboplatin decreased the cell count significantly com-

pared to the DMSO-control in all tested concentrations and cell lines (S2 Table). Compared to

the single application of FX-9, the combination of azacitidine with 1 μM FX-9 reduced the cell

count in Adcarc1258 (p<0.001) and PC-3 (p<0.01). The combination with 2 μM FX-9

reduced the cell count to 30.4% in PC-3 (p<0.05) from 63% after single application of FX-9.

The combination with 2 μM or 3 μM FX-9 resulted in a lower cell count in both tested cell

lines compared to the single application of azacitidine. The cell count was reduced by combin-

ing carboplatin and FX-9 in all tested combinations on Adcarc1258 and LNCaP compared to

the single application of FX-9. Carboplatin in combination with 2 μM and 3 μM FX-9 reduced

the cell count compared to the single application of carboplatin on Adcarc1258 (p<0.001). For

LNCaP, no combination was able to reduce the cell count compared to the 18.8% cell count of

single application of carboplatin. Azacitidine and FX-9 in combination resulted in the majority

of the tested concentrations in negative Bliss values (S3 Table). Exceptions were the neutral

Fig 2. Cell count of PC-3, Adcarc1258 and LNCaP after application of FX-9, A: Azacitidine and B: Carboplatin and both agents in combination.

The results are expressed as a percentage of DMSO-controls and are plotted as mean ± standard deviation (SD) of three independent experiments. The

significance of an effect compared to the single application of FX-9, azacitidine, carboplatin or DMSO-control calculated by Dunnett’s t-test: �:p<0.05,
��:p<0.01, ���:p<0.001, x:p<0.01, X:p<0.001.

https://doi.org/10.1371/journal.pone.0256468.g002
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values caused by 1 μM FX-9 (Adcarc1258) and 2 μM FX-9 (PC-3) in combination with 3 μM

azacitidine. Carboplatin combined with 1 μM FX-9 resulted in neutral Bliss values on both

tested cell lines. The combination with 2 μM FX-9 caused a negative value in Adcarc1258 and

a neutral value in LNCaP. Negative Bliss values were calculated for the 3 μM FX-9 combination

with carboplatin on both cell lines.

FX-9 induces apoptosis with azacitidine on PC-3 and carboplatin on

LNCaP

The concentrations of FX-9 with azacitidine or carboplatin that significantly decreased cell via-

bility with positive or neutral Bliss values in the human cell lines (PC-3, LNCaP) were further

tested using flow cytometry with annexin and TO-PRO-3 iodide staining. As an interspecific

comparison, the canine cell line Adcarc1258 was also tested. FX-9 in combination with azaciti-

dine or carboplatin decreased the fraction of vital cells, and increased the fraction of apoptotic

cells in all tested cell lines and concentrations significantly compared to the DMSO-control

(S4 Table). The fraction of necrotic cells was significant increased except for the combinations

1 μM/2 μM FX-9 with azacitidine in PC-3, and the combinations 2 μM/3 μM FX-9 with carbo-

platin in Adcarc1258. In the cell line PC-3, the combination of 2 μM FX-9 with azacitidine

caused a reduction to 63.0% vital cells compared to the effect of single applications of FX-9

(75.6%) and azacitidine (79.7%) (Fig 3). The calculated Bliss value was neutral (S5 Table). The

fraction of apoptotic cells was increased to 24.5% (1 μM FX-9) or 36.1% (2 μM FX-9) by the

combination with azacitidine (p:<0.05) with a positive Bliss value. In Adcarc1258, the combi-

nation of 2 μM FX-9 with azacitidine reduced the fraction of vital cells compared to the single

applications of both agents (p:<0.05), with a calculated neutral Bliss value. The fraction of

necrotic cells was increased to 6.6% by combining 2 μM FX-9 with azacitidine compared to

4.0% with a single application of FX-9 and 3.7% with a single application of azacitidine. The

combination 3 μM FX-9 with azacitidine also increased the necrotic cells compared to the sin-

gle applications of FX-9 and azacitidine. A neutral Bliss value was calculated for the effect of

this concentration (S2 Table). In LNCaP, all concentrations of FX-9 in combination with car-

boplatin resulted in a reduction in the proportion of viable cells, and an increase in the propor-

tion of apoptotic cells by about 30 percentage points compared to the single application of FX-

9 (p:<0.05). This decrease in vital cells and increase in apoptotic cells were also significant

compared to the effect on the cell fractions of an azacitidine single application. Bliss values in

all tested FX-9 concentrations with carboplatin were positive for both vital and apoptotic cells

on LNCaP. For Adcarc1258, no combination produced a beneficial effect for either single

application.

Adcarc1258 is an androgen-independent cell line

In the human cell line PC-3 and the canine cell line Adcarc1258 there was no significant differ-

ence in cell growth between the control and presence of DHT (Fig 4). With LNCaP, however,

the cell count in the presence of DHT was twice as high as in the control.

Discussion

The aim of this study was to evaluate at which FX-9 dosage a combination with azacitidine,

DCA, doxorubicin or carboplatin could provide synergistic or additive effects on human and

canine prostate cancer cell lines. Azacitidine, DCA, doxorubicin or carboplatin were tested in

concentrations achievable in plasma [38–41] and showed antiproliferative effects in combina-

tion with FX-9 on PC and cPC cell lines. Similar to previous results [8], FX-9 solely leads to a

dose-dependent reduction in cell viability and cell count in all cell lines. In comparison to this,
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two of the four tested agents, azacitidine and carboplatin, led to additive or synergistic effects

on cell viability in different ways. However, the other two tested agents, DCA and doxorubicin,

showed no synergism or additivity. Combination protocols of FX-9 with taxanes were not per-

formed in the present study despite their relevance in human medicine as therapeutic use of

taxanes induced severe side effects in dogs [28, 29]. In human medicine, a combination of FX-

9 with taxanes remains an interesting option to be further evaluated in additional studies.

Azacitidine is an FDA-approved [11] cytidine analog, and its antineoplastic effects are

caused, for example, by hypomethylation of DNA [42] and induction of DNA damage [43].

Azacitidine showed positive effects in a combination therapy, e.g. on platinum-resistant ovar-

ian cancer cells [44] and against myelodysplastic syndrome [45]. In the present study, the com-

bination of azacitidine with the anti-mitotic agent FX-9 showed similar synergistic effects on

cell viability on the cell line PC-3. Cell count analysis showed only an additive effect of this

combination on cell count on PC-3. Again, synergism for FX-9 with azacitidine on PC-3 was

confirmed by analysis of apoptosis. In summary, this combination showed a synergistic effect

on apoptosis and an additive effect on vital cells after exposure to 2 μM FX-9. In contrast to

Fig 3. Analysis of apoptosis. A: PC-3 after application of FX-9 and azacitidine, B: Adcarc1258 after application of FX-9 and azacitidine,

C: LNCaP after application of FX-9 and carboplatin and D: Adcarc1258 after application of FX-9 and carboplatin. The analysis was

carried out via flow cytometry with an annexin and TO-PRO-3 iodide staining. Fractions of necrotic, apoptotic and vital cells served as a

percentage of the total amount of cells. The results are plotted as mean ± standard deviation (SD) of three independent experiments.

Significance of an effect compared to the single application of FX-9, azacitidine or carboplatin was calculated by the Dunnett’s t-test.

Color coding: White: No significant difference to both single applications; yellow: p<0.05 compared to FX-9 single application; blue:

p<0.05 compared to azacitidine or carboplatin single application; green: p<0.05 compared to both single applications.

https://doi.org/10.1371/journal.pone.0256468.g003
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this, no synergistic or additive effect was demonstrated on cell viability or cell count in the

androgen-independent canine prostate cancer cell line Adcarc1258. However, there was a syn-

ergistic effect on increasing the fraction of necrotic cells, and an additive effect on decreasing

the fraction of vital cells.

Carboplatin, which was approved by the FDA in 1989 [13], is used to treat many types of

cancer [46]. It induces cell death by efficiently binding to DNA and inhibiting replication and

transcription [20]. In our study, 80 μM carboplatin in combination with the anti-mitotic drug

FX-9 showed an additive effect on cell viability on the cell line LNCaP. However, the cell count

was not reduced compared to the single application of carboplatin. On the other hand, the

fraction of apoptotic cells increased and vital cells decreased, both with a synergistic effect by

exposure to all tested combinations of FX-9 with carboplatin on LNCaP cells. The beneficial

effect of the combination of an antimitotic agent and carboplatin is used, for example, in the

treatment of patients with advanced non-small cell lung cancer [47]. In contrast to this

improved efficacy, the combination with carboplatin did not synergistically or additively

increase the efficacy of FX-9 on the cPC cell line, either in cell viability and cell number or in

the analysis of apoptosis.

When comparing the cell viability and cell counting methods, differences are evident. Look-

ing at the results of the cell count assay, the compounds appear to be significantly more effec-

tive at many concentrations than the cell viability results suggest. This effect was distinct in

PC-3, as the combination of FX-9 with azacitidine showed 20–50 percentage points higher effi-

cacy in the cell number compared to cell viability. This phenomenon is well known for the

response of cancer cells to DNA synthesis-targeting agents [48]. Responsible for this was a

dose-dependent change in the cell phenotype, which was an enlargement in individual cells

and consequently mitochondrial content. These cells exhibited a higher MTS-reducing activity

per cell, which led to a calculated higher cell viability, although the cell number decreased [48].

Fig 4. Androgen sensitivity. Cell count of the cell lines PC-3, Adcarc1258 and LNCaP after exposure to DHT for 120 hours. The results are

expressed as percentage of EtOH-controls and are plotted as mean ± standard deviation (SD) of three independent experiments. Significance of

an effect compared to the EtOH-control was calculated by the students t-test: �:p<0.05.

https://doi.org/10.1371/journal.pone.0256468.g004
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FX-9 causes morphological changes, such as enlargement and polyploidy of cells [8]. This

could be responsible for the different assessment efficacy in the MTS assay.

The measured synergism was selective regarding concentration and cell line. Synergistic or

additive effects occurred dose-dependent at low concentrations of FX-9. It is possible that FX-

9 exhibits a dose-dependent mechanism of action, leading to synergism or additivity with aza-

citidine or carboplatin at low concentrations. There is evidence that antimitotic agents cause

drug- and concentration-dependent variation in cell response [49]. Paclitaxel, for example,

causes multipolar divisions at lower concentrations and cell killing by a robust mitotic arrest at

higher concentrations [50]. The selectivity regarding cell lines, despite the human origin of

LNCaP and PC-3, may be due to the differences in expression of the androgen receptor and

p53. LNCaP expresses the androgen receptor and the wild-type functional p53, while PC-3

does not express either [51–53]. Additionally, the cell lines express a pattern of unique genes,

which represents the aggressive phenotype in PC-3, in contrast to many prostate cell-specific

characteristics in LNCaP [54]. The interspecific differences in synergism and additivity of the

tested combinations, could be caused by the higher efficiency of FX-9 starting from 2 μM on

the canine cell line.

Prostate cancer in humans is usually dependent on androgen and is treated by hormone

deprivation therapy. CRPC develops from this disease despite therapy [25]. The two human

cell lines, LNCaP and PC-3, are well described and represent human androgen-dependent

(LNCaP) and androgen-independent (PC-3) prostate cancer in this study [35, 36]. The canine

cell line, Adcarc1258, has been characterised [33, 34], but not previously tested for androgen

sensitivity. In the present study, androgen independency was detected. Therefore, this cell line

is appropriate and representative for canine prostate carcinomas, as the majority of these are

androgen-independent and do not respond to hormonal therapy [32].

In conclusion, FX-9 provides a dose-dependent selective synergistic potential with azaciti-

dine and carboplatin. The cause of this selective potential should be further investigated

regarding possible dose-dependent mechanisms of action. The variance between cell lines

after exposure to FX-9 supports the tumour-specific use of chemotherapeutic agents for opti-

mal treatment of prostate cancer [55]. Further studies on tolerability, pharmacokinetics and

possible routes of drug administration are needed.

Supporting information

S1 Fig. Representative dot blots of flow cytometry data. PC-3 was stained with Annexin

V-FITC and TO-PRO-3 iodide after exposure to FX-9 and azacitidine. Cells in area Q4 were

counted as vital, cells in Q3 as apoptotic, and cells in Q1 and Q2 as necrotic.

(TIF)

S2 Fig. Representative dot blots of flow cytometry data. Adcarc1258 was stained with

Annexin V-FITC and TO-PRO-3 iodide after exposure to FX-9 and azacitidine. Cells in area

Q4 were counted as vital, cells in Q3 as apoptotic, and cells in Q1 and Q2 as necrotic.

(TIF)

S3 Fig. Representative dot blots of flow cytometry data. LNCaP was stained with Annexin

V-FITC and TO-PRO-3 iodide after exposure to FX-9 and carboplatin. Cells in area Q4 were

counted as vital, cells in Q3 as apoptotic, and cells in Q1 and Q2 as necrotic.

(TIF)

S4 Fig. Representative dot blots of flow cytometry data. Adcarc1258 was stained with

Annexin V-FITC and TO-PRO-3 iodide after exposure to FX-9 and carboplatin. Cells in area
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Q4 were counted as vital, cells in Q3 as apoptotic, and cells in Q1 and Q2 as necrotic.

(TIF)
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