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Abstract: The COVID-19 pandemic is spreading around the world and 187 million people have
already been affected. One of its after-effects is post-COVID depression, which, according to the
latest data, affects up to 40% of people who have had SARS-CoV-2 infection. A very important issue
for the mental health of the general population is to look for the causes of this complication and its
biomarkers. This will help in faster diagnosis and effective treatment of the affected patients. In our
work, we focused on the search for major depressive disorder (MDD) biomarkers, which are also
present in COVID-19 patients and may influence the development of post-COVID depression. For
this purpose, we searched PubMed, Scopus and Google Scholar scientific literature databases using
keywords such as ‘COVID-19’, ‘SARS-CoV-2’, ‘depression’, ‘post-COVID’, ‘biomarkers’ and others.
Among the biomarkers found, the most important that were frequently described are increased
levels of interleukin 6 (IL-6), soluble interleukin 6 receptor (sIL-6R), interleukin 1 β (IL-1β), tumor
necrosis factor α (TNF-α), interferon gamma (IFN-γ), interleukin 10 (IL-10), interleukin 2 (IL-2),
soluble interleukin 2 receptor (sIL-2R), C-reactive protein (CRP), Monocyte Chemoattractant Protein-
1 (MCP-1), serum amyloid a (SAA1) and metabolites of the kynurenine pathway, as well as decreased
brain derived neurotrophic factor (BDNF) and tryptophan (TRP). The biomarkers identified by us
indicate the etiopathogenesis of post-COVID depression analogous to the leading inflammatory
hypothesis of MDD.

Keywords: COVID-19; depression; biomarkers; post-COVID; kynurenine; cytokines

1. Introduction

The coronavirus disease (COVID-19) caused by the SARS-CoV-2 virus has been spread-
ing worldwide for the last 1.5 years. According to WHO data, over 187 million cases have
been diagnosed globally, including over 4 million fatalities [1].

The most common symptoms of coronavirus disease are fever, cough, shortness of
breath, muscle pain, headache, diarrhea, rhinorrhea, loss of smell and taste [2–4]. In
addition, there are more and more reports of mental health problems in people who have
survived SARS-CoV-2 infection. The most frequently described mental disorders are
major depressive disorder (MDD), post-traumatic stress disorder (PTSD), anxiety disorders,
obsessive-compulsive disorders (OCD) and insomnia [5–7]. These disorders occur mainly
in the acute phase of infection and shortly after it [7–9]. While the symptoms of PTSD,
anxiety disorders and insomnia gradually disappear, it has been shown that symptoms
of MDD persist even in the third month of follow-up [7]. More than 75% of COVID-19
patients have cognitive difficulties with episodic memory, attention and concentration,
which is also common state in MDD (called pseudo-dementia), and these might occur even
after mild infection [10]. Even two to three months after disease onset, patients also had
deficits in executive functions and visuospatial processing [11]. The large number of people
infected with SARS-CoV-2 and the prevalence of MDD among those who have experienced
COVID-19—according to some data, ranging from 28% to 45% [6,12]—may contribute to
the emergence of a serious global problem and significantly increase the pool of people
suffering from major depressive disorder.
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The COVID-19 crisis is about more than general health problems. Prolonged disease
symptoms, employees’ inability to work, the closing of businesses, premature deaths and
the cost of COVID-19 prevention and treatment make most of the countries affected by the
pandemic feel the economic crisis as well. In the United States alone the total cost of the
pandemic is estimated at approximately 90% of the annual gross domestic product, which
is more than $16 trillion [13]. Therefore, the search for different ways to limit the effects of
the pandemic is of great importance for the economic sector as well.

Depression, also called major depressive disorder (MDD) is the most common psy-
chiatric disease in the world and one of the most common causes of disability measured
in years lived with the disease (YLDs) [14]. According to WHO, over 264 million people
currently struggle with MDD worldwide [15]. So far, the diagnosis of MDD is based mainly
on clinical symptoms and scales [16,17], although for several years the field of psychiatry
has been searching for useful biomarkers of MDD, which could allow to detect the disease,
implement treatment faster and monitor its efficiency in a more objective way [18,19].

In recent years, many new theories about the pathophysiology of major depressive
disorder have emerged. They include disorders in systems such as the immune [20,21],
endocrine [22,23] or digestive [24,25], as well as changes in the metabolome [26,27], neu-
rotrophic factors [28,29] or oxidative stress [30,31]. Although the research on the above men-
tioned theories has led to the proposition of many promising biomarkers of MDD [32–34],
further research is still required as the results of many studies often differ [35–37].

Nowadays, facing the danger posed by the SARS-CoV-2 coronavirus pandemic, we
should do our best to counteract its consequences [38]. These consequences also include
post-COVID depression [7,39].

The aim of the study is to find a potential link between biomarkers of MDD and mark-
ers of disturbed homeostasis of the organism during or after COVID-19. Common links of
those two states can be of use as prognostic biomarkers of post-COVID depression and
indicate the cause of MDD development in those patients. The acquired knowledge could
be used in the future to determine which COVID-19 (+) patients are at risk of developing
MDD or making a more confident diagnosis in those who are already affected. This will
allow to identify the group of patients in whom mental health should be paid special
attention in the phase of recovery from illness and during regaining social functionality
from before SARS-CoV-2 infection. Doing so would enable the implementation of effective
treatment faster which will reduce recovery time for patients, reduce treatment costs and
economic burden of COVID-19 and contribute to some extent to reducing the global mental
health problem.

2. Materials and Methods

A literature search was conducted in PubMed, Scopus and Google Scholar databases.
We included clinical studies, reviews, meta-analyzes and case studies regarding depressive
symptoms in COVID-19 (+) patients. The search strategy consisted of the following
keywords: ‘depression’, ‘biomarker’, ‘COVID-19’, ‘SARS-CoV-2’, ‘post-COVID’, ‘long-
COVID’, ‘metabolomic’, ‘inflammatory’, ‘immunological’, ‘endocrinological’ ‘oxidative
stress’, ‘HPA axis’, ‘neurotrophic’, ‘biosignature’ as well as combinations of these terms.
We then excluded all articles in which MDD was described in the context of the social
consequences of a pandemic such as isolation, stress, fear of disease or economic problems,
in order to be able to analyze only the direct impact of SARS-CoV-2 on the body and the
development of post-COVID depression. Relevant studies were then included with the
intention of covering the widest possible spectrum of different markers for post-COVID
depression. We conducted additional manual searches of the references of the related
articles in order to gather information about the relevant supporting literature.
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3. Results

Taking into account the biological systems involved in the development of MDD and
various theories of its pathophysiology [37,40], in this study we divided biomarkers into
inflammatory, kynurenine pathway and growth factors.

3.1. Inflammatory Factors

The role of inflammation and inflammatory factors in the development of MDD is
well understood [41,42]. It has been proven that patients suffering from inflammatory
diseases, such as multiple sclerosis or systemic lupus, who have also been treated with
cytokines have a greater chance of developing MDD [43–46]. COVID-19 is a disease that
can cause systemic inflammation and a cytokine storm [47], and is therefore analogous
to inflammatory diseases, and may contribute to the development of major depressive
disorder (MDD).

Inflammatory cytokines are molecules that mediate the immune response upon acti-
vation of the peripheral immune system. Cytokines such as tumor necrosis factor alpha
(TNFα), interferon-γ (IFN-γ), interleukin 1 (IL-1) play a role primarily in enhancing the
cellular response, while cytokines such as interleukin 6 (IL-6), interleukin 10 (IL-10), inter-
leukin 13 (IL-13) are more associated with the humoral response [41,48]. Cytokines can be
produced in the brain by astrocytes and microglia [49,50] or reach it from the periphery due
to several mechanisms such as passage through leaky blood-brain barrier (BBB) regions,
including the choroid plexus and periventricular organs, active transport through cytokine
transport molecules on the endothelium of the brain, transmission of cytokine signals
during an infection in the abdominal cavity via afferent nerve fibers such as the vagus
nerve, the passage of activated monocytes into the brain from the periphery, or by signals
of second-messengers from the BBB endothelial lining which results in overproduction of
cytokines [51–53].

Moreover, the activated inflammatory process and its mediators, such as TNFα, cause
changes in the blood-brain barrier by affecting the endothelial cells forming the barrier,
which in turn leads to its increased permeability [54]. This makes it easier for other
cytokines and inflammatory factors to penetrate into the brain.

Cytokines exert a number of actions in the brain that are related to the development of
MDD, including: activation of the hypothalamic-pituitary-adrenal axis and induction of the
resistance to glucocorticoids [55,56]. They also cause disturbances in the neurotransmitter
system [57,58], affect neuroplasticity [59] and hippocampal neurogenesis, as well as disturb
the neurotrophin signaling cascade [41].

Due to the nature of the disease, there are changes in the cytokine system that are
most often described in COVID-19 [47,60]. Many of them coincide with changes in MDD
and may be the cause of post-COVID depression. Below we present the most frequently
described major depressive disorder biomarkers that coincide with those found in patients
in the acute phase of COVID-19 or during follow-up (Figure 1).

3.1.1. IL-6/sIL-6R

Interleukin 6 (IL-6) is a pro-inflammatory pleiotropic cytokine secreted mainly by
monocytes and macrophages under the influence of interleukin 1β and TNF-α, but also
by astrocytes and microglia. It belongs to the family of proteins that use gp130 as a
signal transmitter [61]. It works by inducing the differentiation of activated B cells to-
wards antibody-secreting cells, stimulating the synthesis of acute phase proteins such
as C-reactive protein, serum amyloid A, fibrinogen, α1-antitrypsin and haptoglobin in
the liver, and promoting the differentiation of naive CD4 + T cells [62]. It also plays a
role in the body as a mediator of a warning signal about tissue damage or other sudden
events. Its level increases in the event of infection, inflammation or trauma [61]. IL-6
also affects the functionality of neurons, may disrupt hippocampal neurogenesis and in-
tensifies neuroinflammation [63]. IL-6 has two ways of interaction, the classical one, i.e.,
anti-inflammatory, and the trans-signaling or pro-inflammatory one [64]. IL-6 exerts its
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anti-inflammatory function after binding to the membrane-bound IL-6 receptor (mIL-6R)
present on the cell membranes of several types of cells, e.g., certain subtypes of T cells,
hepatocytes, neutrophils, megakaryocytes or monocytes. The pro-inflammatory pathway
of IL-6 becomes activated upon binding to the soluble IL-6 receptor (sIL-6R) and formation
of the IL-6/sIL-6R complex, which affects all cells expressing gp130 [64].
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TNF-α—tumor necrosis factor α.

It is the cytokine most often described in MDD, and the studies describing its involve-
ment in MDD are mostly consistent with each other [32,34,41,65,66]. According to some
studies, high levels of IL-6 correlate with the severity of MDD symptoms in patients who do
not respond to treatment [67]. It has been observed that in patients with MDD, increased
levels of IL-6 correlated with attention deficit disorder, and one study showed that its
increase was prior to the incidence of cognitive impairment in patients with MDD [66].

High levels of IL-6 is widely described in relation to COVID-19, and its level corre-
sponds to the severity of the disease [7,68–71]. In one study, high levels of sIL-6R were also
detected in few COVID-19 (+) patients, but the results are not consistent and more research
is needed [71]. Higher levels of IL-6 in tandem with higher levels of sIL-6R lead to increased
trans-signaling [72]. Thus, if the severity of COVID-19 correlates with the amount of IL-6,
patients with severe course may be at greater risk of developing post-COVID depression.

3.1.2. IL-10

Interleukin 10 (IL-10) is an anti-inflammatory cytokine produced by Th2, Treg cells
and M2 macrophages [73]. In the central nervous system (CNS) it is produced, inter alia, by
astroglia and microglia [74]. In the latter, the secretion of IL-10 is augmented by neurotrans-
mitters and damage-associated molecules—glutamate and adenosine respectively [75].
Overall IL-10 production increases with increased levels of IL-6 and TNF-α [76,77]. It exerts
its function by binding with IL-10 receptor (IL-10R) which consist of two subunits—IL-10R1
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and IL-10R2. The latter is expressed in most cell types, but IL-10R1 is mostly restricted to
cells of hematopoietic lineage. Due to the myeloid origins, microglia express both subunits
of IL-10R. Unexpectedly, resting astrocytes also express IL-10R1 [75]. IL-10 limits neuroin-
flammation, promotes production of immunosuppressive transforming growth factor β
(TGF-β) by astrocytes and reduces astrogliosis in response to the pathogenic factors [75].

Elevated levels of IL-10 are often reported in people with MDD [78–80]. Some re-
searchers also observed that MDD severity is related to increased IL-10 [81,82]. Two
meta-analyzes have shown that IL-10 level decreases with effective antidepressant treat-
ment [78,83].

To date, many studies have described an increased level of IL-10 in COVID-19 pa-
tients [84–86]. In severe cases, the level of IL-10 was higher than in mild cases, and
positively correlated with mortality due to COVID-19 [47,85,87–89]. Thus, high levels of
IL-10 during and after SARS-CoV-2 infection may suggest an increased susceptibility to
developing MDD in these patients. It may also be a good indicator for monitoring the
treatment of post-COVID depression, due to its decline with antidepressant treatment [78].

3.1.3. TNF-α/sTNFR1, sTNFR2

Tumor necrosis factor α (TNF-α) is a pro-inflammatory cytokine produced by Th1
lymphocytes and M1 macrophages, and by astroglia and microglia in the brain [32]. It is
one of the earliest cytokines released following trauma, infection or exposure to lipopolysac-
charide (LPS) [90] and a regulator of pro-inflammatory cytokine production. Its high level
induces the production of, among others, CRP, IL-6, IL-1β [90–92].

It is found to be one of the most promising markers of major depressive disorder.
Its elevated level, along with CRP and IL-6, is most consistently described in studies
on MDD biomarkers [20,21,32–36,41,42,93]. It is one of the major cytokines involved in
neuroinflammation [94] and acts as an inhibitor of hippocampal neurogenesis [95,96], an
inducer of apoptosis [97,98] and negatively affects synaptogenesis, synaptic plasticity and
the structure of synaptic membranes [99,100]. It increases the permeability of BBB [54] and
significantly affects the production of serotonin through its ability to activate indoleamine
2,3-dioxygenase (IDO) [101,102].

Its level decreases with effective treatment of MDD [103], and its persistent concentra-
tion indicates treatment-resistant depression (TRD) [104,105]. It exerts its effects through
the TNF-R1 and TNF-R2 receptors on cell membranes. They can be released into the serum
and are elevated in MDD [106–108].

TNF-α is elevated in most COVID-19 patients and correlates with the severity of the
disease [6,7,68,70,109]. COVID-19 (+) patients requiring intensive care unit (ICU) admission
have higher TNF-α levels when compared to the patients who do not require treatment
on ICU [85,110]. One study also found that while in cases of sepsis and acute respiratory
distress syndrome (ARDS) in COVID-19 (−) patients, TNF-α levels normalized rapidly
after the primary immune response [111,112], it is consistently elevated in COVID-19 (+)
patients [85]. This may result in an increased chance of developing post-COVID depression
due to longer exposure to the pro-inflammatory effects of TNF-α.

In addition, in one of the studies, an increase in the soluble TNF-α receptors—sTNFR1
and TNFR2 in the serum was observed with the increase in the severity of the disease,
and the highest levels were recorded in people who eventually died from COVID-19 [87].
However, so far, not many studies have studies described changes in TNF-α receptors
levels, so the importance of this biomarker requires further research.

3.1.4. IL-1β

Interleukin 1β (IL-1β) is another pro-inflammatory cytokine secreted by the same cell
types as TNF-α and IL-6, i.e., Th1 lymphocytes and M1 macrophages. In the CNS it can be
secreted by different types of cells, e.g., astroglia, oligodendrocytes, neurons and microglia,
furthermore, they all express IL-1β receptors [32,113]. Its effects on the brain are, as in the
case of TNF-α and IL-6, induction of apoptosis [114,115] and negative effects on synaptoge-
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nesis and synaptic plasticity [116,117]. Some studies have proved that physiological levels
of IL-1β promote long term potentiation (LTP) and acquisition and retention of memory. In
the other hand, its pathophysiological levels as seen in inflammation can disturb LTP and
cause failure of memory acquisition and its recall [113]. Additionally, it lowers neurogene-
sis in human hippocampal progenitor cells by activating the kynurenine pathway [118].
IL-1β along with TNF-α and IL-6 can induce the expression of pro-inflammatory genes in
astrocytes and increase neuroinflammation and neurodegeneration [119].

Research on the role of IL-1β in MDD is not consistent. Some studies report a correla-
tion and an increase of this cytokine in depression [120,121], although not all researchers
have found such a link [78,122]. The level of IL-1β increases with the increase in BMI [123]
and the number of depressive episodes [32], therefore it may cause inaccuracies in research
and difficulties in obtaining uniform results. There have also been studies on the propor-
tionality of the level of IL-1β to the severity of MDD symptoms [124] and the fact that it is
a risk factor for TRD [125,126].

IL-1β has been reported to be elevated in COVID-19 and correlated with disease
symptoms [127–129]. Severe patients have significantly elevated levels [130], and one
study found high levels of IL-1β persistent in COVID-19 patients up to 4 weeks after
symptom onset—similar to IL-6 [131]. However, not all studies have shown an IL-1β
elevation among COVID-19 patients [132,133], therefore, the importance of this interleukin
in post-COVID depression requires more investigation.

3.1.5. IFN-γ

Interferons are a superfamily of endogenous pleiotropic cytokines that play a large
role in the maintenance of homeostasis and defense against infection. Interferon gamma
(IFN-γ) is a pro-inflammatory cytokine belonging to the type II interferon family [134]. It is
secreted mainly by natural killer cells (NK) and CD4 + T cells and macrophages [135].

Disturbances in IFN-γ levels have been documented among patients suffering from
MDD [136,137]. Its central or peripheral administration causes symptoms of sickness
behavior such as anhedonia, memory and social interaction disorders—the same as seen
in MDD [136]. IFN-γ has been shown to activate microglia, which contributes to the
development of depression [138]. Moreover, IFN-γ largely activates IDO and contributes
to the transition of tryptophan to the kynurenine pathway metabolites which are involved
in the pathogenesis of MDD [138–141].

It has been shown that up to 40% of patients treated with interferon for hepatitis C
develop symptoms of depression [139,142].

However, reports on the role of IFN-γ are inconsistent. Some studies demonstrated its
increase among people with MDD [140,141,143], and some showed no increase or even a
decrease [44,134].

For COVID-19, the research also diverges. Many studies have shown an increase
in the concentration of IFN-γ [84,90,91,105,134,139,140,144–146], however, several studies
showed a decrease [47,147,148]. In some studies, the severity of COVID-19 positively
correlated with the level of IFN-γ [88,89,131]. Due to divergent research results, there is
still need for more comprehensive studies on this biomarker.

3.1.6. CRP

C-reactive protein (CRP) is an acute-phase protein produced by liver cells in response
to injury, infection or inflammation. Its production is induced by IL-6, and IL-1 enhances
this effect. During inflammatory diseases, its serum concentration increases by a minimum
of 25% [149]. Baseline CRP levels may be influenced by factors such as body weight, sex,
age, nicotinism, and lipid levels [150].

Its elevated level in patients with MDD is widely described in the literature [151–159],
and one of the studies noted that its high level preceded development of a de novo
MDD, and therefore, it may be its promising prognostic marker [156]. According to some
researchers, its significant increase also correlates with the occurrence of TRD [160,161].
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Its higher level is more often detected in the case of atypical depression and is associated
with suicidal tendency [158,162]. However, not all studies agree with each other, and some
negate its relationship with MDD [163,164], which may be related to many factors that
affect its concentration and interfere with its examination solely for MDD.

In the context of COVID-19, an increase in CRP concentration is also often de-
scribed [7,86,165–168], and its concentration, according to some reports, correlates with the
severity of COVID-19 [165–167,169,170].

One study reported an association of post-COVID depression with inflammatory
biomarkers, where higher CRP was observed in COVID-19 (+) depressed patients than
in COVID-19 (+) patients without depression [171]. A separate study reported a decrease
in baseline CRP levels in COVID-19 (+) patients in whom the severity of depression
symptoms decreased compared to COVID-19 (+) patients in whom CRP and depression
symptoms were not significantly reduced [172]. Unlike the previous two, the study by
Mazza et al. in the third month of follow-up in patients with post-COVID depression
showed no association with CRP [68].

The relationship of CRP to COVID-19 (+) is well documented, but due to the inflam-
matory nature of the disease and therefore an overall increase in CRP, its utility as a marker
of post-COVID depression requires further investigation.

3.1.7. IL-2/sIL-2R

Interleukin 2 (IL-2) is a pro-inflammatory cytokine produced mainly by CD4 + Th
cells and to a lesser extent by T CD8+ and NK cells. It is released mainly in response to an
antigen [173]. It exerts its action through IL-2 receptors (IL-2R) present mainly on activated
T cells. These receptors can also be released into the bloodstream—soluble IL-2R (sIL-2R).
The function of IL-2 is primarily to regulate the function of T cells [173,174].

Studies of MDD biomarkers in affected patients have shown an increased level of
this cytokine as well [152,175], and its higher concentration is observed in atypical rather
than melancholic depression [175]. The influence of IL-2 on the occurrence of depression
symptoms is evidenced by the development of depressive symptoms in people and animals
to whom it was administered [136,176–178]. Moreover, the concentration of sIL-2R is also
elevated in people with MDD [78,151,179,180].

In COVID-19 (+) patients, concentrations of both IL-2 and sIL-2R are higher than in
COVID-19 (−) patients, especially in severe patients [47,87,110,147,181–183]. Two studies
also found an association of increased levels of IL-2 [87] and sIL-2R with mortality from
COVID-19 [183], and in another, a high sIL-2R/lymphocyte ratio proved to be the best
indicator of critical disease differentiation [184].

There are no studies describing a direct relationship of IL-2R/sIL-2R with post-COVID
depression, but due to the clearly described increase in their levels in people with MDD
and in people with COVID-19, it may be a promising marker.

3.1.8. MCP1/CCL2

Monocyte Chemoattractant Protein-1/Chemokine ligand 2 (MCP-1/CCL2) is a
chemokine produced by many types of cells, e.g., endothelium, fibroblasts, macrophages,
monocytes, astrocytes and microglia. This chemokine regulates the migration and infil-
tration of monocytes, memory T and NK cells at the site of inflammation [185]. MCP-1
has been shown to attract peripheral monocytes to the cerebral cortex, hypothalamus and
hippocampus regions, i.e., those that contribute to the development of MDD [186]. Two
meta-analyzes showed an increased level of MCP-1/CCL2 in patients with MDD compared
to the healthy control group [187,188].

Patients with COVID-19 also show an increased level of this chemokine compared to
healthy people, and in a large proportion of cases it is more elevated in people with severe
disease compared to patients with a mild form [7,87,110,130,131]. One study also found
that MCP-1/CCL2 elevation positively correlated with mortality from COVID-19 [87].
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The described pro-depressive effect of MCP-1/CCL2 and its increased level, especially
in severe cases of COVID-19, make it relevant to further research this chemokine in terms
of the development of post-COVID depression.

3.1.9. SAA1

Serum amyloid A (SAA1) is an acute phase protein that is mainly produced in the
liver as a result of IL-1β and IL-6 action [189]. It affects many aspects of the inflammation
cascade. by binding to various receptors such as toll like receptors 2 and 4 (TLR2 and TLR4)
and the receptor for advanced glycation end products (RAGE) and CD36 [190]. SAA1
activates the secretion of cytokines such as TNF-α, IL-6, IL-8, IL-23, IL-18 and IL-10 [79].
TLR2 and TLR4 receptors are present on macrophages, microglia and astrocytes [79,191],
and their stimulation by SAA1 causes production of inflammatory cytokines, including
IL-6 and TNF-α, which may play a role in the development of neuroinflammation, which
contributes to the occurrence of depressive symptoms [192].

Compared to healthy subjects, patients with symptoms of MDD have elevated levels
of SAA1 [79,155,193,194]. Patients admitted to hospital for COVID-19 also show elevated
levels of this protein compared to healthy controls [89,195,196]. Additionally, its high
concentration positively correlated with the severity of the disease and mortality due to
COVID-19. One study noted that a decrease in SAA1 within two weeks of disease was
associated with the prognosis of clinical improvement in patients, while its persistently
high concentration was associated with death [195].

The clear association of SAA1 with MDD and its persistent high concentration in
severe COVID-19 (+) patients suggests that a closer look at its relationship with post-
COVID depression is needed.

3.2. Kynurenine Pathway

Kynurenine is a tryptophan metabolite formed as a result of its transformation under
the influence of the enzymes indoleamine 2,3-dioxygenase (IDO) and tryptophan 2,3-
dioxygenase (TDO). Increased activity of these enzymes, in particular IDO, causes the
conversion of tryptophan to serotonin (5-HT) to be reduced at the cost of its conversion to
kynurenine [197]. Other metabolites of the kynurenine pathway include: kynurenic acid
(KYNA), 3-hydroxykynurenine (3-HK), 3-hydroxyanthranilic acid (3-HAA) and quinolinic
acid (QA) [197,198]. It has been shown that the decrease in tryptophan level and the
accumulation of metabolites of the kynurenine pathway lead to anergy of effector T cells
and proliferation of Treg and T, B, and natural killer cell apoptosis [199]. KYNA is a
competitive antagonist of the glutamate receptor and an inhibitor of the α7 nicotinic
acetylcholine receptor and has a neuroprotective effect [101], 3-HK is associated with
neuronal apoptosis, and QA, which is an agonist of the N-methyl-d-aspartate receptor
(NMDAR), is associated with excitotoxic neurodegeneration [200]. In the brain, IDO is
expressed by astrocytes and microglia, but the metabolites of tryptophan metabolism by
IDO differ in these two types of cells. The main metabolite in astrocytes is kynurenic acid
(KYNA), and in microglia—quinolinic acid (QA) or 3-hydroxykynurenine (3-HK) [201].

IDO activity is stimulated by pro-inflammatory cytokines such as TNF-α, interferons
and prostaglandins. IFN-γ has the strongest stimulating effect on IDO [84]. For this
reason, a condition with elevated inflammatory mediators, systemic inflammation, serious
infection or trauma predispose to tryptophan transfer to the kynurenine pathway and
increased production of its neurotoxic metabolites.

The lower level of tryptophan in the blood serum of patients with MDD compared
to the serum of healthy controls has been well documented [139,202–205], but not all
reports are consistent and there have been studies in which the levels of tryptophan in
patients with MDD did not differ from healthy controls or was even higher in patients
with MDD [206,207]. At the same time, in the group of depressed patients there is a higher
level of kynurenine metabolites such as kynurenine (KYN), quinolinic acid (QA) and 3-
hydroxykynurenine (3-HK), as well as a reduced level of neuroprotective kynurenic acid
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(KYNA) [151,208–210]. In a study by Haroon et al. patients with a high TNF-KYN/TRP
ratio showed a greater severity of depression and treatment resistance [210]. In one case,
depressed patients with a high QA/KYNA ratio also had a greater severity of associative
memory impairment [211].

In a metabolomic study of COVID-19 (+) patients, tryptophan metabolism was the
major disorder detected [69]. In patients infected with SARS-CoV-2, decreased levels of
tryptophan and serotonin as well as increased levels of kynurenine, 3-hydroxykynurenine,
kynurenic acid and picolinic acid (also one of the metabolites of the kynurenine pathway)
were found [69,145,212,213]. One of the reasons for the decreased level of tryptophan
in COVID-19 (+) patients may also be its decreased absorption in the gut. SARS-CoV-2
causes the internalization and downregulation of ACE2, which is highly expressed in
the intestines [214], and which is needed for the expression of the neutral amino acid
transporter in the intestinal lumen—B0AT1 [215]. Activation of the kynurenine pathway
can be indirectly assessed by the kynurenine to tryptophan ratio, which was significantly
higher in COVID-19 (+) patients than in healthy controls and correlated positively with
disease severity [69,212,213].

In conclusion, disturbances in tryptophan metabolism and activation of the kynure-
nine pathway are well described in research on the pathophysiology of MDD and are
of great importance in the search for its biomarkers. Analogous changes can be seen in
patients infected with SARS-CoV-2 (Figure 2), and at present disturbances in tryptophan
metabolism are one of the most promising theories on the development of post-COVID
depression [216]. Therefore, it is worth considering metabolites of the kynurenine pathway
in future studies for biomarkers of depression developing in patients after SARS-CoV-2
infection, especially in those with a severe course of the disease.
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3.3. Growth Factors
BDNF

Brain derived neurotrophic factor (BDNF) belongs to the family of neuronal growth
factors and its physiological role is to support the differentiation, maturation and survival
of dopaminergic, cholinergic and serotonergic neurons of the central nervous system [217].
It also exhibits neuroprotective abilities, is involved in neuroplasticity and enhances long-
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term potentiation [218–220]. It is produced by neurons as well as by peripheral cells such
as leukocytes and endothelial cells and is able to pass through the BBB [221]. Its decreased
level is a common finding in people suffering from MDD, and effective antidepressant
therapy restores it to normal levels [221–223].

Previous studies have proved that ACE2 is associated with a reduction in BDNF
levels [224]. It is widely believed that SARS-CoV-2, by using ACE2 to enter cells, causes its
downregulation [225]. This mechanism may cause a secondary reduction in BDNF levels.
The confirmation of this theory may be reflected in one of the studies performed, in which
patients suffering from COVID-19 were tested for serum BDNF levels. The researchers
demonstrated that patients with moderate and severe disease have lower BDNF levels than
those with mild disease, and during patients’ recovery, their levels returned to normal [165].

The association of growth factors, especially BDNF, with MDD is often indicated in
the literature (Figure 3), and the likely mechanism by which SARS-CoV-2 could reduce
it may prove it to be a good biomarker of post-COVID depression. Unfortunately, so far
only one study mentions the relationship between BDNF and COVID-19, but its results are
promising and it is worth doing more research in this direction.
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4. Discussion

In recent years, the cause of MDD has been increasingly researched, and one of
the leading hypotheses is an active inflammatory process with elevated pro- and anti-
inflammatory cytokines and oxidative stress [226]. Increased levels of inflammatory factors
are associated with excessive activation of the kynurenine pathway and, as a result, reduced
levels of tryptophan and serotonin, as well as an excess of neurotoxic metabolites such as
kynurenine, quinolinic acid or 3-hydroxykynurenine. Inflammatory factors and chronic
stress are also reflected in the activity of the HPA axis and cause its hyperactivity, which may
contribute to the decline in BDNF [226]. All these accumulating changes cause neurotoxicity,
neurodegeneration, inhibition of neurogenesis, disorders of synaptic plasticity and the
structure of synaptic membranes, which all together result in the occurrence of MDD.

In our study, we noticed that many of the postulated depression biomarkers [32,148]
also appear in COVID-19 (+) patients. So far, the most described and most significant
are IL-6, sIL-6R, IL-10, IL-1β, TNFα, sTNFR1, sTNFR2, IFN-γ, CRP, IL-2/sIL-2R, SAA1,
BDNF, kynurenine, quinolinic acid, 3-hydroxykynurenine, and reduced tryptophan and
BDNF. Considering the above-mentioned biomarkers, we hypothesize that the cascade
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leading to the development of post-COVID depression is analogous to the inflammatory
depression hypothesis mentioned above. Infection with SARS-CoV-2 virus causes the
body’s immune response in which pro-inflammatory cytokines such as TNF-α, IL-6, IL-1β,
IL-2 and IFN-γ are secreted. They contribute to increasing the permeability of BBB, and this,
combined with their elevated peripheral levels, causes their magnified penetration into
the brain. In addition, factors such as MCP-1 cause an increased influx of immune system
cells into the regions associated with MDD and additional cytokine secretion at this site.
A high concentration of cytokines in the brain, including its strongest activator—IFN-γ,
contributes to the activation of IDO-1 and a decrease in the synthesis of 5-HT from TRP
and the accumulation of neurotoxic metabolites of the kynurenine pathway, i.e., KYN, QA,
3-HK, as well as to increased activity of the HPA axis and a decrease in BDNF production.
In response to pro-inflammatory cytokines, IL-10, CRP and SAA1 are produced, the latter
acting through TLR2 and TLR4 receptors present on, inter alia, astrocytes and microglia,
causes further production of pro-inflammatory cytokines and worsens neuroinflammation.
In addition, mechanism of viral entry into cells by using ACE2 results in its downregulation,
both in the brain—where it contributes to the decline in BDNF levels, and in the gut—where
it can disrupt tryptophan absorption. Accumulating cytokines, inflammatory factors,
toxic metabolites, oxidative stress mediators and a decrease in BDNF, tryptophan and
serotonin levels cause disturbances in neurotransmission, induce apoptosis of nerve cells
and negatively affect synaptogenesis, synaptic plasticity and hippocampal neurogenesis.
Demonstrated in some studies is the long-lasting increased level of such cytokines as, for
example, IL-6, IL-1β and TNF-α, which means a longer exposure to factors contributing to
the development of depression. High concentrations of the aforementioned cytokines may
also cause changes in brain structures associated with MDD. Elevated IL-6 and TNF-α have
been shown to increase the activity of the amygdala—the region associated with anxiety
and depressive symptoms. The rise in amygdala activity results in increased production
of inflammatory cytokines [227]. A separate study on woman in grief indicated elevated
levels of IL-1β and sTNFR-2 in saliva and their correlation to the activation of subgenual
anterior cingulate cortex—the region that plays a role in regulating emotions and connected
to anhedonia in MDD. Similar changes in brain substrates may occur in post-COVID
depression [228]. Delayed onset of MDD in COVID-19 survivors might also be related to
phenomenon of neuroinflammatory priming which is defined as alteration of subsequent
neuroinflammatory response to immune challenges caused by prior stress or immune
activation (often triggered by infection). The ‘First hit’ which would be the SARS-CoV-2
infection may not necessarily cause psychiatric symptoms, yet it might elevate sensitivity
and exaggerate the immunological response to other pro-inflammatory agents e.g., mild
infections, injuries, psychological stress. The exact mechanism of this phenomenon has not
yet been well understood [229].

There is evidence of an increased incidence of MDD in people suffering from inflam-
matory diseases such as multiple sclerosis or systemic lupus, and in those treated with
cytokines. The prolonged state of sustained high levels of inflammatory factors and a
cytokine storm in COVID-19 may therefore have the same or even greater impact on the
development of MDD. Patients with a severe course of the disease are particularly vulnera-
ble, as they had the highest and longest-lasting levels of the aforementioned cytokines and
inflammatory factors.

5. Conclusions

The biomarkers described in this review were the most frequent appearances in other
studies on COVID-19 and common with the so far proposed MDD biomarkers (Table 1).
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Table 1. Common biomarkers of MDD compared to findings in COVID-19 (+) patients. Abbreviations:
↑—increased concentration; ↓—decreased concentration; N—normal concentration; —-not docu-
mented; 3-HK—3-hydroxykynurenine; 5-HT—serotonin; BDNF—brain derived neurotrophic factor;
CRP—C-reactive protein; FGF-2—fibroblast growth factor-2; IGF-1—insulin-like growth factor-1;
IL-1—interleukin-1; IL-2—interleukin-2; IL-3—interleukin-3; IL-4—interleukin-4; IL-6—interleukin-6;
IL-10—interleukin-10; IL-12—interleukin-12; IL-13—interleukin-13; IL-18—interleukin-18; IL-1RA—
interleukin-1 receptor antagonist; IFN-γ—interferon γ; KYN—kynurenine; KYNA—kynurenic acid;
MDD—major depressive disorder; MCP-1/CCL2—Monocyte Chemoattractant Protein-1/Chemokine
ligand 2; NGF—nerve growth factor; QA—quinolinic acid; sIL-2R—soluble interleukin 2 receptor;
sIL-6R—soluble interleukin 6 receptor; sTNFR-1—soluble tumor necrosis factor α receptor 1; sTNFR-
2—soluble tumor necrosis factor α receptor 2; SAA1—serum amyloid a; TNF-α—tumor necrosis
factor α; TRP—tryptophan; VEGF—vascular endothelial growth factor.

Biomarker MDD COVID-19

IL-6 ↑ ↑
CRP ↑ ↑

TNF-α ↑ ↑
IFN-γ ↑ ↑/↓
sIL-6R ↑ N/↑
IL-1β ↑ N/↑

IL-1RA ↑ -
IL-10 ↑ ↑
IL-12 ↑ -
IL-13 ↑ -
IL-4 ↓ -
IL-3 ↑ -
IL-2 ↑ ↑

sIL-2R ↑ ↑
sTNFR-4 ↑ ↑
sTNFR-2 ↑ ↑

IL-18 ↑ -
MCP-1/CCL2 ↑ ↑

SAA1 ↑ ↑
KYN ↑ ↑

KYNA ↓ ↑
QA ↑ ↑

3-HK ↑ ↑
TRP ↓ ↑/↓
5-HT ↓ ↓
BDNF ↓ ↓
IGF-1 ↑ -
NGF ↓ -

VEGF ↑ -
FGF-2 ↑ -

However, there is no evidence that any individual factor can serve as a biomarker of
MDD [230], so we conclude that in order to assess the risk of developing and diagnosing it,
a more holistic post-COVID depression biosignature study should be performed, taking
into account all the factors listed here. In a disease as severe and turbulent as COVID-19, the
assessment of biomarkers for MDD can be technically difficult to perform and disrupted by
disorders that occur, in case of this illness, in most body systems. However, the described
high percentage of patients who develop depression, combined with the huge numbers of
patients hospitalized due to COVID-19, make the search for biomarkers of this disease, and
thus faster diagnosis and more effective treatment, of great importance for mental health
on a global scale. Unfortunately, there is still little research on this subject and it is often
inconclusive. There is also a lack of comprehensive studies directly linking MDD and its
biomarkers to COVID-19. In future, in order to assess the true usefulness and relationship
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of the post-COVID depression biomarkers described in this study, there is a need for a
prospective study linking their baseline level with the subsequent development of MDD.

Author Contributions: Conceptualization, P.L.; writing—original draft preparation, P.L.; reviewed
the manuscript, provided constructive feedback, N.W.; supervision and critical review of the
manuscript, N.W.; All authors critically reviewed the manuscript. All authors have read and agreed
to the published version of the manuscript.

Funding: This study was supported by the Medical University of Bialystok, grant number SUB/1/
DN/21/001/1147. The financial sponsor played no role in the design, execution, analysis, or
interpretation of data.

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: Data sharing not applicable. No new data were created or analyzed in
this study. Data sharing is not applicable to this article.

Acknowledgments: The main author thanks Agata Niechoda for her contribution, useful discussions
and critical review.

Conflicts of Interest: The authors declare no conflict of interest.

References
1. WHO. Coronavirus Disease (COVID-19) Dashboard. Dashboard with Vaccination Data. Available online: https://covid19.who.

int/ (accessed on 13 July 2021).
2. Grant, M.C.; Geoghegan, L.; Arbyn, M.; Mohammed, Z.; McGuinness, L.; Clarke, E.L.; Wade, R.G. The prevalence of symptoms in

24,410 adults infected by the novel coronavirus (SARS-CoV-2; COVID-19): A systematic review and meta-analysis of 148 studies
from 9 countries. PLoS ONE 2020, 15, e0234765. [CrossRef] [PubMed]

3. Vaira, L.A.; Salzano, G.; Deiana, G.; De Riu, G. Anosmia and Ageusia: Common Findings in COVID-19 Patients. Laryngoscope
2020, 130, 1787. [CrossRef] [PubMed]

4. Lai, C.-C.; Shih, T.-P.; Ko, W.-C.; Tang, H.-J.; Hsueh, P.-R. Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) and
coronavirus disease-2019 (COVID-19): The epidemic and the challenges. Int. J. Antimicrob. Agents 2020, 55, 105924. [CrossRef]
[PubMed]

5. Steardo, L.; Steardo, L.; Verkhratsky, A. Psychiatric face of COVID-19. Transl. Psychiatry 2020, 10, 261. [CrossRef]
6. Kong, X.; Zheng, K.; Tang, M.; Kong, F.; Zhou, J.; Diao, L.; Wu, S.; Jiao, P.; Su, T.; Dong, Y. Prevalence and Factors Associated with

Depression and Anxiety of Hospitalized Patients with COVID-19. medRxiv 2020. [CrossRef]
7. Mazza, M.G.; De Lorenzo, R.; Conte, C.; Poletti, S.; Vai, B.; Bollettini, I.; Melloni, E.M.T.; Furlan, R.; Ciceri, F.; Rovere-Querini, P.;

et al. Anxiety and depression in COVID-19 survivors: Role of inflammatory and clinical predictors. Brain Behav. Immun. 2020, 89,
594–600. [CrossRef]

8. De Lorenzo, R.; Conte, C.; Lanzani, C.; Benedetti, F.; Roveri, L.; Mazza, M.G.; Brioni, E.; Giacalone, G.; Canti, V.; Sofia, V.; et al.
Residual clinical damage after COVID-19: A retrospective and prospective observational cohort study. PLoS ONE 2020, 15,
e0239570. [CrossRef]

9. Bo, H.-X.; Li, W.; Yang, Y.; Wang, Y.; Zhang, Q.; Cheung, T.; Wu, X.; Xiang, Y.-T. Posttraumatic stress symptoms and attitude
toward crisis mental health services among clinically stable patients with COVID-19 in China. Psychol. Med. 2020, 51, 1052–1053.
[CrossRef]

10. Ritchie, K.; Chan, D. The emergence of cognitive COVID. World Psychiatry 2021, 20, 52–53. [CrossRef]
11. Raman, B.; Cassar, M.P.; Tunnicliffe, E.M.; Filippini, N.; Griffanti, L.; Alfaro-Almagro, F.; Okell, T.; Sheerin, F.; Xie, C.; Mahmod,

M.; et al. Medium-term effects of SARS-CoV-2 infection on multiple vital organs, exercise capacity, cognition, quality of life and
mental health, post-hospital discharge. EClinicalMedicine 2021, 31, 100683. [CrossRef] [PubMed]

12. Deng, J.; Zhou, F.; Hou, W.; Silver, Z.; Wong, C.Y.; Chang, O.; Huang, E.; Zuo, Q.K. The prevalence of depression, anxiety, and
sleep disturbances in COVID-19 patients: A meta-analysis. Ann. N. Y. Acad. Sci. 2020, 1486, 90–111. [CrossRef]

13. Cutler, D.M.; Summers, L.H. The COVID-19 Pandemic and the $16 Trillion Virus. JAMA 2020, 324, 1495–1496. [CrossRef]
14. James, S.L.; Abate, D.; Abate, K.H.; Abay, S.M.; Abbafati, C.; Abbasi, N.; Abbastabar, H.; Abd-Allah, F.; Abdela, J.; Abdelalim,

A.; et al. Global, regional, and national incidence, prevalence, and years lived with disability for 354 diseases and injuries for
195 countries and territories, 1990–2017: A systematic analysis for the Global Burden of Disease Study 2017. Lancet 2018, 392,
1789–1858. [CrossRef]

15. Depression. Available online: https://www.who.int/health-topics/depression#tab=tab_1 (accessed on 31 August 2021).
16. Nabbe, P.; Le Reste, J.; Guillou-Landreat, M.; Perez, M.M.; Argyriadou, S.; Clavería, A.; Fernandez-San-Martin, M.I.; Czachowski,

S.; Lingner, H.; Lygidakis, C.; et al. Which DSM validated tools for diagnosing depression are usable in primary care research? A
systematic literature review. Eur. Psychiatry 2017, 39, 99–105. [CrossRef]

https://covid19.who.int/
https://covid19.who.int/
http://doi.org/10.1371/journal.pone.0234765
http://www.ncbi.nlm.nih.gov/pubmed/32574165
http://doi.org/10.1002/lary.28692
http://www.ncbi.nlm.nih.gov/pubmed/32237238
http://doi.org/10.1016/j.ijantimicag.2020.105924
http://www.ncbi.nlm.nih.gov/pubmed/32081636
http://doi.org/10.1038/s41398-020-00949-5
http://doi.org/10.1101/2020.03.24.20043075
http://doi.org/10.1016/j.bbi.2020.07.037
http://doi.org/10.1371/journal.pone.0239570
http://doi.org/10.1017/S0033291720000999
http://doi.org/10.1002/wps.20837
http://doi.org/10.1016/j.eclinm.2020.100683
http://www.ncbi.nlm.nih.gov/pubmed/33490928
http://doi.org/10.1111/nyas.14506
http://doi.org/10.1001/jama.2020.19759
http://doi.org/10.1016/S0140-6736(18)32279-7
https://www.who.int/health-topics/depression#tab=tab_1
http://doi.org/10.1016/j.eurpsy.2016.08.004


J. Clin. Med. 2021, 10, 4142 14 of 22

17. Ng, C.W.M.; How, C.H.; Ng, Y.P. Major depression in primary care: Making the diagnosis. Singap. Med. J. 2016, 57, 591–597.
[CrossRef] [PubMed]

18. Gadad, B.; Jha, M.; Czysz, A.; Furman, J.L.; Mayes, T.L.; Emslie, M.P.; Trivedi, M.H. Peripheral biomarkers of major depression
and antidepressant treatment response: Current knowledge and future outlooks. J. Affect. Disord. 2017, 233, 3–14. [CrossRef]
[PubMed]

19. Smith, K.M.; Renshaw, P.F.; Bilello, J. The diagnosis of depression: Current and emerging methods. Compr. Psychiatry 2012, 54,
1–6. [CrossRef] [PubMed]

20. Miller, A.H.; Raison, C.L. The role of inflammation in depression: From evolutionary imperative to modern treatment target. Nat.
Rev. Immunol. 2015, 16, 22–34. [CrossRef]

21. Lee, C.-H.; Giuliani, F. The Role of Inflammation in Depression and Fatigue. Front. Immunol. 2019, 10, 1696. [CrossRef]
22. Andrews, P.W.; Bharwani, A.; Lee, K.R.; Fox, M.; Thomson, J.A. Is serotonin an upper or a downer? The evolution of the

serotonergic system and its role in depression and the antidepressant response. Neurosci. Biobehav. Rev. 2015, 51, 164–188.
[CrossRef] [PubMed]

23. Iob, E.; Kirschbaum, C.; Steptoe, A. Persistent depressive symptoms, HPA-axis hyperactivity, and inflammation: The role of
cognitive-affective and somatic symptoms. Mol. Psychiatry 2019, 25, 1130–1140. [CrossRef]

24. Limbana, T.; Khan, F.; Eskander, N. Gut Microbiome and Depression: How Microbes Affect the Way We Think. Cureus 2020, 12.
[CrossRef]

25. Wallace, C.J.K.; Milev, R. The effects of probiotics on depressive symptoms in humans: A systematic review. Ann. Gen. Psychiatry
2017, 16, 1–10. [CrossRef] [PubMed]

26. Paige, L.A.; Mitchell, M.; Krishnan, K.R.R.; Kaddurah-Daouk, R.; Steffens, D.C. A preliminary metabolomic analysis of older
adults with and without depression. Int. J. Geriatr. Psychiatry 2007, 22, 418–423. [CrossRef] [PubMed]

27. Bot, M.; Milaneschi, Y.; Al-Shehri, T.; Amin, N.; Garmaeva, S.; Onderwater, G.L.; Pool, R.; Thesing, C.S.; Vijfhuizen, L.S.;
Vogelzangs, N.; et al. Metabolomics Profile in Depression: A Pooled Analysis of 230 Metabolic Markers in 5283 Cases with
Depression and 10,145 Controls. Biol. Psychiatry 2020, 87, 409–418. [CrossRef]

28. Castrén, E.; Voikar, V.; Rantamäki, T. Role of neurotrophic factors in depression. Curr. Opin. Pharmacol. 2007, 7, 18–21. [CrossRef]
[PubMed]

29. Lee, B.-H.; Kim, Y.-K. The Roles of BDNF in the Pathophysiology of Major Depression and in Antidepressant Treatment. Psychiatry
Investig. 2010, 7, 231–235. [CrossRef]

30. Bajpai, A. Oxidative Stress and Major Depression. J. Clin. Diagn. Res. 2014, 8, CC04–CC07. [CrossRef] [PubMed]
31. Hamed, R.A.; Elmalt, H.A.; Salama, A.A.; Abozaid, S.Y.; Ahmed, A.S. Biomarkers of Oxidative Stress in Major Depressive

Disorder. Open Access Maced. J. Med. Sci. 2020, 8, 501–506. [CrossRef]
32. Nobis, A.; Zalewski, D.; Waszkiewicz, N. Peripheral Markers of Depression. J. Clin. Med. 2020, 9, 3793. [CrossRef]
33. Erjavec, G.N.; Sagud, M.; Perkovic, M.N.; Strac, D.S.; Konjevod, M.; Tudor, L.; Uzun, S.; Pivac, N. Depression: Biological markers

and treatment. Prog. Neuro-Psychopharmacol. Biol. Psychiatry 2020, 105, 110139. [CrossRef]
34. Hacimusalar, Y.; Esel, E. Suggested Biomarkers for Major Depressive Disorder. Arch. Neuropsychiatry 2017, 55, 280–290. [CrossRef]

[PubMed]
35. Malik, S.; Singh, R.; Arora, G.; Dangol, A.; Goyal, S. Biomarkers of Major Depressive Disorder: Knowing is Half the Battle. Clin.

Psychopharmacol. Neurosci. 2021, 19, 12–25. [CrossRef] [PubMed]
36. Strawbridge, R.; Young, A.H.; Cleare, A.J. Biomarkers for depression: Recent insights, current challenges and future prospects.

Neuropsychiatr. Dis. Treat. 2017, 13, 1245–1262. [CrossRef] [PubMed]
37. Verduijn, J.; Milaneschi, Y.; Schoevers, R.A.; Van Hemert, A.M.; Beekman, A.T.F.; Penninx, B.W.J.H. Pathophysiology of major

depressive disorder: Mechanisms involved in etiology are not associated with clinical progression. Transl. Psychiatry 2015, 5, e649.
[CrossRef]

38. Nalbandian, A.; Sehgal, K.; Gupta, A.; Madhavan, M.V.; McGroder, C.; Stevens, J.S.; Cook, J.R.; Nordvig, A.S.; Shalev, D.;
Sehrawat, T.S.; et al. Post-acute COVID-19 syndrome. Nat. Med. 2021, 27, 601–615. [CrossRef]

39. Perlis, R.H.; Santillana, M.; Ognyanova, K.; Green, J.; Druckman, J.; Lazer, D.; Baum, M.A. Comparison of post-COVID depression
and major depressive disorder. medRxiv 2021. [CrossRef]

40. Jesulola, E.; Micalos, P.; Baguley, I.J. Understanding the pathophysiology of depression: From monoamines to the neurogenesis
hypothesis model—Are we there yet? Behav. Brain Res. 2018, 341, 79–90. [CrossRef]

41. Han, Q.-Q.; Yu, J. Inflammation: A mechanism of depression? Neurosci. Bull. 2014, 30, 515–523. [CrossRef]
42. Amodeo, G.; Trusso, M.A.; Fagiolini, A. Depression and Inflammation: Disentangling a Clear Yet Complex and Multifaceted Link.

Neuropsychiatry 2018, 7, 448–457. [CrossRef]
43. Raison, C.L.; Borisov, A.; Broadwell, S.D.; Capuron, L.; Woolwine, B.J.; Jacobson, I.M.; Nemeroff, C.B.; Miller, A.H. Depression

During Pegylated Interferon-Alpha Plus Ribavirin Therapy. J. Clin. Psychiatry 2005, 66, 41–48. [CrossRef]
44. Himmerich, H.; Patsalos, O.; Lichtblau, N.; Ibrahim, M.; Dalton, B. Cytokine Research in Depression: Principles, Challenges, and

Open Questions. Front. Psychiatry 2019, 10, 30. [CrossRef]
45. Palagini, L.; Mosca, M.; Tani, C.; Gemignani, A.; Mauri, M.; Bombardieri, S. Depression and systemic lupus erythematosus: A

systematic review. Lupus 2013, 22, 409–416. [CrossRef]

http://doi.org/10.11622/smedj.2016174
http://www.ncbi.nlm.nih.gov/pubmed/27872937
http://doi.org/10.1016/j.jad.2017.07.001
http://www.ncbi.nlm.nih.gov/pubmed/28709695
http://doi.org/10.1016/j.comppsych.2012.06.006
http://www.ncbi.nlm.nih.gov/pubmed/22901834
http://doi.org/10.1038/nri.2015.5
http://doi.org/10.3389/fimmu.2019.01696
http://doi.org/10.1016/j.neubiorev.2015.01.018
http://www.ncbi.nlm.nih.gov/pubmed/25625874
http://doi.org/10.1038/s41380-019-0501-6
http://doi.org/10.7759/cureus.9966
http://doi.org/10.1186/s12991-017-0138-2
http://www.ncbi.nlm.nih.gov/pubmed/28239408
http://doi.org/10.1002/gps.1690
http://www.ncbi.nlm.nih.gov/pubmed/17048218
http://doi.org/10.1016/j.biopsych.2019.08.016
http://doi.org/10.1016/j.coph.2006.08.009
http://www.ncbi.nlm.nih.gov/pubmed/17049922
http://doi.org/10.4306/pi.2010.7.4.231
http://doi.org/10.7860/JCDR/2014/10258.5292
http://www.ncbi.nlm.nih.gov/pubmed/25653939
http://doi.org/10.3889/oamjms.2020.4144
http://doi.org/10.3390/jcm9123793
http://doi.org/10.1016/j.pnpbp.2020.110139
http://doi.org/10.5152/npa.2017.19482
http://www.ncbi.nlm.nih.gov/pubmed/30224877
http://doi.org/10.9758/cpn.2021.19.1.12
http://www.ncbi.nlm.nih.gov/pubmed/33508785
http://doi.org/10.2147/NDT.S114542
http://www.ncbi.nlm.nih.gov/pubmed/28546750
http://doi.org/10.1038/tp.2015.137
http://doi.org/10.1038/s41591-021-01283-z
http://doi.org/10.1101/2021.03.26.21254425
http://doi.org/10.1016/j.bbr.2017.12.025
http://doi.org/10.1007/s12264-013-1439-3
http://doi.org/10.4172/Neuropsychiatry.1000236
http://doi.org/10.4088/JCP.v66n0106
http://doi.org/10.3389/fpsyt.2019.00030
http://doi.org/10.1177/0961203313477227


J. Clin. Med. 2021, 10, 4142 15 of 22

46. Fermo, S.L.; Barone, R.; Patti, F.; Laisa, P.; Cavallaro, T.L.; Nicoletti, A.; Zappia, M. Outcome of psychiatric symptoms presenting
at onset of multiple sclerosis: A retrospective study. Mult. Scler. J. 2010, 16, 742–748. [CrossRef] [PubMed]

47. Pedersen, S.F.; Ho, Y.-C. SARS-CoV-2: A storm is raging. J. Clin. Investig. 2020, 130, 2202–2205. [CrossRef]
48. Lucey, D.R.; Clerici, M.; Shearer, G.M. Type 1 and type 2 cytokine dysregulation in human infectious, neoplastic, and inflammatory

diseases. Clin. Microbiol. Rev. 1996, 9, 532. [CrossRef]
49. Smith, J.A.; Das, A.; Ray, S.K.; Banik, N.L. Role of pro-inflammatory cytokines released from microglia in neurodegenerative

diseases. Brain Res. Bull. 2012, 87, 10–20. [CrossRef]
50. Choi, S.S.; Lee, H.J.; Lim, I.; Satoh, J.-I.; Kim, S.U. Human Astrocytes: Secretome Profiles of Cytokines and Chemokines. PLoS

ONE 2014, 9, e92325. [CrossRef]
51. Watkins, L.R.; Goehler, L.E.; Relton, J.K.; Tartaglia, N.; Silbert, L.; Martin, D.; Maier, S.F. Blockade of interleukin-1 induced

hyperthermia by subdiaphragmatic vagotomy: Evidence for vagal mediation of immune-brain communication. Neurosci. Lett.
1995, 183, 27–31. [CrossRef]

52. Quan, N.; Banks, W.A. Brain-immune communication pathways. Brain Behav. Immun. 2007, 21, 727–735. [CrossRef]
53. Plotkin, S.R.; BanksP, W.A.; Kastin, A.J. Comparison of saturable transport and extracellular pathways in the passage of

interleukin-1 α across the blood-brain barrier. J. Neuroimmunol. 1996, 67, 41–47. [CrossRef]
54. Cheng, Y.; Desse, S.; Martinez, A.; Worthen, R.; Jope, R.S.; Beurel, E. TNFα disrupts blood brain barrier integrity to maintain

prolonged depressive-like behavior in mice. Brain Behav. Immun. 2018, 69, 556–567. [CrossRef]
55. Mastorakos, G.; Chrousos, G.P.; Weber, J.S. Recombinant interleukin-6 activates the hypothalamic-pituitary-adrenal axis in

humans. J. Clin. Endocrinol. Metab. 1993, 77, 1690–1694. [CrossRef]
56. Raison, C.L.; Miller, A.H. When Not Enough Is Too Much: The Role of Insufficient Glucocorticoid Signaling in the Pathophysiology

of Stress-Related Disorders. Am. J. Psychiatry 2003, 160, 1554–1565. [CrossRef]
57. Morikawa, O.; Sakai, N.; Obara, H.; Saito, N. Effects of interferon-α, interferon-γ and cAMP on the transcriptional regulation of

the serotonin transporter. Eur. J. Pharmacol. 1998, 349, 317–324. [CrossRef]
58. Wichers, M.C.; Maes, M. The role of indoleamine 2,3-dioxygenase (IDO) in the pathophysiology of interferon-α-induced

depression. J. Psychiatry Neurosci. 2004, 29, 11. [PubMed]
59. Fuchs, E.; Czéh, B.; Kole, M.; Michaelis, T.; Lucassen, P.J. Alterations of neuroplasticity in depression: The hippocampus and

beyond. Eur. Neuropsychopharmacol. 2004, 14, S481–S490. [CrossRef]
60. Tang, Y.; Liu, J.; Zhang, D.; Xu, Z.; Ji, J.; Wen, C. Cytokine Storm in COVID-19: The Current Evidence and Treatment Strategies.

Front. Immunol. 2020, 11, 1708. [CrossRef] [PubMed]
61. Tanaka, T.; Narazaki, M.; Kishimoto, T. IL-6 in Inflammation, Immunity, and Disease. Cold Spring Harb. Perspect. Biol. 2014, 6,

a016295. [CrossRef]
62. Heinrich, P.C.; Castell, J.V.; Andus, T. Interleukin-6 and the acute phase response. Biochem. J. 1990, 265, 621–636. [CrossRef]
63. Erta, M.; Quintana, A.; Hidalgo, J. Interleukin-6, a Major Cytokine in the Central Nervous System. Int. J. Biol. Sci. 2012, 8,

1254–1266. [CrossRef] [PubMed]
64. Hodes, G.E.; Ménard, C.; Russo, S. Integrating Interleukin-6 into depression diagnosis and treatment. Neurobiol. Stress 2016, 4,

15–22. [CrossRef] [PubMed]
65. Money, K.M.; Olah, Z.; Korade, Z.; Garbett, K.A.; Shelton, R.C.; Mirnics, K. An altered peripheral IL6 response in major depressive

disorder. Neurobiol. Dis. 2016, 89, 46–54. [CrossRef] [PubMed]
66. Ting, E.Y.-C.; Yang, A.C.; Tsai, S.-J. Role of Interleukin-6 in Depressive Disorder. Int. J. Mol. Sci. 2020, 21, 2194. [CrossRef]

[PubMed]
67. Lanquillon, S.; Krieg, J.-C.; Bening-Abu-Shach, U.; Vedder, H. Cytokine Production and Treatment Response in Major Depressive

Disorder. Neuropsychopharmacology 2000, 22, 370–379. [CrossRef]
68. Mazza, M.G.; Palladini, M.; De Lorenzo, R.; Magnaghi, C.; Poletti, S.; Furlan, R.; Ciceri, F.; Rovere-Querini, P.; Benedetti, F.

Persistent psychopathology and neurocognitive impairment in COVID-19 survivors: Effect of inflammatory biomarkers at
three-month follow-up. Brain Behav. Immun. 2021, 94, 138–147. [CrossRef]

69. Thomas, T.; Stefanoni, D.; Reisz, J.A.; Nemkov, T.; Bertolone, L.; Francis, R.O.; Hudson, K.E.; Zimring, J.C.; Hansen, K.C.; Hod,
E.A.; et al. COVID-19 infection alters kynurenine and fatty acid metabolism, correlating with IL-6 levels and renal status. JCI
Insight 2020, 5. [CrossRef]

70. Raony, Í.; Figueiredo, C.S.; Pandolfo, P.; Giestal-De-Araujo, E.; Bomfim, P.O.-S.; Savino, W. Psycho-Neuroendocrine-Immune
Interactions in COVID-19: Potential Impacts on Mental Health. Front. Immunol. 2020, 11, 1170. [CrossRef]

71. Di Spigna, G.; Cernia, D.S.; Vargas, M.; Buonavolontà, L.; Servillo, G.; Postiglione, L. Drastically elevated levels of Interleukin-6
and its soluble receptor complex in COVID-19 patients with acute respiratory distress. Clin. Med. Investig. 2020, 5. [CrossRef]
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