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In response to viral infections, the innate immune system rapidly activates

expression of several interferon-stimulated genes (ISGs), whose protein and

metabolic products are believed to directly interfere with the viral life cycle.

Here, we argue that biochemical reactions performed by two specific pro-

tein products of ISGs modulate central carbon metabolism to support a

broad-spectrum antiviral response. We demonstrate that the metabolites

generated by metalloenzymes nitric oxide synthase and the radical S-adeno-

sylmethionine (SAM) enzyme RSAD2 inhibit the activity of the housekeep-

ing and glycolytic enzyme glyceraldehyde 3-phosphate dehydrogenase

(GAPDH). We discuss that this inhibition is likely to stimulate a range of

metabolic and signalling processes to support a broad-spectrum immune

response. Based on these analyses, we propose that inhibiting GAPDH in

individuals with deteriorated cellular innate immune response like elderly

might help in treating viral diseases such as COVID-19.

Introduction

Central carbon metabolism converts sugars into a

range of metabolic precursors that are used to generate

biomass and energy required for the cellular function

[1] (Fig. 1A). Consequently, remodelling of central car-

bon metabolism occurs in many human diseases such

as cancer [2] and is at the forefront of the host–patho-
gen interactions. Pathogens like bacteria or viruses are

dependent on host cellular metabolites and proteins to

support their reproduction. To fight viral infections,

all cells are equipped with a nonspecific response con-

sisting of the expression of several proteins and

enzymes, induced by different types of interferons, and

thus, are referred to as interferon-stimulated gene

(ISG) products. Most previous studies have led to the

conclusion that the protein products of these genes

directly act on the viral life cycles to restrict their repli-

cation [3,4]. On the contrary, we propose a new model

based on available data in the literature and an anal-

ogy from a system engineering perspective (Fig. 1B): A

cell can be considered as a factory and central carbon

metabolism as the main process for converting a raw

material to products and energy for the factory to

function (Fig. 1B). When an infectious agent enters

the factory, it will highjack the main process and use

the products for its reproduction. Under this circum-

stance, the first response of the control room would be

to use some of the available products in a second reac-

tion (analogous to the function of ISGs) to directly
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block viral replication and to inhibit the main process.

This would limit the nutrients for the reproduction of

the infectious agent, while redirecting the materials

and energy to a third process that can eliminate the

invading agent. Accordingly, we suggest that the

metabolites generated by some ISG proteins contribute

to the remodelling of the central carbon metabolism in

support of a broad-spectrum antiviral immune

response. We discuss emerging evidence that supports

this model. We show how the early metabolites gener-

ated by the biochemical reactions of two ISG metal-

loenzymes, namely nitric oxide synthase (NOS) and

the radical-SAM enzyme RSAD2, inhibit the glycolytic

enzyme glyceraldehyde 3-phosphate dehydrogenase

(GAPDH) and how this inhibition is likely to support

a broad-spectrum antiviral immune response.

Mechanisms adopted by cells to
inhibit GAPDH

GAPDH is a housekeeping protein catalysing a critical

step in glycolysis, with additional functions in DNA

repair [5], cytoskeletal dynamics and vesicular traffick-

ing between cellular compartments [6] and redox sig-

nalling and apoptosis [7]. As a glycolytic enzyme, it

catalyses the NAD+-dependent transformation of glyc-

eraldehyde 3-phosphate (G3P or GAP) to 1,3-biphos-

phoglycerate (1,3-BPG) (Fig. 1A). Metabolomic

analysis together with computational studies have

revealed that flux through GAPDH is a rate-limiting

step in glycolysis [8]. Here, we discuss mechanisms

adopted by the cellular innate immune response to

inhibit NAD+-dependent conversion of G3P by

Fig. 1. Central carbon metabolism and viral infection. (a) Central carbon metabolism (glycolysis, pentose phosphate pathway and TCA cycle)

converts sugars to the building blocks of DNA and RNA, proteins and lipids. Additionally, it generates energy in the form of ATP and redox

cofactors NAD+/NADH and NADP+/NADPH. Abbreviations: LDs, lipid droplets; G6P, glucose 6-phosphate; F6P, fructose 6-phosphate; FBP,

fructose 1,6-biphosphate; G3P, glyceraldehyde 3-phosphate; DHAP, dihydroxyacetone phosphate; 1,3-BPG, 1,3-biphosphoglycerate; 3PG, 3-

phosphoglycerate; 2PG, 2-phosphoglycerate; PEP, phosphoenolpyruvate; 2-OG, 2-oxoglutarate. (b) A systems engineering analogy describing

function of the protein products of ISGs as (1) direct effectors of viral replication and (2) in the remodelling of central carbon metabolism to

support broad-spectrum immune response. The cell is like a factory and central carbon metabolism is the process 1. If an infectious agent

enters the factory, the first response of the control room would be to use some of the available products and energy (process 2) to either

directly inhibit viral replication (path 1) or to inhibit the production process (path 2). The outcomes of path 2 will be (i) reduction in formation

of products and energy to limit access of pathogen to these resources and (ii) support of process 3, which restricts replication of the

infectious agent.
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GAPDH, focussing on those associated with ISG

products specifically rather than other mechanisms

such as malonylation [9].

Inhibition of GAPDH by ddhCTP ribonucleotide

analogue generated by RSAD2 (viperin)

Radical S-adenosylmethionine (SAM) domain-con-

taining protein 2 (RSAD2) also known as viperin is a

member of the radical-SAM superfamily of enzymes

[10]. The RSAD2 gene is an interferon-stimulated

gene (ISG) whose expression is induced by type-I,

type-II and type-III interferons, directly by viruses

and by LPS [11–18]. It is known that expression of

RSAD2 restricts replication of a wide range of RNA

and DNA viruses in different cells [19,20] and this

effect is proposed to result from an altered metabolic

state [21]. Biochemical and cell biological studies

revealed that RSAD2 can catalyse the transformation

of CTP to its 3’-deoxy-3’,4’-didehydro analogue

(ddhCTP) [22]. Isotope labelling experiments [22],

structural analysis [23] and biochemical studies [24]

have also shed light on the enzymatic mechanism.

Biochemical experiments showed that ddhCTP may

act as a chain terminator of viral RNA-dependent

RNA polymerases (RdRps) (IC50> 20,000 µM) [22]. It

should be noted that the reported IC50 values of

ddhCTP as a chain terminator of viral RdRps were

not corrected for the observed background effect of

CTP on biochemical assays used to measure chain-

termination activity [25]. Nevertheless, if ddhCTP acts

as a chain terminator of viral RdRps, the question

that arises is why does then the cellular activity of

RSAD2 affects many processes like glucose homeosta-

sis [26] and expression of immune-related genes [27]?

To answer this fundamental question, metabolomic

experiments using HEK293T cells and macrophages

derived from human induced pluripotent stem cells

(hiPSCs) were used. It was discovered that cellular

activity of RSAD2 diminishes activity of NAD+-de-

pendent enzymes including that of GAPDH inside

cells (Fig. 2) increasing intracellular levels of G3P

and metabolites of pentose phosphate pathway

[25,28]. Subsequent biochemical studies confirmed that

ddhCTP inhibits activity of GAPDH in a test tube

with an IC50 value of 55.8 � 0.2 µM [25]. This value

is bout 400-fold less than the reported IC50 value of

ddhCTP as chain terminator and is less than the

reported cellular concentration of ddhCTP (100–
300 µM) [22]. These data suggest that under physio-

logical conditions ddhCTP is more efficient in inhibit-

ing GAPDH than acting as a chain terminator of

RdRps.

S-nitrosylation

Nitric oxide (NO) has emerged as a key player in

innate immune response to bacterial and viral patho-

gens [29,30]. It is synthesized from L-arginine by the

catalytic function of the metalloenzyme nitric oxide

synthase (NOS). In humans at least three isoforms of

NOS have been reported (NOS-I, NOS-II and NOS-

III) [31,32]. These metalloenzymes have binding sites

for NADPH, FMN, FAD and calmodulin (CaM). The

active site of all three isoforms has a haem cofactor

and catalyses conversion of L-arginine to NO and L-

citrulline in two steps [33]. Several reports have shown

that NO induces S-nitrosylation of GPADH, which

inhibits its activity (Fig. 2) [34–38]. It is suggested that

S-nitrosylation of the active site thiol leads to nonen-

zymatic ADP-ribosylation, which inactivates the pro-

tein [37].

Inhibition of GAPDH and a broad-
spectrum antiviral response

Inhibition of GAPDH by ddhCTP or S-nitrosylation

will likely result in an increase in the cellular availabil-

ity of NAD+. This will support protein ADP-ribosyla-

tion and biosynthesis of cyclic ADP-ribose (cADPR)

[39,40] (Fig. 3), both of which require NAD+ as a sub-

strate. Consistently, it is shown that S-nitrosylation of

GAPDH and inhibition of its activity increases

endogenous protein ADP-ribosylation [34]. ADP-ribo-

sylation is shown to increase proteasomal activity

[41,42]. cADPR on the other hand, is a second messen-

ger metabolite involved in modulation of Ca2+ sig-

nalling and homeostasis [43–45] (Fig. 3A). cADPR

binds to ryanodine receptor (RyRs), which is expressed

in many cell types including macrophages and T cells

[46], and initiates the release of Ca2+ from the intracel-

lular store (Fig. 3) [47–49]. Aligned with these observa-

tions, it has been shown that the cellular level of

NAD+ controls Ca2+ store and release [50].

Inhibition of GAPDH can also increase the cellular

availability of G3P. Consistently, macrophages

expressing RSAD2, which can produce ddhCTP, show

a higher intracellular level of G3P as compared to

RSAD2-KO macrophages [25]. Increase in the cellular

availability of G3P supports biosynthesis of triacyl-

glycerols (TAGs) and phosphatidylcholine (PC), which

are the building blocks of lipid droplets (LDs) [51,52].

G3P is converted to dihydroxyacetone phosphate

(DHAP) by the catalytic activity of triosephosphate

isomerase (Fig. 3). Subsequently, DHAP is converted

by the NADH-dependent activity of glycerol-3-phos-

phate dehydrogenase (GPDH) to glycerol-3-phosphate
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(Fig. 3). Next, in a series of enzymatic reactions [52],

which have been studied since early 1950s and are

localized at the cytosolic face of the endoplasmic retic-

ulum (ER), glycerol-3-phosphate and fatty acyl-CoA

are combined to generate TAGs and PC. Consistently,

using 13C-labelling experiments it was found that upon

formation of classically activated macrophages (M1

macrophages), in which expression of RSAD2 is highly

induced [53], formation of LD increases and the car-

bon for the synthesis of LDs originates from G3P [54].

Stimulation of proteasome activity by ADP-ribosy-

lation, cADPR-dependent stimulation of Ca2+ release

from the cellular stores, and an increase in biosynthesis

of TAGs and PC, is likely to support a systemic

immune response in cells in at least four ways (Fig. 4):

a. Eicosanoids storm: Eicosanoids have a wide range of

functions in inflammation and immune response to

pathogens. Overall, available data suggest that eico-

sanoids can have both pro-inflammatory and anti-in-

flammatory activities depending on context and

thus, may contribute to a balanced immune response

[55]. It has been established that LDs are not just

fat-storing organelles and that they are important

mediators of the innate immune response to patho-

gens [56]. LDs are shown to be a site for biosynthesis

of eicosanoids [57]. Formation of eicosanoids occurs

via a complex and highly regulated process [57] start-

ing with liberation of arachidonic acid (AA) from

phospholipids by Ca2+-dependent phospholipases

(PL)A2 [58,59]. In different cells including innate

immune cells like macrophages, the LDs are rich in

AA [60–64]. Characterization of lipid droplets in dif-

ferent cells has revealed that enzymes involved in

catalytic conversion of AA to eicosanoid like PGE2,

namely cyclooxygenase 1 and 2 (COX1 and COX2),

are localized to the LDs [65]. These data strongly

suggest that LDs are at least partially involved in

synthesis of inflammatory eicosanoids from AA and

their downstream signalling pathways. Inhibition of

GAPDH is likely to support LDs-mediated eicosa-

noids biosynthesis in at least two ways: (i) increase

in the cellular availability of G3P for biosynthesis of

TAGs and PC and formation of LDs (Fig. 4A) and

(ii) increase in the cellular availability of NAD+ and

induction of cADPR-dependent release of Ca2+ from

cellular stores to support activity of the Ca2+-depen-

dent phospholipases PLA2 and liberation of AA

(Fig. 4A).

b. Antigen cross-presentation via major histocompati-

bility class I: This process requires proteasomal

Fig. 2. The early response of the cellular

innate immune system inhibits NAD+-

dependent activity of GAPDH. In response

to interferons, viruses or bacteria, the cells

express metalloenzymes RSAD2 (viperin)

and/or nitric oxide synthase (NOS). RSAD2

uses S-adenosylmethionine (SAM) to

catalyse transformation of CTP to ddhCTP,

which inhibit activity of GAPDH. 5´-

deoxyadenosine (5´-dA) is formed as a by-

product. On the other hand, NOS generates

NO, which induces S-nitrosylation of

GAPDH and inhibits its activity.
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activity and LDs. An increase in proteasomal

activity increases the rate of formation of peptide

antigens for cross-presentation via major histocom-

patibility class I (MHC-I) [66–68]. In many cell

types including macrophages and DCs, a major

path of antigen cross-presentation involves transfer

of peptide antigen into the endoplasmic reticulum

(ER) lumen by the ATP-dependent function of the

TAP system (Fig. 4A) [69,70]. In the ER lumen,

peptide antigens bind to MHC-1 and the complex is

transported to the cell surface for presentation to

CD8+ T cells. A mechanism of transportation to

the cell surface is through LDs [56]. In dendritic

cells (DCs), the immune-related GTPs protein,

namely Irgm3, localizes to the LDs [71]. When the

gene expressing Irgm3 or adipose differentiation-re-

lated protein (ADRP, also known as ADFP), which

regulates LD biogenesis and dynamics [72,73], was

inactivated, formation of LDs was impaired and

cross-presentation of antigen to CD8+ T cells was

abrogated [71]. Additionally, saponin-based adju-

vants (SBAs), which are used in cancer vaccines,

induce formation of LDs in CD11b+ DCs and this

increase causes a saponin-dependent increase in

antigen cross-presentation and T-cell activation [74].

Therefore, a concomitant increase in the cellular

availability of G3P and NAD+ due to inhibition of

GAPDH will ensure formation of LDs as carriers

of the MHC-I/antigen complex, and increase pro-

teasomal activity via an ADP-ribosylation pathway

to provide the peptide antigens (Fig. 4A). Consis-

tent with this mechanism, the cellular activity of

RSAD2 (viperin), which generates the ddhCTP

metabolite and inhibits GAPDH, stimulates degra-

dation of Zika virus and tick-borne encephalitis

virus nonstructural protein NS3 via a proteasome-

dependent manner [75].

c. NFAT- and NF-jB-mediated immune regulation.

In innate immune cells like macrophages or T cells

release of Ca2+ activates a range of immune defence

mechanisms (Fig. 3B). Ca2+ binds to calmodulin

(CaM) and the complex activates the phosphatase

calcineurin (CaN) [76,77]. In turn, CaN dephospho-

rylates and activates nuclear factor of activated T

cells (NFAT) [78]. Additionally, CaN plays a role in

LPS-induced nuclear factor-jB (NF-jB) activation

in macrophages [79–81]. NFAT- and NF-jB regu-

late expression of several genes involved in immune

cell response and function including IL-10, IL-6, IL-

8, IFN-1, IFN-2, TNF-a and multiple TLR-in-

ducible genes including iNOS [82–90]. Thus, inhibi-
tion of GAPDH by ddhCTP or NO, and the likely

Fig. 3. Inhibition of GAPDH increases the

intracellular availability (blue arrow) of

glyceraldehyde 3-phosphate (G3P) and

NAD+. An increase in the availability of G3P

will support biosynthesis of TAGs and PC,

which are the building blocks of lipid

droplets (LDs). Increase in the availability of

NAD+ will support synthesis of cADPR and

ADP-ribosylation. cADPR activates RyR

receptor and induces release of Ca2+ from

the cellular stores. ADP-ribosylation can

increase proteasomal activity and formation

of peptide antigens.
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increase in the cellular availability of NAD+, will

modulate NFAT- or NF-jB-dependent expression

of inflammatory genes. In summary, inhibition of

GAPDH and an increase in the cellular level of

NAD+ are likely to induce stimulation of cADPR

and release of Ca2+. This will modulate activity of

NFAT- and NF-jB for a balanced and effective

antiviral immune response. There is growing evi-

dence in support of this mechanism. Firstly, when

RSAD2 (viperin) gene was knocked out, thereby

abrogating the inhibition of GAPDH by ddhCTP,

the mRNA level of genes whose expression is regu-

lated by NFAT or NF-jB including iNOS and

TNF-a was affected in macrophages [91]. Secondly,

NFAT and NF-jB regulate Th2 response [92] and

cellular activity of RSAD2 modulates activity of

NF-jB and AP1, which interact with NFAT, for

optimal Th2 response [93]. Finally, overexpression

of viperin upregulates expression of a wide range of

immune-related genes including IL-8, IFN-1 and

IFN-2 [27], whose expression is regulated by NFAT.

d. Nitric oxide and immune response. In many cells,

nitric oxide (NO) is an important product of the

innate immune response and has broad-spectrum

antiviral and antibacterial activity [94–97]. It can

contribute to viral restriction via different mecha-

nisms. NO causes S-nitrosylation of different viral

proteins, abolishes their activity and reduces viral

replication [98] (Fig. 4B). Viral components, includ-

ing proteases [99–102], RNA-dependent RNA poly-

merases (RdRps) [103], and transcriptase [104], are

known to be inhibited by NO-mediated S-nitrosyla-

tion. Replication of a number of viruses is restricted

by NO including herpes simplex virus type 1 [105],

Japanese encephalitis virus [106], coxsackievirus

[101], dengue virus type 2 (DNGV-2) [103], influ-

enza virus [107] and HIV-1 [102,104]. Additionally,

NO can modulate mitochondrial metabolism to

induce formation of inflammatory macrophages

[108]. Therefore, inhibition of GAPDH and an

increase in the cellular availability of NAD+, which

will induce cADPR-dependent Ca2+ release, will

induce activity of iNOS via CaM binding (Fig. 4B).

The resulting NO can support a broad-spectrum

antiviral response via S-nitrosylation of viral pro-

tein or by further modulating the metabolism in

immune cells like macrophages.

Concluding remarks

In summary, we demonstrate that the glycolytic and

housekeeping enzyme GAPDH is inhibited or modified

by the metabolites, namely ddhCTP and NO, produced

by two ISG protein products, RSAD2 and nitric oxide

synthase, respectively. Inhibition of the NAD+-depen-

dent conversion of G3P by GAPDH supports several

downstream metabolic and signalling pathways, specifi-

cally biosynthesis of TAGs and PC, which are precur-

sors of LDs, protein ADP-ribosylation and synthesis of

cADPR. Together, these metabolites stimulate a bal-

anced immune response via inflammatory eicosanoids,

antigen cross-presentation, activation of NFAT and

NF-jB and stimulation of formation of NO. This

immunometabolic regulation of central carbon metabo-

lism to stimulate a broad-spectrum immune response

provides an explanation for the wide range of effects

observed due to expression of RSAD2 (viperin) in many

cell types: these include the broad-spectrum antiviral

response [19], optimal Th2 cytokine production [93],

which requires NFAT function [109], modulation of cel-

lular lipid metabolism during human cytomegalovirus

and influenza virus infections [110,111], induction of

type-1 interferon production in plasmacytoid dendritic

cells via a Toll-like receptor-mediated mechanism [112],

interference with glucose homeostasis [26] and regula-

tion of macrophage polarization [91].

Our analyses suggest that inhibition of GAPDH by

the cellular innate immune response primes a broad-

spectrum immune response to viral infection. This is in

opposed to recent reports [113,114] suggesting that

inhibition of GAPDH reduces immune response and

thus, is a potential therapeutic approach for treating

inflammatory diseases. These studies are based on use

of small molecules such as the drug dimethyl fumarate

(DMF) [113], which is used to treat autoimmune dis-

eases, or 4-octyl itaconate [114]. These molecules were

suggested to directly modify Cys150 or Cys22, respec-

tively, in GAPDH, and inhibit its activity. This inhibi-

tion was linked to a reduction in synthesis of

inflammatory cytokines such as TNF-a in T cells and

macrophages with the assumption that no other pro-

tein in the cell was modified [113,114]. In contrast to

this assumption, analysis of global proteome in T cells

reveals more than 2400 cysteine residues that could

potentially be modified by DMF [115]. It was shown

that two cysteine residues in protein kinase Ch are tar-

get of modification by DMF and these modifications

interfere with T-cell activation [115].

Because the cellular innate immune response adopts

mechanism that leads to inhibition of GAPDH, which

as we discussed is likely to induce a broad-spectrum

immune response, we propose that in individuals with

weakened cellular innate immune system inhibition of

GAPDH might be a therapeutic approach to help

prime the innate immune response via at least four
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mechanisms: (i) supporting formation of eicosanoids,

(ii) assisting antigen cross-presentation via MHC-I, (iii)

mediating immune response via NFAT and NF-jB and

(iv) stimulating synthesis of NO. Hence, we speculate

that inhibition of GAPDH might help in the treatment

of infection with viruses such as SARS-CoV-2. Future

works should test the validity of this proposal.
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