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Contrasting theories of schizophrenia propose that the disorder is characterized by a deficit
in phasic changes in dopamine activity in response to ongoing events or, alternatively, by
a weakness in the representation of the value of responses. Schizophrenia patients have
reliably reduced brain activity following incorrect responses but other research suggests
that they may have intact feedback-related potentials, indicating that the impairment may
be specifically response-related. We used event-related brain potentials and computational
modeling to examine this issue by comparing the neural response to outcomes with the
neural response to behaviors that predict outcomes in patients with schizophrenia and psy-
chiatrically healthy comparison subjects.We recorded feedback-related activity in a passive
gambling task and a time estimation task and error-related activity in a flanker task. Patients’
brain activity following an erroneous response was reduced compared to comparison sub-
jects but feedback-related activity did not differ between groups.To test hypotheses about
the possible causes of this pattern of results, we used computational modeling of the elec-
trophysiological data to simulate the effects of an overall reduction in patients’ sensitivity
to feedback, selective insensitivity to positive or negative feedback, reduced learning rate,
and a decreased representation of the value of the response given the stimulus on each
trial.The results of the computational modeling suggest that schizophrenia patients exhibit
weakened representation of response values, possibly due to failure of the basal ganglia
to strongly associate stimuli with appropriate response alternatives.
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INTRODUCTION
For more than 30 years, pharmacological, neurophysiological, and
neuroimaging studies have documented that the dopamine (DA)
system is disrupted in schizophrenia (see Davis et al., 1991 for a
review). Although the initial formulation of the dopamine hypoth-
esis of schizophrenia, which proposed that the illness was the
result of hyperdominergia (Matthysse, 1973) has been refined,
the dopamine system has remained central to the study of schiz-
ophrenia. The antipsychotic effects of DA-blocking medications
provide evidence of a relationship between tonic DA levels and the
symptoms of schizophrenia but recent theoretical and empirical
advances in the study of phasic DA activity (Schultz, 1998, 2002)
allow new understanding of some of the most persistent cognitive
and motivational deficits characteristic of the illness (Ziauddeen
and Murray, 2010).

Many of these advances are based upon findings from studies
of transient changes in mesencephalic DA neurons in primates
(Schultz, 1998, 2002). This work describes phasic increases and
decreases in firing of these neurons that can be understood as
coding an error signal associated with a reinforcement learning
algorithm (see Suri, 2002 for a review). In neural network models,

reward prediction error signals (RPEs) are computed by an “adap-
tive critic” that attributes a value to ongoing events and outputs an
error when it changes its own prediction. Positive (+) RPEs indi-
cate that ongoing events are “better” than expected, and negative
(−) RPEs indicate that ongoing events are “worse” than expected.
This RPE signal may be used as a learning signal by DA target areas
in order to optimize performance (Schultz et al., 1995). RPE sig-
nals are based on neural representations of value associated with
different response alternatives (Montague and Sejnowski, 1994;
Niv, 2009) and these values appear to be represented in the basal
ganglia (Samejima et al., 2005; Lau and Glimcher, 2008) where the
critic is thought to reside (O’Doherty et al., 2004).

This understanding of the functioning of phasic DA has given
rise to contrasting models of schizophrenia and motivational
impairment. One hypothesis is based on the idea that there is a pri-
mary impairment in the ability to signal prediction errors (Corlett
et al., 2007; Frank, 2008; Fletcher and Frith, 2009), a hypothesis
supported by evidence of reduced brain activity following RPEs in
individuals with schizophrenia (Waltz et al., 2009) and disrupted
frontal activity following RPEs in individuals with ketamine-
induced delusions and perceptual aberrations (Corlett et al., 2006).
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This hypothesis is also consistent with behavioral studies show-
ing learning impairments and decreased reward-related response
speeding (Waltz et al., 2007; Murray et al., 2008) in schizophrenia.
By this account, disruption of RPE-related DA signaling inter-
feres with reinforcement and response selection in schizophrenia,
such that behavioral motivation is based on faulty associations
and contingencies (Kapur, 2003; Smith et al., 2006). An alterna-
tive hypothesis proposes that schizophrenia patients experience
decreased motivational drive due to impaired representation of
response value despite normative evoked emotional experiences
(Gold et al., 2008). This model is based on observations that asso-
ciations between subjective valuation of stimuli and subsequent
action selection are weaker in schizophrenia patients than psychi-
atrically healthy comparison subjects (Heerey and Gold, 2007) and
that patients appear to fail to fully represent the full range of pos-
sible outcomes when choosing among gambling options (Heerey
et al., 2008). This model is consistent with recent evidence of poor
internal representation of motivational information (Ursu et al.,
2011) and disruption of error likelihood predictions (Krawitz
et al., 2011) in schizophrenia. This pattern of findings suggest that
schizophrenia patients experience a deficit in the ability to simulta-
neously represent and consider the various cognitive and affective
attributes associated with different response options, resulting in
a selective impairment in motivation to seek out rewarding activ-
ities which is especially apparent in patients with high levels of
negative symptoms (Gold et al., in press).

Reinforcement learning models can provide insight into these
alternative mechanisms because they provide formal accounts of
the relationship between predictive values associated with behav-
ior and subsequent outcomes that do or do not violate those
predictions (Niv,2009). As a case in point, the reinforcement learn-
ing theory of the error-related negativity (RL–ERN; Holroyd and
Coles, 2002) provides a framework for evaluating whether impair-
ments in the representation of response Value (as mediated by the
basal ganglia) and/or RPE signals (as mediated by the DA sys-
tem) are apparent in schizophrenia. The RL–ERN model links the
properties of the phasic DA system to learning-related changes
in event-related brain potentials (ERPs) that follow correct vs.
incorrect responses (the response ERN; Falkenstein, 1990; Gehring
et al., 1993) and rewarding vs. non-rewarding outcomes (the feed-
back ERN; Miltner et al., 1997; Gehring and Willoughby, 2002;
Ruchsow et al., 2002). In this model, changes in the response and
feedback ERN that accompany learning reflect the functioning of a
dopamine-mediated reward system in which motor neurons in the
ACC use signals carried by the DA system for the adaptive modifi-
cation of behavior. As with other reinforcement learning models,
the RPEs are driven by changes in predictive Value implemented
by the critic, which is hypothesized to lie in the basal ganglia (Hol-
royd and Coles, 2002). Thus, for example, the basal ganglia may
contain units that represent whether a left or a right button press
predicts reward. The RL–ERN theory holds that the generation of
the ERN is associated with the impact on ACC of phasic decreases
in DA activity on error trials (−RPEs) when events are worse than
predicted vs. phasic positive increases of DA activity on correct
trials (+TDEs; Holroyd et al., 2008) when events are better than
predicted. In this way, the ERN is elicited when the system first
determines the outcome of the trial such that a response ERN is

elicited when the correctness of the response is detected imme-
diately following the response and a feedback ERN is elicited
when it is detected because of the feedback. In trial-and-error
learning tasks, participants gradually learn the stimulus–response
mappings and become able to judge their accuracy. Concomi-
tantly, the performance feedback becomes redundant and the ERN
propagates from the time of feedback presentation to the time of
response generation (Holroyd and Coles, 2002).

Schizophrenia patients reliably exhibit diminished response
ERN amplitude relative to healthy subjects across task types (Kopp
and Rist, 1999; Alain et al., 2002; Bates et al., 2002, 2004; Mathalon
et al., 2002; Morris et al., 2006) but the integrity of the feed-
back ERN in schizophrenia is less clear. Previously, to examine
the integrity of the –RPE as an indicator of the function of the
phasic DA system, we studied schizophrenia patients while they
completed a probabilistic learning task (PLT) in which the validity
of the accuracy feedback varied (Morris et al., 2008). Schizo-
phrenia patients exhibited reduced response ERN amplitude in
all conditions and reduced feedback ERN amplitude in the valid
feedback condition during early trials when the feedback was most
informative for stimulus–response learning. In the other feedback
conditions, however, group differences in feedback ERN amplitude
were equivocal. To date, this is the only study that has examined
the feedback ERN in schizophrenia patients and the finding that
this activity was only selectively impaired was unexpected. Thus,
we were motivated to examine this question more closely.

Here, we examined whether schizophrenia patients exhibit
impairment in both of these putatively DA-related ERP compo-
nents (the response and feedback ERNs) or whether they exhibit a
selective deficit in the response ERN only. Further, we used com-
putational modeling to distinguish whether the results stem from
an impairment in the transmission of RPE signals vs. a deficit
in predictive value associated with response generation; because
the RPEs by definition constitute violations of predictive value,
without a formal account of their relationship the two possibilities
would otherwise be difficult to disentangle. We examined the ERN
on two tasks that elicit a feedback ERN, a passive gambling task
and a time estimation task, and a third task that elicits a response
ERN, a flanker task. The passive gambling task, modeled after
Potts et al. (2006), was selected because it elicits a feedback ERN
in the absence of a response, thus removing between-group vari-
ability due to differences in perceived task difficulty or response
speed or accuracy. The time estimation task was selected because
it elicits a robust feedback ERN (Miltner et al., 1997; Holroyd
et al., 2006; Holroyd and Krigolson, 2007) and the parameters can
be adjusted so that individuals with disparate response accuracy
receive the various types of feedback with similar frequency. These
tasks include a sufficient number of trials (more than 50) to obtain
a reliable feedback ERN (Marco-Pallares et al., 2011). The Eriksen
flanker task (EFT; Eriksen and Eriksen, 1974) was used for elic-
iting the response ERN because it induces speeded motor errors
and does not require memorization of response rules that might
prove differentially challenging for the patient group. It has also
been used in previous studies of the ERN in schizophrenia (Kopp
and Rist, 1999; Morris et al., 2006) so it serves as a good bench-
mark for evaluating the findings of the current study. In addition
to these three tasks, we also re-analyzed the ERP data from our
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previous PLT study (Morris et al., 2008) using a difference wave
approach (Holroyd and Krigolson, 2007) in order to measure both
the response and feedback ERN in a single task for the purposes
of computational modeling.

To preview the results of these studies, the response ERN deficit
in schizophrenia was replicated but the same patients showed
normal feedback ERN amplitude on both feedback tasks. These
results, however, do not unambiguously support either the dis-
rupted RPE model or the impaired response value model of
schizophrenia, as it is possible that the response ERN was reduced
due to an abnormality in RPE signaling or to a weakened rep-
resentation of response value. Therefore, we used computational
modeling to simulate the ERP results and test alternative hypothe-
ses about the origin of this dissociation between response and
feedback ERN abnormalities. Specifically, we utilized a formal
instantiation of the RL–ERN theory to parametrically and system-
atically vary two parameters related to the neural computation of
Value (as expressed by the basal ganglia) and to the change in Value
(as expressed by the dopamine system) to explore how changes to
these parameters would affect the ERN and behavior.

MATERIALS AND METHODS
PARTICIPANTS
Thirty-two schizophrenia outpatients and 23 healthy comparison
subjects completed the time estimation task. All subjects except
for two control subjects completed the passive gambling task. A
subset of 20 patients and 15 comparison subjects (the final par-
ticipants recruited into the study) completed the flanker task in
addition to the other two tasks. Demographic and clinical charac-
teristics are summarized in Table 1. The groups did not differ
in age, t (53) = 0.15, p = 0.88, gender, χ2 (1, N = 55) = 0.075,

Table 1 | Demographic and symptom rating data for control subjects

and schizophrenia patients.

Control subjects

(n = 23)

Schizophrenia

patients (n = 32)

M SD M SD

Age (years) 46.74 11.01 47.09 6.74

Education (years)a 14.48 2.25 12.98 1.72

Parent’s highest education (years) 13.52 2.25 13.74b 3.26

Gender

Male 18 26

Female 5 6

Ethnicity

European American 13 14

African American 10 16

Multiracial 2

BPRS 20-item total score 36.06 11.25

SANS 22-item total score 32.22 16.24

BPRS, brief psychiatric rating scale; SANS, scale for the assessment of negative

symptoms.
aGroup difference p = 0.007.
bN = 31.

p = 0.78, or ethnicity, χ2 (2, N = 55) = 2.00, p = 0.37. Schizo-
phrenia patients had fewer years of education than comparison
subjects, t (53) = −2.79, p = 0.007, but did not differ in parental
education, t (53) = 0.28. The results of these comparisons in
age, gender, ethnicity, education, and parental education did not
change when only the participants who completed the flanker task
were compared.

Patients were recruited from outpatient psychiatric clinics at the
Maryland Psychiatric Research Center and the Baltimore Veterans
Affairs Medical Center. They were diagnosed using a best-estimate
approach combining information from medical records, collateral
information (when available), and the structured clinical interview
for DSM-IV (SCID; First et al., 1994). Twenty-seven of the patients
were diagnosed with schizophrenia and five were diagnosed with
schizoaffective disorder. Patients were medicated with second-
generation antipsychotic medication(s) (APM; n = 31) or both
a second-generation antipsychotic and a traditional APM (n = 1).
On the day of testing, symptom ratings were obtained using the
brief psychiatric rating scale (BPRS; Overall and Gorham, 1962)
and the scale for the assessment of negative symptoms (SANS;
Andreasen, 1982).

Healthy comparison subjects were recruited via newspaper
advertisements, fliers, or random-digit dialing of local phone
numbers. They were assessed with the SCID and had no per-
sonal or family history of schizophrenia or schizoaffective disorder
and no personal lifetime history of bipolar disorder or major
depressive disorder. A lifetime history of head injury or neuro-
logical illness and alcohol or substance dependence in the last
6 months were exclusionary criteria for all participants. All partic-
ipants provided written informed consent for the protocol which
was approved by the University of Maryland School of Medi-
cine IRB and the VA Maryland Healthcare System Research and
Development Committee.

TASKS
Testing procedures took place in a sound-attenuated, dimly lit
room in which participants were seated approximately 1 m from a
video monitor. The order of tasks was counterbalanced.

PASSIVE GAMBLING TASK
Participants completed a passive gambling task modeled after Potts
et al. (2006) in which participants viewed pairs of pictures pre-
sented sequentially (see also Holroyd et al., 2011). Each picture
depicted either a lemon or a gold bar. On 80% of trials, pairs con-
sisted of the same stimulus (i.e., lemon followed by lemon or gold
followed by gold, with equal probability). On the remaining trials,
pairs consisted of one of each stimulus (i.e., lemon followed by
gold or gold followed by lemon, with equal probability). When
a gold bar was presented as the second image, it was always fol-
lowed by feedback indicating a 50¢ bonus. When a lemon was
presented as the second image, it was always followed by feedback
indicating no bonus. Thus four feedback conditions were created:
unexpected non-reward (bar followed by lemon), expected non-
reward (lemon followed by lemon), unexpected reward (lemon
followed by bar), and expected reward (bar followed by bar). Par-
ticipants viewed 7 blocks of 48 trials and the total bonus earned
during each block was displayed following each block. Participants
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were informed that one of the bonus amounts (ranging from 9 to
15$) would be selected at random and added to their payment.
Trials were ordered in a constrained random sequence such that
stimulus pairs were not repeated on more than three consecutive
trials. Pictures were displayed for 600 ms. The interval between pic-
tures in a pair was 400 ms, the feedback was displayed for 2200 ms,
and the interval between feedback offset and onset of the next
image was 400 ms.

TIME ESTIMATION TASK
Participants completed a task modeled after Holroyd et al. (2006)
modification of Miltner et al. (1997) time estimation task in
which they were instructed to press a button when they estimated
that 1 s had elapsed after the presentation of a tone. Following
each response, feedback indicating whether the response was on-
time (a plus sign) or not on-time (a zero) was displayed. An
adjustable response window was used which decreased the allow-
able RT deviation as participants became more accurate. The
window was initially set to 900–1100 ms and then narrowed by
20 ms following each on-time response and widened by 20 ms
following each not on-time response. The maximum window
was 0–2000 ms. In light of Holroyd et al. (2006) finding that
uninformative feedback elicited a feedback ERN similar in ampli-
tude to that elicited by negative feedback, uninformative/neutral
feedback (a question mark) was provided on one-third of tri-
als (selected at random). The tone was 80 Hz, 80 dB presented
for 50 ms via ear inserts. Feedback was presented for 1000 ms
beginning 3050 ms after tone offset. The interval between feed-
back offset and the onset of the next tone was 2000 ms. Partici-
pants completed 210 trials with brief rest pauses after 70 and 140
trials.

FLANKER TASK
Subjects performed a modified version of the flanker task (Erik-
sen and Eriksen, 1974). Each trial began with the display of
flanker stimuli which were two pairs of equilateral triangles or
squares appearing in a vertical array. Flanker stimuli were dis-
played for 100 ms before the middle triangle, the target, appeared.
Participants were instructed to respond with the hand that cor-
responded to the direction in which the target was pointing. The
flanking triangles were oriented either in the same (congruent
condition) or opposite (incongruent condition) direction as the
target or flanking squares were used instead of triangles (neutral
condition). The six different types of target/flanker combinations
were presented with equal frequency and in a constrained ran-
dom sequence such that no trial type was repeated on more than
three consecutive trials. The flanker/target array was displayed
for 70 ms. Beginning 2000 ms after the offset of the target array,
feedback was displayed for 1000 ms. The delay between the off-
set of the feedback and the onset of the subsequent flankers was
1950 ms.

Before beginning the flanker task, subjects were instructed to
respond quickly and accurately and were penalized 2¢ for incor-
rect responses, rewarded 2¢ for correct responses and penalized 5¢
for slow responses (RT > 1100 ms) regardless of accuracy. Partici-
pants completed 24 practice trials followed by 6 blocks of 54 trials.
All flanker stimuli were white presented on a black background.

PSYCHOPHYSIOLOGICAL RECORDING, DATA REDUCTION, AND
ANALYSES
General procedures
Electroencephalography (EEG) recordings were obtained using
32 Ag/AgCl electrodes in International 10/20 system positions.
Electrooculographic activity was recorded from electrodes placed
above and below the left eye and at the outer edge of both eyes.
Physiological signals were recorded using a Synamps amplifier
and Scan 4.3 software (Compumedics/Neuroscan, Charlotte, NC,
USA). Scalp EEG data were recorded at a rate of 500 Hz and refer-
enced to averaged earlobe electrodes. After epoching, vertical and
horizontal eye movement artifacts were corrected offline (Gratton
et al., 1983; Miller et al., 1988), a 0.1- to 20-Hz 24 dB filter was
applied and a 200-ms baseline was subtracted from each epoch.
The Greenhouse–Geisser adjustment for repeated measures and
an alpha level of 0.05 were used. Corrected F, p, and effect size
(partial eta squared, or η2

p) values and uncorrected degrees of free-
dom are reported. Simple-effects ANOVAs with the Bonferroni
correction were used for post hoc comparisons on between-group
measures.

Although we have previously (Morris et al., 2008) exam-
ined the ERN using a “base-to-peak” approach, recent investi-
gations have indicated that a “difference wave” approach may
be more appropriate for extracting this ERP component (Hol-
royd and Krigolson, 2007), first because it minimizes overlap
with other interfering ERP components (Luck, 2005), and sec-
ond because recent evidence indicates that unexpected positive
feedback may elicit a positive-going deflection in the ERP (Hol-
royd et al., 2008; See also: Potts et al., 2006; Cohen et al., 2007;
Eppinger et al., 2008; Baker and Holroyd, 2011; Holroyd et al.,
2011) that the base-to-peak approach may overlook. Procedures
used for computing difference waves are provided below. Group
means and SE for the difference wave amplitude from for the
feedback ERN (Passive gambling task and time estimation task)
and the response ERN from the flanker task are provided in
Table 2.

Passive gambling task
For the second stimulus of each pair, “Expected” difference waves
were computed by subtracting the Expected Bonus waveforms

Table 2 | Mean (and SE) feedback and response ERN difference wave

amplitudes for schizophrenia patients and control subjects.

Task Condition Control subjects

(n = 23)

Schizophrenia

patients (n = 32)

Passive gamblinga Expected −2.59 (0.51) −3.17 (0.31)

Unexpected −3.59 (0.66) −4.02 (0.55)

Time estimation Neutral −3.63 (0.45) −4.53 (0.68)

Zero −4.05 (0.55) −4.98 (0.70)

Flankerb −11.46 (2.24) −4.66 (1.28)

Data are from Cz (passive gambling task) and FCz (time estimation and flanker);

feedback ERN: passive gambling task and time estimation task; response ERN:

flanker task.
aN = 21 control subjects.
bN = 15 control subjects and 20 patients.
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from the Expected Non-Bonus waveforms. “Unexpected” differ-
ence waveforms were computed by subtracting the Unexpected
Bonus waveforms from the Unexpected Non-Bonus waveforms
(Holroyd and Krigolson, 2007). Examination of the grand-average
difference waveforms indicated substantial component overlap
characterized by early, frontally distributed activity (the feedback
ERN) followed by posteriorly distributed activity (P300). To isolate
the feedback ERN from this overlapping component, the latency
of the waveforms was adjusted at all channels using the follow-
ing procedure. The latency of the maximal negativity between 170
and 290 ms was determined for the FCz channel in the expected
non-bonus average for each participant. The expected non-bonus
condition was used because the feedback ERN was maximal in
this condition in the group averages. This latency was then set to
240 ms (the approximate latency of peak in the unadjusted group
average waveforms) by adjusting the start point of the waveform
by the difference between the latency of the peak and 240 ms.
The conditional waveforms for all four feedback conditions in
all channels were then adjusted by the same degree and differ-
ence waves were re-computed using these adjusted averages. The
amplitude of the maximal negativity occurring between 180 and
300 ms was identified in the difference waves and was analyzed
using 2 (Group) × 2 (Expectedness) × 5 (Site: Fz, FCz, Cz, CPz,
Pz) mixed-model ANOVA. To check whether the latency adjust-
ment obscured effects of interest, difference wave amplitudes from
the non-adjusted waveforms were analyzed and the results were
unchanged.

Time estimation task
Difference waves for the neutral and “zero” feedback conditions
were created by subtracting activity following“plus”feedback from
the activity following neutral and “zero” feedback, respectively
(Holroyd and Krigolson, 2007). Examination of the grand-average
difference waves indicated component overlap similar to that
observed in the data from the time estimation task, so a simi-
lar latency adjustment was made. For each participant, the latency
of the maximum negativity within a narrow window (200–290 ms
following FB onset) was identified in the “zero” feedback aver-
age in the FCz channel. This latency was then set to 240 ms (the
approximate latency of peak in the unadjusted group average
waveforms) by adjusting the start point of the waveform by the
difference between the latency of the peak and 240 ms. The condi-
tional waveforms for all three feedback conditions in all channels
were then adjusted by the same degree. Difference waves were then
re-created and the feedback ERN was scored as the amplitude of
the maximum negativity occurring between 200 and 280 ms in the
neutral and “zero” difference waves. The feedback ERN was com-
pared in a 2 (Group) × 2 (Difference wave type) × 5 (Site: Fz, FCz,
Cz, CPz, Pz) mixed-model ANOVA. The results of this analysis
were also unchanged when difference wave amplitudes from the
non-adjusted waveforms were analyzed.

Flanker task
Response-locked waveforms were created for correct and error
trials and difference waves were created by subtracting the activ-
ity following correct responses from that following errors. The
response ERN was quantified in these difference waves as the

maximal negativity between 0 and 150 ms. Data for one control
subject whose response ERN difference wave peak amplitude
exceeded the group mean by more than 4 SDs were replaced with
the next largest values. These were analyzed in two 2 (Group) × 5
(Site: Fz, FCz, Cz, CPz, Pz) mixed-model ANOVAs.

RESULTS
ERP STUDIES
Passive gambling task
Event-related brain potential waveforms for the second stimu-
lus, which varied in both valence and expectedness, are shown
in Figure 1. Consistent with the hypothesis that the feedback
ERN is relatively intact in schizophrenia, there was no difference
between groups in feedback ERN difference wave amplitude, F(1,
51) = 0.10, p = 0.75, η2

p = 0.002. Although the peak negativity
is more prominent for the expected feedback than for the unex-
pected feedback in the group average waveforms, the group mean
difference scores were larger for unexpected than for expected
outcomes, although the effect of expectedness was not significant,
F(1, 51) = 2.91, p = 0.09, η2

p = 0.05. Difference wave amplitudes
were greatest at Cz but did not differ significantly among sites,
F(4, 204) = 2.32, p = 0.08, η2

p = 0.02. There were no interactions
involving group, expectedness, or channel (all p values > 0.3).

Time estimation task
Behavior. Because RTs were not recorded for responses occur-
ring more than 3000 ms after the tone, long RTs could not be
distinguished from non-responses. In order to avoid overesti-
mating participants’ RT accuracy by omitting these highly inac-
curate responses, missing RTs were replaced with the RT from
the previous trial (or from the next trial if no response was
made on the previous trial). This process may have resulted in
a minor overestimation of participants’ response accuracy. The
average percentage of trials with missing/replaced RTs did not dif-
fer between patients (6%) than controls (3%), F(1, 53) = 1.35,
p = 0.25. The absolute deviation of RT from the target RT of
1000 ms was then computed for each trial. Mean RT deviation
and a running average of RT deviation over the course of the
task are presented in Figure 2. As seen in the figure, the con-
trols were slightly more accurate at estimating the 1-s interval but
this difference was not statistically reliable: mean RT deviation,
t (53) = 1.83, p = 0.073. Both groups received “zero” feedback on
a greater percentage of trials (36%) than “plus” feedback (30%),
F(1, 53) = 25.38, p = 0.00, η2

p = 0.32, consistent with the ini-
tially narrow RT window. Response time accuracy improved by
an average of 87 ms on trials following “zero” feedback, worsened
by an average of 106 ms after “plus” feedback and changed by
less than a millisecond on average after neutral feedback [main
effect of FB type, F(2, 106) = 159.41, p = 0.00, η2

p = 0.75]. This
main effect was moderated by a Group × FB type interaction, F(2,
106) = 3.33, p = 0.05, η2

p = 0.06 characterized by control subjects
having a smaller increase in deviation following “plus” feedback
than patients, 88 vs. 125 ms, t (53) = 2.09, p = 0.04, suggesting that
patients had difficulty sustaining accurate responding following
positive feedback.

Event-related brain potentials. Group average latency-adjusted
waveforms for the feedback-locked ERPs are presented in Figure 3.
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FIGURE 1 | Group averages for feedback ERN elicited by second stimulus in the passive gambling task. Data shown in waveforms are from Cz. The
scoring window for the difference waves is indicated by the rectangle.

FIGURE 2 | Five-trial running average of absolute RT deviation from

target RT for the time estimation task. Bar graph shows mean of
absolute RT deviation. Error bars indicate SE.

Prominent negativities are observed approximately 250 ms fol-
lowing both “zero” and neutral FB compared to “plus” FB. As
in the passive gambling task, there was no main effect of group,
F(1, 53) = 1.47, p = 0.23, η2

p = 0.03 or any interactions involv-
ing group differences for the feedback ERN (all p values > 0.53).
There was also no difference between the “zero” and neutral FB
conditions in difference wave amplitude, F(1, 53) = 2.32, p = 0.13,
η2

p = 0.04, suggesting that feedback ERN activity in both groups
shows the expected pattern of dichotomous classification of out-
comes as described by Holroyd et al. (2006). The difference wave
amplitudes were largest at the FCz site although the amplitude

difference among channels was not significant, F(4, 212) = 2.87,
p = 0.06.

Flanker task
Behavior. The flanker type manipulation had the expected effects
on response accuracy, F(2, 66) = 70.22, p = 0.00, η2

p = 0.68, and

RT, F(2, 66) = 153.23, p = 0.00, η2
p = 0.82, with better accuracy

and faster RT in the congruent compared to incongruent flanker
conditions [F(1, 33) = 68.55 and 233.42, respectively, p < 0.001;
See Figure 4]. Mean RT was slower for schizophrenia patients
than control subjects, F(1, 33) = 10.83, p = 0.002, η2

p = 0.25.

Event-related brain potentials. Consistent with previous stud-
ies (e.g., Kopp and Rist, 1999; Morris et al., 2006), the response
ERN as measured by error-correct difference wave amplitude was
diminished in schizophrenia patients compared to control sub-
jects, F(1, 33) = 6.31, p = 0.02, η2

p = 0.16 (Figure 5). Difference
score amplitude was largest at FCz for control subjects and at CPz
for patients [Group × electrode site interaction, F(4, 132) = 3.57,
p = 0.05]. Because the participants who completed the EFT were
a subset of those who completed the time estimation and passive
gambling tasks, we repeated the analyses of the data from the feed-
back ERN tasks including only the participants who completed the
flanker task to make sure that the dissociation between response
ERN and feedback ERN was not due to the composition of the sub-
ject groups. The differences among these samples did not appear to
account for the selective deficit in response ERN compared to feed-
back ERN. The results of the analysis of the ERP data from the time
estimation and passive gambling tasks did not differ when individ-
uals who did not complete the flanker task were removed from the
analysis (all p values > 0.05). The fact that group differences were
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FIGURE 3 | Feedback-locked ERN group averages for the time estimation task. Data shown in waveforms are from FCz. Data in maps are shown at latency
of maximal difference wave amplitude. The scoring window for the difference waves is indicated by the rectangle.

FIGURE 4 | Mean accuracy (top) and RT (bottom) for the flanker task.

Error bars indicate SE.

observed in the response ERN with a smaller sample size provides
some assurance that the failure to find group differences in the
feedback ERN was not due to lack of power since the sample size

was larger for the feedback ERN tasks. It is, however, possible that
there are differences in effect size between response and feedback
ERN and that small group differences in feedback ERN could have
gone undetected due to lack of power.

Computational modeling
Taken together, the above results are strongly suggestive of an
impaired response ERN together with a spared feedback ERN in
schizophrenia. But what deficit can cause this pattern of obser-
vations? Alternative hypotheses (as reviewed above) hold that
schizophrenia is associated with impaired dopamine-dependent
RPE signals on the one hand (Corlett et al., 2007; Fletcher and
Frith, 2009) and with impaired representations of predictive value
on the other (Gold et al., 2008). These hypotheses are challenging
to distinguish because of their complex interrelationship: predic-
tive values can be derived from RPEs and RPEs reflect changes
in predictive value. Computational simulations based on princi-
ples of reinforcement learning can illuminate this issue because
neurally based models of decision making depend on formal rep-
resentations of predictive value and RPEs (Suri, 2002; Cohen, 2008;
Dayan and Daw, 2008; Cohen and Frank, 2009; Niv, 2009). Further,
the RL–ERN theory specifically indicates how these parameters
give rise to the response ERN and feedback ERN. For this rea-
son, we adapted a computational model of the response ERN and
feedback ERN in the PLT and of the response ERN in the EFT (Hol-
royd and Coles, 2002) to determine how these ERP components
would be affected by changes to these quantities as might occur
in schizophrenia. Our modeling efforts focused on these two tasks
because they were originally simulated with the RL–ERN model
(Holroyd and Coles, 2002). Further, data from our previous study
using the PLT (Morris et al., 2008) allowed for comparison of the
response ERN and the feedback ERN in a single task, whereas the
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FIGURE 5 | Response-locked ERN group averages for the flanker task. Data shown in waveforms are from FCz. Topographical maps depict distribution of
difference wave at latency of peak negativity. The scoring window for the difference waves is indicated by the rectangle.

EFT data from the current study allowed for examination of the
response ERN in the absence of feedback-based learning (Holroyd
and Coles, 2002, 2008; See also Holroyd et al., 2005).

Methods
The RL–ERN model belongs to a class of neurobiologically moti-
vated computational models that are based on the theory of
reinforcement learning (Sutton and Barto, 1998) and that simulate
behavior and/or the activity of the midbrain dopamine system on
trial-and-error type learning problems (Suri, 2002; Cohen, 2008;
Dayan and Daw, 2008; Cohen and Frank, 2009; Niv, 2009). We sim-
ulated the ERN and performance of control subjects on the PLT
and the EFT using a variant of the standard RL–ERN model, details
of which are given in Holroyd and Coles (2008). The original RL–
ERN model utilized multiple motor controllers that competed for
control over behavior (Holroyd and Coles, 2002). As this aspect
of the model was not central to the hypothesis under investi-
gation here, we adopted a reduced model that selected actions
based on state-action Values encoded by the critic module (Hol-
royd and Coles, 2008). The model includes units that represent
important task states, namely external stimuli, stimulus–response
conjunctions, and feedback stimuli, which activate when the corre-
sponding event occurs on a given trial. Further, connection weights
associated with each unit represent the internal “Value” of that
state. For the PLT simulation, the Values associated with posi-
tive and negative feedback were fixed at 1 and −1, respectively,
and for the EFT simulation, the Values associated with the cor-
rect and incorrect stimulus–response conjunctions were fixed at
1 and −1, respectively. For both simulations, the weights for the
remaining stimuli were internalized with random values between
−0.5 and 0.5. Critically, the strength of the phasic dopamine sig-
nal was related to the magnitude of the reward prediction error
(i.e., the “temporal difference error”), defined as the change in
Value associated with state transitions (Sutton, 1988). The RPE

was used to modify the Value weights according to the temporal
difference learning rule (Sutton, 1988; Sutton and Barto, 1998).
Consistent with previous simulations (Holroyd and Coles, 2002,
2008; Nieuwenhuis et al., 2002) and with empirical practice (Hol-
royd and Coles, 2002; Holroyd and Krigolson, 2007), the simulated
ERN was determined by subtracting the RPE on correct trials
from the RPE on error trials. For all simulations response selection
was “epsilon-greedy” (Sutton and Barto, 1998), meaning that the
model chose the response with the highest Value on a fraction of
randomly selected trials (70%) and chose a response at random
on the remaining trials (30%). The learning rate parameter for the
simulated control subjects was equal to 0.5.

Results
Probabilistic learning task. The PLT is a trial-and-error learning
task where participants are required to press one of two buttons
on each trial in response to presentation of an arbitrary visual
image and are provided feedback indicating that they received or
were penalized a small amount of money. Key to the task is that
the imperative stimuli are probabilistically related to the appropri-
ate response. Here we simulated the data of Morris et al. (2008),
wherein the optimal response was associated with reward on either
100, 80, or 50% of encounters with the associated stimulus (See
also Nieuwenhuis et al., 2002). The demographic and clinical char-
acteristics of the participants were highly similar to those of the
participants in the current study. The empirical accuracies for the
control participants and for participants with schizophrenia are
presented in Table 3. Note that the accuracies for the two groups
are comparable, as are the accuracies for all of the simulations.

For the purposes of the computational modeling, we have re-
analyzed the data of Morris et al. (2008) using a difference wave
approach. Figure 6 illustrates the ERN difference wave data for
the control participants and for participants with schizophrenia.
These results replicate the common finding that the response ERN
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Table 3 | Empirical and simulated accuracy rates for control subjects

and schizophrenia patients on the probabilistic learning task.

Feedback condition

100% 80% 50%

Empirical control 83 71 50

Empirical patient 78 71 50

Simulated control 84 68 50

±RP 84 69 50

+RP 85 69 50

−RP 85 69 50

Learning rate 81 67 49

Max. value 84 68 49

Note that correct trials are defined as those in which the optimal (i.e., most fre-

quently rewarded) response was emitted, as opposed to trials in which positive

feedback stimuli were delivered. Empirical data taken from Morris et al. (2008).

and feedback ERN amplitude are inversely related such that they
are larger and smaller, respectively, with increasing certainty of
the outcome (Holroyd and Coles, 2002; Nieuwenhuis et al., 2002,
2005). Although a Group × Feedback type ANOVA did not show
any main effects or interactions involving group, these data suggest
that this inverse relationship was stronger for the control partici-
pants than for the participants with schizophrenia, who exhibited
relatively less variation in ERN amplitude across conditions. To
examine this more closely, we applied separate linear regressions to
each individual’s response ERN and feedback ERN data, with con-
ditions entered in the order of smallest to largest ERN (response
ERN: 50%, 80%, 100%; feedback ERN: 100%, 80%v, 50%, 80%i). A
two-way ANOVA on the regression intercepts, with levels for group
(controls, schizophrenia patients) and ERN type (response, feed-
back), indicated a main effect for group, F(1, 51) = 5.8, p = 0.02,
such that the regression intercepts were more negative for the
participants with schizophrenia than for the control participants.
This observation was supported by a comparable ANOVA on the
regression slopes that indicated a strong trend for a main effect
of group, F(1, 51) = 3.7, p = 0.06, such that the regression slopes
were smaller for the people with schizophrenia than for the control
subjects. These findings confirm the visual impression in Figure 6
that the ERN amplitudes of the participants with schizophrenia
were relatively insensitive to condition, leading relatively negative
intercepts and shallower slopes for the patient group. Because the
RL–ERN theory is mainly concerned with the inverse relationship
between the amplitudes of the response ERN and feedback ERN
across conditions (Holroyd and Coles, 2002), our modeling efforts
focused on accounting for the blunting of this relationship in the
patient data.

Each simulation consisted of 27 runs of four blocks of 300 trials
of the PLT, with each run corresponding to a simulated “partic-
ipant.” For the control simulation, the default parameters repro-
duced the inverse relationship between the response and feedback
ERN amplitudes (solid lines in Figure 7) typically observed in this
task (Holroyd and Coles, 2002; Nieuwenhuis et al., 2002, 2005).
To evaluate the RPE vs. predictive Value theories of schizophrenia,
we followed a hypothesis-driven approach in which we explored

FIGURE 6 | Empirical control and schizophrenia ERN difference wave

data (mean amplitude and SE) for the probabilistic learning task, for

the response ERN (top) and feedback ERN (bottom). Note that “80%v”
and “80%i” correspond to trials in the 80% condition with either valid or
invalid feedback, respectively. Data recorded at FCz and re-analyzed from
Morris et al. (2008).

how plausible changes to specific model parameters would affect
behavior and the ERN (see, e.g., Nieuwenhuis et al., 2002). Each
hypothesis was explored by utilizing the parameters of the control
simulation and scaling the size of a parameter that implemented
the hypothesis above and below its default value. This was achieved
by alternatively increasing and decreasing the size of the parame-
ter of interest in increments of 1% from 0 to 200% relative to
the parameter value for the control simulation. For example, we
first explored the hypothesis that schizophrenia is associated with
faulty phasic dopamine signals (e.g., Frank, 2008; Fletcher and
Frith, 2009) that have been posited to be either larger or smaller
in schizophrenia relative to the normal population (Bilder et al.,
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2004). To do so, we reran the model through multiple iterations
that systematically increased the size of the RPE from 0 to twice
its default value in the control simulation. The iteration with the
parameter value that produced the best fit to the patient electro-
physiological data was then taken as the model that best accounted
for the hypothesis, e.g., if the patient data were best fit by a model
with a RPE signal reduced by 25% of its default (control) value.
Then, this procedure was repeated for the subsequent hypoth-
esis, for example, by systematically manipulating the maximum
possible size of the predictive Values from very small (0) to very
large (200% normal), and so on. Multiple sets of simulations were
run in this way to investigate related hypothesis (disrupted pos-
itive and negative RPEs, disrupted negative RPEs only, disrupted
positive RPEs only, normal RPEs with disrupted learning rate,

FIGURE 7 | Simulated control (default model) and schizophrenia

(maximum value model) ERN difference wave data for the probabilistic

learning task, for the response ERN (top) and feedback ERN (bottom).

Note that “80%v” and “80%i” correspond to 80% condition trials with
either valid or invalid feedback, respectively.

etc.). Critically, each hypothesis was explored by changing only a
single parameter while the remaining parameters remained fixed
to those of the control simulation, so multiple parameters were
never simultaneously varied within a single simulation; this prac-
tice addresses the degrees of freedom problem that is sometimes
leveled at the computational modeling approach (O’Reilly and
Farah, 1999).

The sum of squared errors (SSE) between the simulated and
empirical schizophrenia ERN data was used to evaluate the fit of
each simulation (Figure 8). In Figure 8, note that the horizon-
tal dashed line at SSE = 0.14 indicates the error value associated
with the control simulation compared to the empirical control
data, whereas the horizontal dotted line at SSE = 0.36 indicates
the error value associated with the control simulation compared
to the empirical schizophrenia data; values below the dotted line
indicate improvements in model fit to the schizophrenia data and
values below the dashed line indicate that the fit of the schizo-
phrenia model to the schizophrenia data is even better than that of
the control model to the control data. Further, note that parame-
ter values of 100% correspond to those of the control simulation,
thus the SSEs for each set of simulations cross the dotted line at
parameter values of 100%. In other words, because each of the
schizophrenia simulations is the same as the control simulation
except for the value of one parameter, when that one parameter is
in fact the same as that of the control simulation (100%), then the
schizophrenia simulation is identical to the control simulation. In
that case, the SSE of the schizophrenia model is the same as that of
the control model when fit to the empirical schizophrenia data, i.e.,
SSE = 0.36. Finally, note that for the purpose of comparison the
empirical and simulated data were normalized between values of
0 and −1, where the smallest value combined across control and
schizophrenic groups was equal to zero and the largest negative
value was set equal to −1.

FIGURE 8 | Sum of squared errors (SSE) for each of the probabilistic

learning task simulations. Note that the horizontal dashed line at
SSE = 0.14 indicates the error value associated with the control simulation
compared to the empirical control data and the horizontal gray dotted line at
SSE = 0.36 indicates the SSE of the control simulation data compared to
the empirical schizophrenia data; values below this line indicate better fits.
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We first examined the basic hypothesis that schizophrenia
would be associated with an abnormal ERN resulting from a dis-
turbed dopamine/RPE signal. As described above, we scaled the
size of RPE signal from 0 to 200% of the control simulation val-
ues (Figure 8, blue line). The best fit corresponded to RPE sizes
that were 75% of normal (SSE = 0.21), producing simulated ERN
amplitudes shown in Figure 9 (blue lines, which for the feed-
back ERN plot is hidden by the pink and green lines). These ERN
values are relatively inconsistent with the empirical schizophre-
nia data (Figure 9, black dotted lines) as they reflect less than a
50% reduction in the SSE of the control simulation relative to
the schizophrenia data (Figure 8, gray dotted line), as well as
a fit that was worse than the control simulation to the control
data (Figure 8, gray dashed line). We also investigated whether
schizophrenia might impact either the positive or negative RPE
signal independently of the other by varying each while holding
the other constant. Both sets of simulations were associated with
optimal parameter values of 60%, but the reduced negative RPEs
(green lines in Figures 8 and 9) produced better fits (SSE = 0.17)
than the reduced positive RPE (pink lines in Figures 8 and 9) did
(SSE = 0.26). We also explored whether changes to the positive
and negative RPE signals might be inversely related such that an
increase to one was associated with a commensurate decrease to
the other. The best fit was associated with an SSE of 0.26 (data not
shown).

Although reducing the negative RPEs to 60% of normal yielded
a better fit to the empirical schizophrenia data than did the other
parameter changes, inspection of Figure 9 suggests that this result
is also sub-optimal. The problem stems from the fact that for the
empirical data the response ERN in the 100 and 80% conditions
is smaller for the patients than for the control participants, but
the feedback ERN in the 50% condition is as large or larger for
the patients than for the controls (Figure 6). Importantly, because
the feedback stimuli in the 50% condition are unpredictable, the
feedback ERN in this condition reflects the “true” feedback ERN
amplitude free from any learning-related changes. Taken together,
these results suggest that whereas the feedback ERN for the patients
is relatively normal (as inferred from the 50% condition), the
response ERN is reduced (as inferred from the other conditions).
By contrast, scaling the RPE produces a main effect on ERN ampli-
tude: Increases and decreases in RPE size result, respectively, in
increases and decreases in both the response ERN and feedback
ERN amplitudes. Thus these results reflect the optimal solution to
the competing constraints of minimizing response ERN amplitude
while maximizing feedback ERN amplitude.

We next explored the related possibility that even if the phasic
dopamine signal were intact, the neural targets of the dopamine
system might nevertheless be insensitive to the signal. To investi-
gate this possibility, we systematically varied the size of the model
learning rate parameter from 0 to 200% of normal. Note that
in terms of the impact on behavior, scaling the learning rate is
formally equivalent to scaling the RPE as the change in Value is
proportional to the learning rate times the RPE (see, e.g., Cockburn
and Holroyd, 2010). However, ERN amplitude is hypothesized
to be related to the size of the RPE rather than to the learning
rate (Holroyd and Coles, 2002). Thus this manipulation disso-
ciates indirect changes to ERN amplitude as a consequence of

FIGURE 9 | Error-related negativity difference wave data for the

probabilistic learning task, for the response ERN (top) and feedback

ERN (bottom), for the simulated and empirical schizophrenia data.

Note that “80%v” and “80%i” correspond to 80% condition trials with
either valid or invalid feedback, respectively. Empirical data are from FCz.

learning vs. direct changes to ERN amplitude as a consequence
of the RPE signal itself. Figure 8 (red line) illustrates that the
optimal solution (SSE = 0.07) was associated with a learning
rate that was only 13% of the control value. Unlike the previ-
ous simulations, this simulation substantially reduced response
ERN amplitudes while maintaining high feedback ERN ampli-
tudes (Figure 9, red lines). In this case the reduced learning
rate impaired the ability of the model to develop strong predic-
tions of trial outcomes, leading to reduced response ERNs and
large feedback ERNs that were relatively insensitive to outcome
probability.

Finally, we explored the alternative hypothesis that schizo-
phrenia is characterized by a deficit in the representation of the
predictive value of response options (Gold et al., 2008; Krawitz
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et al., 2011). According to this idea, both the dopamine/RPE signal
and the impact of this signal on behavior (i.e., the learning rate) are
normal in schizophrenia. Rather, this position holds that schizo-
phrenia compromises the ability to represent the value of different
response options for a given imperative stimulus. To explore this
possibility, the Values associated with stimulus–response conjunc-
tions in the model, as putatively implemented as a neural target of
the DA system in the basal ganglia (Samejima et al., 2005; Lau and
Glimcher, 2008), were capped at a maximum. Thus, for these sim-
ulations the RPE (dopamine/ERN signal) and the learning rate
were unchanged from the control simulation but the stimulus–
response conjunction Values were prevented from exceeding the
maximum. Figure 8 (cyan line) illustrates the simulation SSEs
when the maximum stimulus–response conjunction Value was
systematically varied from 0 to 200% of normal. As can be seen, the
simulations were insensitive to increases in the maximum value
beyond 100% of normal because the control simulation levels
never exceed this range anyway. By contrast, capping the maximum
stimulus–response conjunction value at 38% of normal yielded
an optimal solution with SSE = 0.08, nearly equivalent to the best
SSE associated with the learning rate simulations (Figure 8, red
line), resulting in similar fashion with relatively small response
ERNs and large feedback ERNs that are insensitive to condition
(Figure 9, cyan lines). A plot of these ERN amplitudes with the
simulated control ERN amplitudes (Figure 7) reproduces in a
qualitative manner the key relationships observed in the empir-
ical data shown in Figure 6, namely more negative intercepts and
shallower slopes for the simulated patient data relative to the sim-
ulated control data (when the response ERN and feedback ERN
amplitudes are ordered from smallest to largest).

Flanker task. The above simulations suggest two possibilities:
First, that schizophrenia may be associated with a reduced RPE
learning rate, and second, that schizophrenia may be character-
ized by weak representation of the predictive value of stimulus–
response conjunctions. Here we simulated ERN amplitudes on
the EFT to decide between these two possibilities. For consistency
with the PLT simulation and to ensure a high signal-to-noise ratio,
we simulated the data of 27 control participants and 27 partici-
pants with schizophrenia engaged in the EFT (as opposed to the
actual numbers in the empirical experiment, which were 20 and
14, respectively). Imperative stimuli consisted of 54 encounters
with each of the six flanker stimuli and no feedback was provided.
Interference effects on accuracy and response time induced by the
presence of the incompatible flanker stimuli (Eriksen and Eriksen,
1974) were not simulated as these were not central to the hypoth-
esis under investigation (cf. Holroyd et al., 2005). We conducted
three simulations: For the first simulation the parameter values
were identical to those of the control simulation in the PLT, for
the second simulation the learning rate was reduced to its optimal
value for the schizophrenia simulation of the PLT (i.e., 13% of
that of the control simulation), and for the third simulation the
response value was reduced to its optimal value for the schizophre-
nia simulation of the PLT (i.e., 38% of the control simulation). All
other parameter values were held equivalent across simulations. In
other words, we explored whether the two optimal models of the
PLT schizophrenia data could, without any changes, also account

FIGURE 10 | Simulated response ERNs for the Eriksen flanker task.

for the EFT schizophrenia data. Note that the same parameter
values were used as in the corresponding PLT simulations, but in
contrast to the PLT simulations no parameter searches were con-
ducted. This procedure allowed for an unbiased examination of
whether the results of the PLT simulations would generalize to the
EFT data.

Figure 10 illustrates the simulation results. As is evident by
inspection, reducing the learning rate to 13% of normal did not
reduce the simulated response ERN whereas capping the maxi-
mum value of stimulus–response conjunctions at 38% of normal
induced a commensurate reduction in response ERN amplitude.
These results follow for the simple reason that the EFT is not
a learning task and so manipulating the learning rate does not
affect ERN amplitude. By contrast, capping the stimulus–response
conjunction Values at a low level leads to an immediate deficit
in response ERN production irrespective of whether the tasks
involves feedback or not. These results indicate that a single para-
meter change to the maximum size of the stimulus–response
conjunction Value accounts for the empirical schizophrenia data
for both the PLT and the EFT better than competing models involv-
ing changes to the RPE signal or the impact of this signal on
behavior.

DISCUSSION
Recent empirical and theoretical advances in our understanding
about the role of phasic dopamine in schizophrenia have informed
contrasting models of the illness which focus on disruption of
the RPE signal (Corlett et al., 2007; Frank, 2008; Fletcher and
Frith, 2009) and impairment in the representation of response
value (Gold et al., 2008). In order to examine these hypotheses,
we administered two tasks that elicit the feedback ERN and one
that elicits the response ERN, re-analyzed data from a previous
study involving both types of ERN, and used a computational
instantiation of the RL–ERN theory to aid the interpretation of
the empirical results. Taken together, these data show that the
feedback ERN is intact in schizophrenia patients despite abnor-
malities in the response ERN. It should be noted that the tasks
used by our group to elicit the feedback ERN include a range
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of response–feedback contingencies but regardless of whether the
outcomes were determined by handedness of response, accuracy of
time estimation or were independent of responding, schizophre-
nia patients generated feedback negativities that were similar in
amplitude to those of control subjects. The tasks used to elicit the
feedback ERN included sufficient trials to obtain a reliable feed-
back ERN component and the reduction in response ERN was
detected despite a smaller sample of patients completing this task.

We used computational modeling to examine the hypothe-
sis that the locus of patients’ difficulties is in the evaluation of
response options rather than feedback processing. Our simula-
tions did indeed suggest that the functioning of the system is
selectively disrupted due to weakened representation of response
values, presumably encoded in the basal ganglia and orbitofrontal
cortex (Gold et al., 2008). The rationale for this conclusion is
as follows: Our empirical findings indicate that in schizophre-
nia the feedback ERN is relatively normal whereas the response
ERN is reduced relative to controls. Because manipulations of the
dopamine/RPE parameter alter the size of both the response ERN
and the feedback ERN concomitantly, these simulations cannot
satisfy both of these constraints in the schizophrenia data simulta-
neously. Further, although reducing the learning rate yields both
a reduced response ERN together with a normal feedback ERN,
this result occurs only for tasks that actually involve feedback-
based learning. By contrast, impairment in the representation
of response value leads to smaller response ERNs irrespective of
whether the task involves feedback or not.

Thus, according to the model, patients are impaired at asso-
ciating predictions of future outcomes with particular response
options. This result is consistent with the conclusion of Gold et al.
(2008) that decision making in patients is compromised by deficits
in their ability to represent fully the value of different response
options and stimuli predictive of outcomes and with recent fMRI
data indicating that schizophrenia patients have difficulty pre-
dicting response–outcome associations (Krawitz et al., 2011). The
results of this previous study and our present findings converge
in that patients’ difficulty in predicting response–outcome associ-
ations occurs in the presence of spared outcome monitoring. The
Krawitz et al. (2011) study, however, did not rule out the possi-
bility that patients’ impaired predictions resulted from impaired
learning because of a faulty evaluation mechanism. By contrast,
our empirical and simulated data indicate that outcome process-
ing is normal in schizophrenia, and thus the impairment lies with
the predictive mechanism. This conclusion is also bolstered by a
recent report from Gold et al. (in press) that combined behavioral
and computational modeling to show that patients were able to use
prediction errors to guide learning, but failed to prefer stimuli pre-
viously associated with gains over those associated with successful
loss avoidance. The gain seeking vs. loss avoidance stimuli were
presented at the same probabilistic levels and thus were learned
by the same frequency of positive and negative prediction errors.
Despite that, patients failed to prefer the gain seeking stimulus
suggesting that the deficit appears to be specific to weighing the
expected value of alternatives at the time of decision, rather than
in processing outcomes per se. This formulation would suggest
that patients are likely to display alterations in a host of decision
making contexts where the relative prospective value of different

stimuli and response alternatives must be weighed. Indeed, there is
evidence that this is the case as seen in studies of delay discounting
(Heerey et al., 2007, 2011) and in the demonstration of reduced
transitivity of preferences (Strauss et al., 2011).

Furthermore, impaired response selection in schizophrenia has
been associated with increased response times (Luck et al., 2009).
Although we did not simulate response times here, previous rein-
forcement learning models have related response times to the
strength of response values (e.g., Suri et al., 2001; Frank et al.,
2007). We suggest that the decreased response values implicated by
our simulations may also give rise to the increased response times
observed in schizophrenia as the system takes longer to decide the
appropriate course of action, a direction for future research.

The results of neuroimaging studies of RPEs in schizophrenia
are mixed with regard to group differences observed following
+RPEs and −RPEs. Koch et al. (2010) found that chronic schiz-
ophrenia patients showed relative hypoactivation of frontal areas
following positive PEs on a PLT. Waltz et al. (2009), using a primary
reinforcer, found diminished hemodynamic response in reward-
related circuits following positive RPEs. In two studies (Murray
et al., 2008; Koch et al., 2010), schizophrenia patients exhibited
significant hypoactivation compared to control subjects following
negative RPEs but in other studies (Waltz et al., 2009; Simon et al.,
2010) activation following negative RPEs did not differ between
patients and healthy comparison subjects. The conflicting results
between our findings of normal feedback ERN in schizophrenia
and these reports of diminished reward-related activation in schiz-
ophrenia are possibly a result of differences among experimental
tasks and the inherent difficulty in comparing findings obtained
using hemodynamic and electrophysiological methods with their
differences in temporal scale and localization properties (Logo-
thetis, 2003). Our empirical and modeling data suggest that future
work examining the intersection of stimulus and response would
be a fruitful path forward for resolving some remaining questions
about the source of the reward processing deficit in schizophrenia.

On the passive gambling task, difference wave peak amplitude
was larger following unexpected compared to expected outcomes.
The effect of expectedness was not significant, however. This may
be because passive guessing tasks which do not require a response
produce expectancy effects on feedback ERN amplitude with
smaller effect sizes (Holroyd et al., 2009). Other differences in study
procedures compared to the Potts et al. (2006) study, including the
amount of the bonus and the long duration of our testing session
may also have contributed to the reduced expectancy effects in our
data.

Consistent with patients’ intact feedback ERN, the behavioral
data from the time estimation paradigm suggest that patients did
effectively make use of negative feedback to improve their sub-
sequent responses. Patients’ neural and behavioral sensitivity to
negative feedback was surprising in light of substantial evidence
of poor incorporation of feedback on a wide range of behavioral
tasks, including the Wisconsin Card Sorting Task (e.g., Bryson
et al., 2001; Nieuwenstein et al., 2001; Prentice et al., 2008) and
the probabilistic weather prediction task (e.g., Weickert et al.,
2002; Horan et al., 2008). In contrast to this apparently intact
use of negative feedback, patients exhibited impaired ability to
sustain accurate responding following positive feedback during
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this task. Similar difficulty in adjusting behavior following pos-
itive outcomes has been observed in studies using probabilistic
selection (Waltz et al., 2007), reversal learning (Weiler et al., 2009),
and cued reinforcement (Murray et al., 2008) tasks. This pattern
is consistent with the clinical impression that many schizophre-
nia patients are successful at learning to avoid punishment but do
not seek out rewarding activities. Much of the existing ERP litera-
ture has focused on the brain’s response to negative outcomes, so
the ongoing study of neural and behavioral sensitivity to positive
feedback holds promise for understanding schizophrenia patients’
responsiveness to environmental contingencies.

All of the patient participants in this study were taking APM,
so it is important to consider the possible effects of these med-
ications on the DA system and on the results of this study. The
results of prior work examining the impact of APM on the ERN
are mixed. Acute administration of haloperidol (Zirnheld et al.,
2004; de Bruijn et al., 2006) and olanzapine (de Bruijn et al., 2006)
to healthy participants diminishes ERN amplitude; however, Kopp
and Rist (1999) found that medication dose was unrelated to ERN
amplitude in schizophrenia patients and Bates et al. (2004) found
that schizophrenia patients’ ERNs increased in amplitude fol-
lowing hospital admission and clinical stabilization (presumably
involving optimization of APM). Similarly, ACC activity during a
response competition task normalized in medication-naïve schiz-
ophrenia patients after treatment with atypical APM (Snitz et al.,
2005). Functional MRI studies suggest that medication effects on
reward-related activity vary depending on the class of APM and
the phase of reward processing. Ventral striatal activity in schizo-
phrenia patients taking atypical APMs, but not those taking typical
APMs, does not differ from controls during reward anticipation
(Juckel et al., 2006; Schlagenhauf et al., 2008). Patients taking
typical APMs showed less ventral striatal activity than patients
taking atypical APMs during reward anticipation but not follow-
ing reward receipt (Kirsch et al., 2007). In the current study, it
is unlikely that APM caused the feedback ERN to be normalized
in schizophrenia since the response ERN was reduced in these
patients, although it is arguable that the dissociation that we have
documented suggests that APM could have a differential effect on
the feedback and response ERN. Alternatively, it is possible that
APM does indeed normalize the functioning of the DA system

and the mechanisms that generate the error-related ERPs but, as
described above, the input into that system (the stimulus–response
values) is weak, causing the system to be responsive to external
stimuli (feedback) but not internal stimuli.

Our empirical data and modeling results suggest that schizo-
phrenia patients have a deficit in representing the value of actions
to be taken in the context of stimuli that offer some type of out-
come. Our findings are consistent with Feinberg’s (1978) prescient
observation that some symptoms of schizophrenia may arise from
disturbed efference copy, a duplicate motor command signal used
for the purpose of action monitoring (Angel, 1976). This concept
has since been refined into computationally specific theories of
motor control and their disruption in schizophrenia (e.g., Frith
and Done, 1988; Frith et al., 2000). Evidence for this impairment
consisted at first of behavioral data indicating abnormal error cor-
rection (Malenka et al., 1982, 1986; Frith and Done, 1989) and
later of electrophysiological data indicating a reduced response
ERN (Kopp and Rist, 1999; Alain et al., 2002; Mathalon et al.,
2002; Bates et al., 2004; Morris et al., 2006, 2008) in this popu-
lation, both of which appear to depend on a neural mechanism
for evaluating internally generated motor signals (e.g., Rabbitt,
1966; Gehring et al., 1993; Allain et al., 2004). Our data do not
distinguish between a reduction of ERN amplitude in schizophre-
nia due directly to a weakened representation of response value or
indirectly to impaired efference copy giving rise to abnormal val-
uation. Either way, our results demonstrate that this monitoring
impairment is in fact limited to internal sources of performance
information and does not extend to external sources of infor-
mation. Further, our computational modeling of these findings
suggests that the impairment may reflect a specific inability to
attribute values to behavior – that is, whether a response is “good”
or “bad” – and to utilize that information to guide action selection
for a specific end (Gold et al., 2008).
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