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Cofilin is an actin-binding protein that regulates filament dynamics and depolymerization.

The over-expression of cofilin is observed in various cancers, cofilin promotes cancer

metastasis by regulating cytoskeletal reorganization, lamellipodium formation and

epithelial-to-mesenchymal transition. Clinical treatment of cancer regarding cofilin has

been explored in aspects of tumor cells apoptosis and cofilin related miRNAs. This

review addresses the structure and phosphorylation of cofilin and describes recent

findings regarding the function of cofilin in regulating cancer metastasis and apoptosis in

tumor cells.
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INTRODUCTION

Actin-binding proteins are abundant cellular proteins that regulate cell function by mediating actin
polymerization and remodeling (Dos Remedios et al., 2003; Virtanen and Vartiainen, 2017). Cofilin
is an actin-binding protein and is function as a severing protein that severs actin filaments (Wang
et al., 2007; Huang et al., 2014; Chang et al., 2015). Cofilin is known as a regulator of actin filament
dynamics, it is a small protein of ∼21 kDA that is ubiquitously expressed in all vertebrates and
freely diffuses in eukaryotic cells (Shishkin et al., 2016). Cofilin promotes the conversion of actin
filaments by enhancing the F-actin depolymerization and inhibiting the G-actin polymerization,
which are essential in the actin filament dynamics of eukaryotes (Berger and Moeller, 2011). The
phosphorylation and dephosphorylation of cofilin at the Ser3 site are crucial mechanisms for
actin depolymerization and assembly. Once cofilin is activated by dephosphorylation, it servers
actin by translocating into the nucleus with binding to actin (Ishikawa-Ankerhold et al., 2017). In
recent decades, studies have reported that overexpression of cofilin is universal for cancer cells,
regardless of the type of tumor, increased levels of cofilin is positively correlated with malignant
phenotypes, as well as the cancer metastasis (Yang et al., 2020). Cancer metastasis involves tumor
cell migration, which is a process requires cell motility to translocate tumor cells from the primary
organ. Cofilin promotes the cell motility by regulating the cytoskeletal reorganization, promoting
the lamellipodium formation, cell–cell adhesion dissolution, epithelial-to-mesenchymal transition
(EMT) process and “migration-by-tethering” mechanism, thus participate in the cancer metastasis.
As an important regulator of cancer metastasis, more and more studies explored the potential of
cofilin being a therapeutic target in tumors. Activated cofilin translocates to the outermitochondrial
membrane and interacts with dynamin-related protein 1 (Drp1), induces mitochondrial fission and
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promotes cytochrome C release, finally leading to apoptosis
in tumor cells (Hoffmann et al., 2019; Hu et al., 2020). This
review discusses the functional role of cofilin in cancer metastasis
and provides evidence for clinical perspective of cofilin in
cancer treatment.

STRUCTURE OF COFILIN

The amino acid sequences of cofilin consists two actin-binding
sites, the F-site and the G/F-site. The F-site locates in the N-
terminus, which is responsible for binding to F-actin and severing
actin filaments. The G/F-site, locates in the C-terminus, binds
to both G-actin and F-actin in the same ratio (Nishida et al.,
1984; Lappalainen et al., 1998; Shukla et al., 2015). The sequence
schematic and ribbon diagrams are shown in Figure 1. Activated
cofilin dissociates subunits of actin filaments by translocating
into the nucleus with binding to actin (Ishikawa-Ankerhold
et al., 2017). Actin hydrolyzes ATP into ADP, cofilin binds to
ADP-actin in the actin filaments, leads to the severing and
dissociation of actin filaments (Carlier et al., 1997). During
this process, free barbed ends are produced and turnover rate
is increased, which promote the cyclic use of F-actin (Carlier
et al., 1997; Bravo-Cordero et al., 2013; Hsiao et al., 2015).
Several binding sites of cofilin exert essential effects on the
regulation of cellular functions. The Asp98 and His133 sites of
the cofilin protein build a salt bridge, and the construction
of this bridge is especially correlated with the pH sensitivity
and stabilization of the molecule structure (Pope et al., 2004).
Amino acids 15–30 and amino acids 106–166 locates in N-
terminus and C-terminus respectively, they are required for
mitochondrial targeting, thus play a crucial role in pro-apoptotic
function (Chua et al., 2003). Cys39, Cys80, Cys139and Cys147

are four important sites of the cofilin for oxidation-mediated
regulation of mitochondrial translocation (Klamt et al., 2009).
Phosphorylation/dephosphorylation of cofilin can be achieved
through Ser3 site in combination with LIM domain kinase
(LIMK) and slingshot phosphatases (SSH). Phosphorylation
on Ser3 deactivate cofilin, while dephosphorylation works in
the opposite way. In addition, the phosphorylation status of
Ser3 also affects the ability of cofilin to translocate to the
mitochondria (Chua et al., 2003; Kalendová et al., 2014).
Dephosphorylated cofilin can translocate to the mitochondria
and participate in the regulation of mitochondria-mediated
apoptosis (Kalendová et al., 2014).

COFILIN PHOSPHORYLATION/
DEPHOSPHORYLATION

The phosphorylation/dephosphorylation status determine the
activity of cofilin, which is a key regulating mechanism of actin
filament dynamics and cell motility, including actin cytoskeletal
reorganization and cell-cell adhesion (Mizuno, 2013). Actin
filament dynamics mainly refer to the coordinated assembly and
disassembly of F-actin, which are responsible for the alteration
of cytoskeletal structure (Etienne-Manneville and Hall, 2002).
Phosphorylation on ser3 deactivate cofilin and release it from

FIGURE 1 | Structure of cofilin. (A) Sequence schematic of the secondary

structural elements and binding sites of cofilin according to PDB (1Q8G). The

red and blue boxes below the sequence correspond to α-helices and

β-strands, respectively. Ser3 is labeled in magenta, Asp98 and His133 are

labeled in yellow, and Cys39, Cys80, Cys139 and Cys147 are labeled in green.

The yellow line indicates the salt bridge. (B) Ribbon diagrams of cofilin

generated by PyMol. The α-helices and β-strands are shown in red and blue,

respectively. The binding sites are shown in the same color as in (A).

actin, thereby inhibit its ability to severing and depolymerizing
F-actin, decreasing the cellular concentration of G-actin and
consequently decreasing the turnover rate of actin filaments
(Hotulainen et al., 2005; Kiuchi et al., 2007, 2011). The
phosphorylation of cofilin is regulated by activated LIM kinases
(LIMK1 and LIMK2), LIMK is a kinase that includes two main
isoforms. LIMK1 is expressed mostly in the parathyroid gland,
cerebral cortex, bronchus and stomach, while LIMK2 is highly
expressed in the thyroid gland, smooth muscle, pancreas, testis,
and ovaries (Po’uha et al., 2010; Mardilovich et al., 2015). LIMKs
can be activated by phosphorylation, ROCK, PAK1, PAK2, PAK4
and MRCKα are regulators that reduce LIMK phosphorylation
by binding to Thr508 (LIMK1) and Thr505 (LIMK2) threonine
residue, whereas upstream effectors are Rho GTPases, including
RhoA, Rac1, and Cdc42 (Mizuno, 2013). Therefore, Rho
GTPase pathway is essential for cofilin phosphorylation. The
dephosphorylation of cofilin is regulated by SSH phosphatase,
SSH1, SSH2, and SSH3 are three isoforms of SSH, all SSHs
efficiently dephosphorylate cofilin and counteract aberrant F-
actin assembly (Niwa et al., 2002; Ohta et al., 2003), although
the effect of SSH3 dephosphorylating cofilin is weaker than SSH1
and SSH2. SSH1, SSH2, and SSH3 have different subcellular
distributions, and their expression patterns in different tissues are
different, indicating that these three isoforms may have unique
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mechanisms by which they participate in cellular and biological
functions (Niwa et al., 2002; Ohta et al., 2003). SSH increases
the level of dephosphorylated cofilin on Ser3, activates the cofilin
ability of binding to actin and severing F-actin, resulting in the
depolymerization of F-actin and increasing of actin turnover rate.
This is an important mechanism for the formation and extension
of F-actin-rich lamellipodium at the leading edge of the cell,
which is responsible for polarized cell mobility. In addition, SSH1
can inhibit the LIMKs phosphorylation activity toward cofilin
by dephosphorylating them (Soosairajah et al., 2005), indicated
that SSH1 activates cofilin not only by dephosphorylating cofilin,
but also by suppressing the LIMK/cofilin activity. Overall, LIMK
and SSH are two important regulators of cofilin, can bind
to cofilin at Ser3 and regulate the activity of cofilin and the
invasion ability of cells (Ivanovska et al., 2013). Protein-protein
interaction (PPI) enrichment shows that cofilin, LIMK and SSH
are strongly correlated with each other, the interactome map
constructed by the 10most significant correlated proteins around
cofilin, LIMK and SSH is shown in Figure 2. ROHA, RHOC,
ROCK1, ROCK2, and PAK4 are upstream effectors of LIMKs in
Rho GTPase signaling pathway, which can indirectly promote
the phosphorylation of cofilin and inhibit the activated cofilin
activity of depolymerizing F-actin, thus can stabilize the actin
cytoskeleton. On the contrast, decreasing of phosphorylated
cofilin related to increasing of actin turnover. Mutations of SSH
loss the function of dephosphorylating cofilin, resulting in a
large increase of P-cofilin level and F-actin in cells, which is
a similar phenomenon induced by LIMK. In this case, LIMK
and SSH are considered to act in two opposite directions
and are essential for the balance of the phosphorylation
and dephosphorylation of cofilin, dephosphorylated cofilin is
considered as activated cofilin and is necessary for severing F-
actin, but phosphorylation is equally important as a prerequisite
of binding and severing F-actin for this process can release the
cofilin from filaments. Therefore, LIMK and SSH work together
mediating the phosphorylation/dephosphorylation status of
cofilin, this is essential for cofilin to function properly as it
maintains the dynamic balance between actin polymerization
and actin turnover rate, thus affects the pool of G-actin and F-
actin (Jovceva et al., 2007; Scott et al., 2010). However, the activity
of SSH and LIMK is not always opposite. SSH1 can also stabilize
F-actin from cofilin-induced depolymerization and severing
(Kurita et al., 2007), suggested that activation of SSH1 may
alter its function dramatically, activated SSH1 depolymerizes F-
actin by phosphatase cofilin, while inactivated SSH1 stabilizes F-
actin-bundling. LIMK also participates in assembly of new actin
filaments by severing F-actin in collaboration with actomyosin
contraction via RhoA/ROCK pathway (Wang and Townes-
Anderson, 2015).

COFILIN IN CANCERS

Cofilin as a Potential Biomarker of Cancers
The mRNA levels and expression of cofilin were significantly
increased in tumor tissues than in benign prostatic hyperplasia
tissues or normal tissues, this was a common phenomenon that
observed in various types of cancer, such as hepatoblastoma (Liu

FIGURE 2 | The protein-protein interactions (PPI) of cofilin, LIMKs and SSHs.

Colored nodes represent query proteins and first shell of interactors, white

nodes represent second shell of interactors, lines represent the interactions

between two proteins.

et al., 2018), breast cancer (Maimaiti et al., 2017), non-small cell
lung cancer (Wei et al., 2012), prostate cancer (Collazo et al.,
2014; Lu et al., 2015), colorectal cancer (Sousa-Squiavinato et al.,
2019), vulvar squamous cell carcinoma (Wu et al., 2016), ovarian
cancer (Chen et al., 2014), and bladder cancer (Wang et al.,
2017). The overexpression of cofilin may be closely related to the
proliferation, invasion, and migration of cancers (Wang et al.,
2007; Bernstein and Bamburg, 2010; Bravo-Cordero et al., 2013;
Chang et al., 2015). High expression of cofilin was found to be
positively correlated with dedifferentiation, lymphatic metastasis
(Lu et al., 2015; Wu et al., 2016), haematogenous dissemination
of tumors (Satoh et al., 2017) and shorter overall survival
(Maimaiti et al., 2017). However, tumor size, pathological stage
and patient age were not found to be associated with the
expression of cofilin (Lu et al., 2015; Maimaiti et al., 2017). In in
vitro experiments, when cofilin was knocked down, the growth
and chemotaxis of tumor cells were significantly decreased; in
addition, the cells were arrested in the G1 phase of the cell
cycle, lamellipodium formation was disrupted, and invasion
and metastasis were reduced (Wu et al., 2016). In addition to
the overexpression of cofilin in many kinds of cancers, one
study found that dephosphorylated cofilin expression in breast
cancer tissues predicted lower overall survival, suggested that
the dephosphorylated cofilin expression, other than the overall
cofilin expression, can affect breast cancer prognosis (Maimaiti
et al., 2016). Another study found that the cofilin immune
complexes levels were significantly higher in pancreatic ductal
adenocarcinoma patients than in healthy controls (Satoh et al.,
2017). These results suggested that cofilin, including cofilin
immune complexes, is a potential diagnostic tumor biomarker,
it can be a therapeutic target and prognosis indicator of cancers.

Cofilin Regulates the Cancer Metastasis
Multiple studies have verified that inhibition or enhancement
of cofilin expression can make significant differences in tumor
cell dynamics, thus influence the cancer metastasis. Cancer
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metastasis is a progress involving tumor cell migration into
lymph nodes or blood vessels (Nieto et al., 2016). Tumor cell
migration can be promoted by the formation of lamellipodium,
constantly and repeatedly pulling the posterior cell forward
under the action of cell contractility (Aung et al., 2014;
Dalaka et al., 2020). Dephosphorylation of cofilin by SSH
can induce the lamellipodium formation and extension, thus
affecting the morphology, polarity and movement direction
of cells (Chan et al., 2009). Cofilin is an indispensable
controller of lamellipodium formation (Shishkin et al.,
2016). Dephosphorylated cofilin promotes actin cytoskeleton
reorganization by depolymerizing F-actin, stimulates actin
turnover and, which augments the lamellipodium formation
and extension, promote the cancer metastasis (Ghosh et al.,
2004; Chan et al., 2009; Bravo-Cordero et al., 2013). Cofilin
mediated lamellipodium formation and lamellipodium related
cellular mobilization can be inhibited by the activation of
JNK/Bnip3/SERCA/CaMKII pathways, therefore suppress the
hepatocellular carcinoma metastasis. Phosphorylated JNK
contributed to Bnip3 expression. Higher Bnip3 contributed to
ATP undersupply (Fuhrmann and Brune, 2017). The energy
disorder blunted the ability of SERC, leading to the activation
of CaMKII (Hu et al., 2017). CaMKII can inhibit the F-actin
assembly and lamellipodium formation by phosphorylating
cofilin, eventually limiting the cancer migration (Zhang et al.,
2016). SSH can be recruited to the lamellipodium and activated
by F-actin, leads to the dephosphorylation of cofilin in the
lamellipodium (Kurita et al., 2008). Inactivation of SSH1
inhibits the dephosphorylation of cofilin, limit actin cytoskeleton
reorganization and lamellipodium formation, suppress the
metastasis of cancer (Peterburs et al., 2009; Zhuang et al.,
2018). Upregulation of SSH1 increases tumor cell migration
in pancreatic cancer (Wang et al., 2015). Phosphorylation of
cofilin regulated by LIMK can abrogate actin depolymerization
activities and enhances stabilization of actin filament, inhibits the
lamellipodium formation and tumor cell mobilization (Wioland
et al., 2017). The overexpression of LIMK1 phosphorylated
cofilin and supressed the cancer metastasis by suppressing of
lamellipodium formation, while mutated LIMK1 increases the
motility of tumor cells (Meyer et al., 2005; Li Z. et al., 2014),
similar results were observed in studies of LIMK2 (Collazo et al.,
2014; Xu et al., 2019). Nonetheless, conflicting results have been
observed regarding the role of LIMK. LIMK1 overexpression
promoted the cancer progression (Tania et al., 2013), while
knockdown of LIMK1 inhibits the lamellipodium formation and
reduced tumor cell migration (Nakashima et al., 2005; Chen
et al., 2014). These contrary results indicated that although
LIMK and SSH phosphorylate and dephosphorylate cofilin
respectively, they don’t necessarily work in an opposite way.
Mathematical simulations suggested that LIMK-dependent
cofilin phosphorylation also participates in assembly of new actin
filaments, phosphorylated cofilin releases from filaments, which
allows cofilin ready to bind and sever other filaments (Bravo-
Cordero et al., 2013). Activation of RhoA-ROCK-MLC/MLCP
pathway promote severing of actin filaments in collaboration
with actomyosin contraction through cofilin activity (Wang and
Townes-Anderson, 2015). LIMK promote polymerization of

actin, which contributes to the formation of new actin branches
and extension of actin meshwork, this process drives membrane
forward at the leading edge. Overall, the dynamic balance
between phosphorylation and dephosphorylation of cofilin is the
key to F-actin homeostasis, LIMK and SSH are two important
effectors of cofilin activity, dysfunction of LIMK or SSH would
break this balance and lead to pathological changes, such as
lamellipodium formation and cancer metastasis.

Moreover, cofilin can promote the cancer metastasis by
regulating epithelial-to-mesenchymal transition (EMT). EMT
can dissolve cell–cell adhesion and alter the cell morphology to
fibroblast-like forms as a consequence of actin reorganization,
which collectively translate into metastasis properties (Chaffer
et al., 2016; Derynck and Weinberg, 2019; Yang et al., 2020).
Cofilin is a terminal effector of Rho GTPase signaling, which
is a major pathway of the actin cytoskeleton dynamics.
Moreover, Rho GTPases are responsible for the formation of
cell-cell adhesion and stabilization of adhesion (Anastasiadis and
Reynolds, 2001). One study found a prominent accumulation
of F-actin in EMT tumor cells, knockdown of cofilin abolished
the morphologic pattern in EMT tumor cells. This result
indicated that the EMT process in tumor cells may be
regulated by phosphorylation of cofilin via Rho GTPase
signaling (Haga and Ridley, 2016; Sousa-Squiavinato et al.,
2019). Rho/ROCK/LIMK/cofilin is one of the Rho GTPase
pathways, the inhibition of Rho/ROCK/LIMK/cofilin pathway
resulted in the destroy of F-actin stabilization and redistribution
of cytoplasmic actin via inhibition of cofilin phosphorylation,
which promoted EMT process as well as gastric cancer
metastasis. RICS and PRP4 are two GTPase-activating proteins
that directly interacts with Rho, they function as upstream
effectors and inhibit phosphorylation of cofilin by inactivate
LIMK (Islam et al., 2018; Xu et al., 2020). However, another
cofilin related pathway showed opposite relationship between
phosphorylation of cofilin and EMT process. The inhibition of
the Src/Akt/mTOR/cofilin pathway impaired the organization of
actin cytoskeleton and suppress the EMT in melanoma cells via
phosphorylation of cofilin. These results suggested that apart
from phosphorylation/phosphorylation of cofilin, the breaking
balance of phosphorylated and non-phosphorylated cofilin may
be the key to changes in the dynamics of the actin cytoskeleton
and EMT process of tumor cells (Wang et al., 2006). In addition,
PRP4 can mediate the EMT by increasing the expression of PP1A
other than cofilin. PP1A induces dephosphorylation of MIIP,
resulting in the down-regulation of E-cadherin protein levels,
which further promote the process of EMT (Islam et al., 2018).
This might be another reason of the opposite results.

In addition to promoting EMT and lamellipodium formation,
there are other potential mechanisms of cofilin participate in
cancer metastasis. The mechanically rigid tissue surrounding
a tumor is denser compared to normal tissue, and increased
rigidity of substrates can enhance tumor cell migration (Tlsty
and Coussens, 2006). Mechanical stimuli (tension) can trigger
a mechanical response pathway in normal fibroblasts, resulting
in increasing amount of fibronectin in the substrates (Kostic
and Sheetz, 2006; Friedland et al., 2009). Mechanical stimuli
(tension) can induce the decreasing of actin twist angle and
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change the filaments structural, increase the ratio of filament
stiffness (Matsushita et al., 2011). Tension triggers a mechanical
response pathway in normal fibroblasts, resulting in increasing
amount of fibronectin in the substrates (Kostic and Sheetz, 2006;
Friedland et al., 2009). During this process, cofilin plays a crucial
role (Hayakawa et al., 2011). Mechanical stimuli (tension) can
be directly sensed by actin filaments and induce changes in the
filament dynamics, which decreases the binding rate of cofilin to
F-actin, leading to an inhibition of the severing activity of cofilin.
Cofilin preferentially binds to flexible twisted F-actin, when
tension in the filament is increased by stretch, the magnitude of
torsional fluctuations of the filament will be reduced, resulting in
an inhibition of cofilin interaction with F-actin (Hayakawa et al.,
2011; Matsushita et al., 2011). In in vitro experiment, the invasion
of stimulated tumor cells are higher than non-stimulated cells,
but the invasion between stimulated or non-stimulated tumor
cells was not significant different when cofilin was silenced,
indicated that cofilin is needed in the tension induced tumor cell
migration (Menon and Beningo, 2011).Migration-by-tethering is
a mechanism proposed recently. This mechanism was observed
and explored in breast cancer, dendritic spine-like structure
(DSLS) narrows the distance between tumor cells and osteogenic
cells, thus increases the mobility of the otherwise inert tumor
cells. DSLS is the key to migration-by-tethering, it is abundant
with cofilin, thereby it has high flexibility and cell adhesion, this
ability allows DSLS to combine with osteogenic cells through cell-
cell adhesion, such as adherheterotypic adherens junctions and
gap junctions. This process can drive cancer cells that do not
possess intrinsic migratory properties to acquire the ability of
migration (Muscarella et al., 2020).

CLINICAL PERSPECTIVE OF COFILIN IN
CANCER TREATMENT

Cofilin Is Involved in Regulating Apoptosis
in Tumor Cells
Apoptosis is an active, controlled and complicated process, it
is the degradation of a highly conserved protein or organelle
in eukaryotes (Shi et al., 2020). Allyl isothiocyanate (AITC)
(Tang et al., 2014), urisolic acid (UA) (Li R. et al., 2014),
etoposide (Chua et al., 2003), arnidiol (Hu et al., 2020), and
4-methylthiobutyl isothiocyanate (Grzanka et al., 2011) can
induce apoptosis in several tumor cell lines, such as SH-SY5Y,
HL60, COS-7, and HeLa cells (Chua et al., 2003), through the
cofilin pathway by regulating mitochondrial translocation and
fission (Hoffmann et al., 2019; Hu et al., 2020). The fusion
and division of mitochondria are two continuous dynamic
antagonistic processes, which maintain the morphology of
mitochondria and apoptotic fission plays essential role in cellular
physiology (Sheridan and Martin, 2010). Cofilin involves in the
process of mitochondrial fission (Hatch et al., 2014; Li et al.,
2015). ROCK1/PTEN/PI3K signaling pathway is the first step
in mitochondrial division (Wang et al., 2012; Li et al., 2013).
Activated ROCK1 is the upstream protein that directly regulates
PTEN (Di Cristofano and Pandolfi, 2000; Yan and Backer, 2007;
Li R. et al., 2014). The activation of ROCK1 leads to the

activation of PTEN, resulting in the inhibition of PI3K activity
(Vasudevan et al., 2011). PI3K is the upstream molecule that
directly regulates PP1/PP2A (Bamburg and Bernstein, 2016).
Inhibition of PI3K activity will inhibit the dephosphorylation
of Akt in PI3K pathway, increase PP1/PP2A activity, and
lead to the increase of Cofilin phosphorylation (Song et al.,
2015). PP1/PP2A is a direct upstream regulator of Cofilin
dephosphorylation activation (Ambach et al., 2000; Eichhorn
et al., 2009). Increased expression of PP1/PP2A phosphatase can
promote cofilin dephosphorylation activation (Delorme-Walker
et al., 2015). Then the dephosphorylated cofilin translocates
to the outer membrane of the mitochondria to bind directly
to F-actin, and depolymerize the F-actin into G-actin, causing
the mitosis of the mitochondria. The transient mitochondrial
assembly of F-actin is vital for mitochondrial fission, it ensures
the smooth progress of the dynamic cycle of F-actin/G-actin in
the process of mitochondrial division, and thus participates in the
regulation of mitochondrial division (Chen et al., 2000; Li et al.,
2015). Subsequently, mitochondrial damage and cytochrome C
release lead to the degradation and activation of Capase-9 and
Capase-3, and finally lead to apoptosis (Morley et al., 2003).
One study showed that inhibition of the Src/Akt/mTOR signaling
pathway resulted in decreased levels of dephosphorylation of
cofilin (Li et al., 2019), this indicates that Src/Akt/mTOR
signaling pathway may be another upstream signaling pathway
activated by cofilin.

The mitochondrial regulation dominated by cofilin
dephosphorylation activation is closely related to Drp1 and
PINK1/Park2 pathways (Serasinghe and Chipuk, 2017). The
direct interaction between cofilin and Drp1 in the outer
membrane of mitochondria contributes to mitochondrial
division (Estaquier and Arnoult, 2007; Hu et al., 2020).
Knocking down the expression of cofilin or Drp1 will affect
their interaction, resulting in the blocking of mitochondria
division and the release of cytochrome C and apoptosis (Li et al.,
2015; Rehklau et al., 2017). The dephosphorylation status of
cofilin Ser3 site and the dephosphorylation of Drp1 Ser637 site
are key sites of cofilin-Drp1-mediated mitochondrial damage
(Chua et al., 2003; Archer, 2013; Bamburg and Bernstein, 2016).
The dephosphorylated activated plasmid cofilin (S3A) could
induce the increase of cofilin mitochondrial translocation,
leads to the increase of mitochondrial division and induce
cell apoptosis, while its phosphorylated inhibitory plasmid
cofilin (S3E) could induce the decrease of mitochondrial
translocation and block mitochondrial division, resulting in the
decrease of apoptosis (Hu et al., 2020). The dephosphorylated
activated plasmid Drp1 (S637A) can induce the increase of
Drp1 mitochondrial translocation, which leads to the increase of
mitochondrial division and apoptosis; while the phosphorylated
inhibitory plasmid Drp1 (S637D) reduces the mitochondrial
translocation of Drp1 and inhibits mitochondrial division
resulting in the decrease of apoptosis (Hu et al., 2020). Drp1,
which is a hydrolytic GTP enzyme, is a key molecule in
regulating mitochondrial division in mammalian cells (Rehklau
et al., 2017). In the early stage of apoptosis, Drp1 protein can
be dephosphorylated and activated and translocated to the
mitochondrial outer membrane together with dephosphorylated
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cofilin (De Vos et al., 2005; Ji et al., 2015). Cofilin binds directly
to the potential mitotic site of mitochondria and wraps the
mitochondria to form a circular complex that can regulate
mitochondrial division (Satoh et al., 2017). The distance or
angle between molecules is changed by GTP hydrolysis of
Drp1, then contracting the Drp1 ring gradually and constricting
the mitochondria, and then cause mitochondrial damage by
regulating the division of the mitochondria (Frank et al., 2001;
Wang et al., 2009). At the same time, mitochondrial division
is accompanied by PINK1/Park2 pathway mitochondrial
autophagy (Greene et al., 2012; Ashrafi and Schwarz, 2013;
de Vries and Przedborski, 2013). PINK1/Park2 pathway is
the key pathway to regulate mitochondrial autophagy (Jin
et al., 2010; Springer and Kahle, 2011). Cofilin can regulate
mitochondrial autophagy mediated by PINK1/Park2 pathway by
affecting mitochondrial membrane potential (Narendra et al.,
2010; Fedorowicz et al., 2014). The expression of cofilin can
induce mitochondrial division, down-regulate the mitochondrial
membrane potential, further aggravate the down-regulation
of the expression of MPP β, PARL and AFG3L2, lead to the
activation of PINK1, increase the mitochondrial translocation of
Park2 and the occurrence of mitochondrial autophagy (Li et al.,
2018). A schematic of cofilin-mediated apoptosis is shown in
Figure 3.

MicroRNAs as Inhibitors of Cofilin Activity
MicroRNAs (miRNAs), such as miR-342, miR-429, miR-182-
5p, act as inhibitors of cofilin activity and upstream effectors

of proliferation and migration in cancer cells (Lowe and Lin,
2000; Lin et al., 2010; Tian et al., 2015; Liu et al., 2020). Other
miRNAs, such as miR-138 and miR-384, modulate the activity
and expression of cofilin through the LIMK/cofilin pathway
(Chen et al., 2014; Yu et al., 2019). MiRNAs are non-coding
RNAs that can suppress mRNA translation and inhibit protein
activity by binding to the 3′UTR of their target mRNAs (Bartel,
2004; Ozols, 2005). MiRNAs are known to be tumor suppressors
and are considered as therapeutic targets, they play crucial roles
in various cellular processes that are closely related to tumor
progression, overexpression of miRNAs significantly inhibit the
proliferation (Hatfield et al., 2005; Garzon et al., 2010; Hayes
et al., 2014; Su et al., 2015), dedifferentiation and migration of
cancer cells (Lowe and Lin, 2000; Tian et al., 2015; Liu et al.,
2020). Downregulation of miRNAs and overexpression of cofilin
have been observed in different types of cancers, which may be
closely related to the overexpression of oncogenes (Zhou et al.,
2013; Chen et al., 2014; Tian et al., 2015; Yu et al., 2019; Liu
et al., 2020). MiR-342 acts as an upstream effector of cofilin
in human breast cancer cells, miR-429 targets cofilin in colon
cancer cells; miR-182-5p binds to the 3′UTR of cofilin mRNA at
position 135–142 in human bladder cancer cells (Lowe and Lin,
2000; Tian et al., 2015; Liu et al., 2020). Cofilin expression can be
downregulated or upregulated due to the transfection-mediated
overexpression or inhibition of thesemiRNAs, respectively (Lowe
and Lin, 2000; Tian et al., 2015; Liu et al., 2020). Cancer cells
transfected with anti-miRNAs can be rendered more invasive by
promoting cofilin activity. These results indicated that miRNAs

FIGURE 3 | Key figure showing a schematic of cofilin-mediated apoptosis (Li et al., 2013). UA, AITC, etoposide and arnidiol induce apoptosis through the cofilin

pathway. Activated cofilin translocates to the outer mitochondrial membrane and interacts with Drp1, induces mitochondrial fission and promotes cytochrome C

release, finally leading to apoptosis.
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mediate the cancer metastasis by regulating the activity of
cofilin (Tian et al., 2015). Some other miRNAs can indirectly
affect the activity of cofilin by regulating the LIMK1/cofilin
signaling pathway, and upregulation of certain miRNAs inhibits
the levels of LIMK and vice versa. MiR-138 supressed the cancer
metastasis by targeting LIMK1. Further experiment founds
that cofilin participated in the inhibitory effect of miR-138
regulating tumor cells. Although LIMK1 was upregulated within
knockdown miR-138 in cofilin knockout stable cell lines, the
migration and invasion ability of tumor cells were not sufficiently
promoted (Chen et al., 2014). MiR-384 affects cofilin activity by
targeting LIMK1, thus modulating the progression of esophageal
squamous cell carcinoma (Yu et al., 2019). These findings suggest
that miRNAs act as promising inhibitors of cancer metastasis by
inhibiting LIMK1/cofilin signaling activity.

CONCLUSION

Cofilin is an actin-binding protein that is expressed in all kinds
of mammals. Great progress has been made in understanding
the structural function and biological effects of cofilin, and its
effects on tumor development have been well-studied. Cofilin was
found to be the major protein in different human cancer cells that
can modulate cellular morphology, mitosis and mitochondrial
fission. Cofilin plays an essential role in the cancer metastasis
and apoptosis of tumor cells and is considered a promising
biomarker of different cancers. The balance of kinases (LIMK1)
and phosphatases (SSH1) can change the activation of cofilin, and
LIMK1 and SSH1 have been extensively studied as regulators in
cofilin-mediated pathways in cell motility and cancer metastasis.
However, there are contradictory results and data regarding the
expression of cofilin in tumor cells, effects of dephosphorylation

of cofilin and the expression level of LIMK1 on cell migration

and invasion. Further studies are needed to explore the potential
mechanisms behind these contradictory results. The effect of
cofilin on apoptosis is a new focus of studies on tumor
development, and a growing body of research has found that
cofilin is involved in apoptosis under the regulation of AITC,
UA, etoposide and arnidiol in various leukemia cells and breast
cancer cells. Active (dephosphorylated) cofilin induces apoptosis
by translocating to the outer membrane of mitochondria and
promoting the release of cytochrome C. Therefore, cofilin can
be developed as a new anti-tumor target. The regulation of
apoptosis by cofilin in cancer cells can be a very promising
research direction. With further study of the pathway linking
cofilin and apoptosis, cofilin may be not only a biomarker and
prognostic indicator of cancers but also a therapeutic target for
various cancers.
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