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Canonical correlation analysis (CCA) has become a key tool for population neuroimaging, allowing investigation
of associations between many imaging and non-imaging measurements. As age, sex and other variables are often a
source of variability not of direct interest, previous work has used CCA on residuals from a model that removes
these effects, then proceeded directly to permutation inference. We show that a simple permutation test, as
typically used to identify significant modes of shared variation on such data adjusted for nuisance variables,
produces inflated error rates. The reason is that residualisation introduces dependencies among the observations
that violate the exchangeability assumption. Even in the absence of nuisance variables, however, a simple per-
mutation test for CCA also leads to excess error rates for all canonical correlations other than the first. The reason
is that a simple permutation scheme does not ignore the variability already explained by previous canonical
variables. Here we propose solutions for both problems: in the case of nuisance variables, we show that trans-
forming the residuals to a lower dimensional basis where exchangeability holds results in a valid permutation test;
for more general cases, with or without nuisance variables, we propose estimating the canonical correlations in a
stepwise manner, removing at each iteration the variance already explained, while dealing with different number
of variables in both sides. We also discuss how to address the multiplicity of tests, proposing an admissible test

that is not conservative, and provide a complete algorithm for permutation inference for CCA.

1. Introduction

Canonical correlation analysis (cca) (Jordan, 1875; Hotelling, 1936) is
a multivariate method that aims at reducing the correlation structure
between two sets of variables to the simplest possible form (hence the
name ‘“canonical’’) through linear transformations of the variables
within each set. Put simply, given two sets of variables, the method seeks
linear mixtures within each set, such that each resulting mixture from
one set is maximally correlated with a corresponding mixture from the
other set, but uncorrelated with all other mixtures in either set.

From a peak use through from the late 1970’s until mid-1980’s, the
method has recently regained popularity, presumably thanks to its ability
to uncover latent, common factors underlying association between
multiple measurements obtained, something relevant in recent research,
particularly in the field of brain imaging, that uses high dimensional
phenotyping and investigates between-subject variability across multiple
domains. This is in contrast to initial studies that introduced cca to the
field (Friston et al., 1995, 1996; Worsley, 1997; Friman et al., 2001,
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2002, 2003) for investigation of signal variation in functional magnetic
resonance imaging (fmrr) time series. For example, Smith et al. (2015)
used cca to identify underlying factors associating brain connectivity
features to various demographic, psychometric, and lifestyle measures;
Rosa et al. (2015) used a sparse cca method to investigate differences in
brain perfusion after administration of two distinct antipsychotic drugs;
Miller et al. (2016) used cca to identify associations between imaging and
non-imaging variables in the uk Biobank; Drysdale et al. (2017) used cca
to investigate associations between brain connectivity and clinical as-
sessments, and found two canonical variables that would allow classifi-
cation of participants into distinct categories (but see Dinga et al., 2019);
Kernbach et al. (2018) used cca to identify connectivity patterns in the
default mode network associated with patterns of connectivity elsewhere
in the brain; Bijsterbosch et al. (2018), Xia et al. (2018), and Mihalik et al.
(2019) likewise used cca to identify associations between functional
connectivity and various indices of behaviour and psychopathology,
whereas Sui et al. (2018) used a combination of multivariate methods,
including cca, to investigate brain networks associated with composite
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cognitive scores; Li et al. (2019) used cca to investigate, among subjects,
the topography of the global fmr! signal and its relationship with a
number of cognitive and behavioral measurements; Ing et al. (2019) used
cca to identify symptom groups that were correlated with brain regions
assessed through a diverse set of imaging modalities; Alnas et al. (2020)
used cca to investigate the association between imaging measurements
and cognitive, behavioral, psychosocial and socioeconomic indices;
Clemens et al. (2020) used a combination of pattern classification algo-
rithms and cca to study imaging and behavioral correlates of the sub-
jective perception of oneself belonging to a particular gender. In most of
these between-subject, group level studies, putative nuisance variables or
confounds were regressed out from the data before proceeding to infer-
ence, and all of them used some form of permutation test to assess the
significance of the results. In a recent review, Wang et al. (2020)
described a permutation procedure for cca as “a random shuffling of the
rows (...) of the two variable sets”’.

Permutation tests are well known and widely used. Among their
many benefits, these tests lead to valid inferences while requiring as-
sumptions that are commonly satisfied in between-subject analyses, such
that of exchangeability of observations under the null hypothesis. How-
ever, here we show that simple implementations of permutation infer-
ence for cca are inadequate on four different grounds. First, simple,
uncorrected permutation p-values are not guaranteed to be mono-
tonically related to the canonical correlations, leading to inadmissible
results; for the same reason, multiple testing correction using false dis-
covery rate is also inadmissible. Second, except for the highest canonical
correlation, a simple one-step estimation of all others without consid-
ering the variability already explained by previous canonical variables in
relation to each of them also leads to inflated per comparison error rates
and thus, invalid results. Third, regressing out nuisance variables without
consideration to the introduction of dependencies among observations
caused by residualisation leads to an invalid test, with excess false pos-
itives. Fourth, multiple testing correction using the distribution of the
maximum test statistic leads to conservative results, except for the
highest canonical correlation.

In this paper we explain and discuss in detail each of these problems,
and offer solutions that address each of them. In particular, we propose a
stepwise estimation method for the canonical correlations and canonical
variables that remains valid even when the number of variables is not the
same for both sides of cca. We propose a method that transforms resi-
dualised data to a lower dimensional basis where exchangeability — as
required for the validity of permutation tests — holds. We also propose
that inference that considers multiple canonical correlations should use a
closed testing procedure that is more powerful than the usual correction
method used in permutation tests that use the distribution of the
maximum statistic; the procedure also ensures a monotonic relationship
between p-values and canonical correlations. Finally, we provide a
complete, general algorithm for valid inferences for cca.

2. Theory
2.1. Notation and general aspects

Thorough definition and derivation of cca can be found in many
classical textbooks on multivariate analysis (e.g., Kendall, 1975; Mardia
et al., 1979; Brillinger, 1981; Muirhead, 1982; Seber, 1984; Krzanowski,
1988; Anderson, 2003); the reader is referred to these for a compre-
hensive overview. Here we present concisely and only allude to the
distinction between population (p) and sample (r) canonical correlations
where strictly needed. Let Yy.p and Xyxq be each one a collection of,
respectively, P and Q variables observed from N subjects, N > P+ Q.
Without loss of generality, assume that P < Q, that the columns of Y and
X are mean-centered, that these matrices are of full rank, and define
E(Y’Y) = Eyy, E(X’X) = Exx, and E(Y’X) = Zyx = X’xy. The goal of
cca is to identify canonical coefficients or canonical weights Ap.x = (a1, ...
,ag] and Boxx = [b1,...,bk], K = min(P,Q), such that the pairs (u, vk) of
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canonical variables, defined as:

[uy,...,ux] = Uyx = YA a
[Vi,...,Vk] = Vauxk = XB

have correlations ry that are maximal, under the constraint that U'U =V’

V =L Estimation of A and B amounts to finding the K solutions to:

—nZyy Tyx A

=0 2
Zxy _rkEXX:| |:bk:| 2)

where the unknowns are ry, a, and by; rx are the sample canonical cor-
relations, i.e., the correlations between the estimated canonical variables
u; and vi. The coefficients a; are eigenvectors of XyyZyxZyxIxy,
whereas by are eigenvectors of 2,;,1(2“2;},2“; the respective eigen-
values (for either ay or by, as these eigenvalues are the same) are r,f. For
convenience, we call canonical component the ensemble formed by the k-
th canonical correlation, its corresponding pair of canonical variables,
and associated pair of canonical coefficients; canonical variables may
also be termed modes of variation.

The typical method for estimation involves an iterative procedure
that finds one ry and a at a time, with by computed as a function of these.
However, the method proposed by Bjorck and Golub (1973) is more
concise and numerically more stable; it is described in the Appendix
(Algorithm 3). The canonical correlations are then produced in
descending order, r; > ... >y > ... > rg > 0; this positiveness of all
canonical correlations is a consequence of these values being explicitly
maximised during estimation; reversal of the sign of the coefficients aj
can always be accompanied by the reversal of the sign of the corre-
sponding coefficients by in the other side (and of u; and v), to no net
effect on ry. That is, the signs of the canonical variables and coefficients
are indeterminate, and any solution is arbitrary; nothing can be
concluded about the specific direction of effects with cca.

2.2. Parametric inference

The distribution of the sample canonical correlations ry is intractable,
even under assumptions of normality and independence among subjects,
and is a function of the population correlations p; (Constantine, 1963;
James, 1964). This difficulty led to the development of a rich asymptotic
theory (Fisher, 1939; Hsu, 1941; Lawley, 1959; Fujikoshi, 1977; Glynn
and Muirhead, 1978). However, these approximations have been shown
to be extremely sensitive to departures from normality, or require addi-
tional terms that further complicate their use (Muirhead and Waternaux,
1980); Brillinger (1981) recommended resampling methods to estimate
parameters used by normal approximations, which otherwise can be
biased (Anderson, 2003). These difficulties pose challenges for inference.
Even though some computationally efficient algorithms have been pro-
posed (Koev and Edelman, 2006), these tests continue to be rarely used.

Instead, a test based on whether a certain number of correlations are
equal to zero has been proposed. The null hypothesis is 79 : p, = pr.1 =
o =pg =0,ie, 7% : N p; =0, for1 <k <K, that is, the null is that
K — k + 1 population canonical correlations (the smaller ones) are zero
(Bartlett, 1938, 1947; Marriott, 1952; Lawley, 1959; Fujikoshi, 1974),
versus the alternative that at least one is not, i.e., 7} : VK, p; > 0. The
test is based on the statistic proposed by Wilks (1935), as:

zk_(zvcfurg”)ln<f[(1r?)> 3

i=k

where the constant C = 0 if there are no nuisance variables (Section 2.6).
Under the null hypothesis, 4 follows an approximate y? distribution with
degrees of freedom v = (P —k +1)(Q —k +1) if each of the columns of Y
and X have values that are independent and identically distributed
following a normal distribution (but see Glynn and Muirhead, 1978, for a
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different expression). Unfortunately, this test is sensitive to departures
from normality, particularly in the presence of outliers, and its use has
been questioned (Seber, 1984; Harris, 1976).

Another test statistic is based on Roy (1953)" and is simply:

Oc=r (€]

The critical values for the corresponding parametric distribution at a
given test level a can be found in the charts provided by Heck (1960),
using as parameterss =min(P,Q) —k+1,m = (P - Q| —1)/2,andn =
(N—-C—-P—-Q—-2)/2(Lee, 1978), where the constant C = 0 if there are no
nuisance variables (Section 2.6), or in tables provided by Kres (1975);
more recent approximations for normally distributed data can be found
in Chiani (2016) and Johnstone and Nadler (2017). Some approxima-
tions, however, are considered conservative (Harris, 1976, 2013). Note
that, while Roy (1953) proposed the use of the largest value as test sta-
tistic, which would then be r2_,, any given null .7} at position k must
have already considered the previous canonical components, from 1 until
k— 1, such that the maximum statistic, after the previous canonical
correlations have been removed from the model, is always the current
one. A similar reasoning holds for the smallest canonical correlations in
the test proposed by Wilks (1935). This feature is exploited in the step-
wise rejective procedure proposed in Section 2.5.

2.3. Permutation inference

The above problems can be eschewed with the use of resampling
methods, such as permutation. An intuitive (but inadequate) permutation
test for cca could be constructed by randomly permuting the rows of Y or
X. For each shuffling of the data, indicated by j = {1,...,J}, a new set of

canonical correlations (rk); and associated statistics (/1;(); would be
computed. A p-value would be obtained as px = %Zlel (), > (lk);],
where I[ ] is the indicator (Kronecker) function, which evaluates as 1 if
the condition inside the brackets is true, or 0 otherwise, and the indexj =
1 corresponds to the unpermuted data (i.e., no permutation, with the
data in their original ordering).

Such a naive procedure, however, would ignore the fact that, this
resampling scheme matches the first null hypothesis .79, but not the
subsequent ones. For a given canonical correlation at position k being
tested, k > 1, one must generate a permutation that satisfies the corre-
sponding null /7, 2, but not necessarily {7/’0, 4 ,?71 }. Otherwise, latent
effects represented by the corresponding earlier canonical variables [u;,
...,u_1]and vy, ..., vk_1] would, in the procedure above, remain in the Y
and X at the time these are permuted. However, the variance associated
with these earlier canonical variables would have already been explained
through the rejection of their respective null hypothesis up to #% ;. This
variance is now a nuisance for the positions from k (inclusive) onward. It
contains information that are not pertinent to position k and subsequent
ones, and that therefore should not be used to build the null distribution.
That is variance should not be re-used in the shufflings that lead to a

given (rx); or subsequent correlations.

Fortunately, cca is invariant to linear transformations that mix the
variables in Y or in X. Since the canonical variables are themselves linear
transformations of these input variables (Equation (1)), a second cca
using U and V in place of the initial Y and X leads to the same solutions.
Yet, unless P = Q, V will not span the same space as X. In principle, this
would be inconsequential as far as the canonical variables are concerned.
However, ignoring the variability in X not contained in V would again
affect the p-values should U and V be used in a permutation test, as the

1 Roy (1953) proposed two distinct but related test statistics; these are both
known as “Roy’s largest root”’. Here we use the one that is interpreted as a
coefficient of determination, and not the other that is interpreted as an F-sta-
tistic. See Kuhfeld (1986) for a complete discussion.
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permuted data would not be representative of the original (unpermuted)
that led to these initial canonical variables. To mitigate the problem,
include into the matrix of canonical coefficients their orthogonal com-
plement, i.e., compute V = X[B, null(B’)], then use V instead of V as a
replacement for X. In this paper we adopted the convention that P < Q,
but the same procedure works in reverse and, algorithmically, it might as
well be simpler to compute also a U = Y[A, null(A’)] and use it instead of
U as a replacement for Y. If P < Q, then U=0U.

While these transformations do not change in any way the canonical
components, they allow the construction of an improved algorithm that
addresses the issue of variability already explained by canonical variables
of lower rank (i.e., the ones with order indices smaller than that of a
given one). It consists of running an initial cca using Y and X to obtain U
and V, then subject these to a second cca and permutation testing while,
crucially, at each permutation, iteratively repeating cca K times, each
using not the whole U and V, but only from the k-th component onwards,
i.e., [0, ...,up] and [V, ..., Vq| for the test about the k-th canonical cor-
relation. Of note, a test level @ does not need to be specified at the time in
which the above iterative (stepwise) procedure is performed; instead,
and in combination with the multiple testing procedure described below,
adjusted p-values are are computed, which then are used to accept or
reject the null for the k-th correlation. Algorithm 1 (Section 2.8) shows
the procedure in detail (the algorithm contains other details that are
discussed in the next sections).

A number of further aspects need be considered in permutation tests:
the number of possible reorderings of the data, the need for permutations
that break the association between the variables being tested, the random
selection of permutations from the permutation set when not all possible
permutations can be used, the choice of the test statistic, how to correct
for the multiplicity of tests, the number of permutations to allow narrow
confidence intervals around p-values, among others. These topics have
been discussed in Winkler et al. (2014, 2016) and references therein and
will not be repeated here. However, for cca, some aspects deserve special
treatment and are considered below.

2.4. Choice of the statistic

Asymptotically, using Wilks’ statistic Ax or Roy’s 6 are expected to
lead to the same conclusion since all correlations are sorted in descending
order: if r, = 0, then all subsequent ones must be zero; likewise, if ry > 0,
then clearly at least one correlation between k and K is larger than zero,
which has to include ry itself. Moreover, permutation under the null is
justifiable in the complete absence of association between the two sets,
which implies that, under the null .7, 0 all correlations ry, Tkil,-..,TK are
equal to zero. With finite data, however, one statistic can be more
powerful than the other in different settings; their relative performance is
studied in Sections 3 and 4.

Computationally, Wilks’ requires more operations to be performed
compared to Roy’s statistic. Since the relationship between ri and 6y is
monotonic, the two are permutationally equivalent, and using ri alone is
sufficient, which makes Roy’s the absolute fastest. However, even for
Wilks’, the amount of computation required is negligible compared to the
overall number of operations needed for estimation of the canonical
coefficients, such that in practice, the choice between the two should be
in terms of power.

In either case, while inference refers to the respective null hypothesis
at position k, it is not to be understood as inference on the index k.
Rather, the null is merely conditional on the nulls for all previous cor-
relations from 1 to k — 1 having been rejected. Rejecting the null implies
that the correlation observed at position k is too high under the null
hypothesis of no association between the two variable sets after all pre-
vious (from 1 to k— 1) canonical variables have been sequentially
removed, as described in Section 2.3. In Algorithm 1 (Section 2.8) this is
done in line 29, that uses as inputs to cca the precomputed canonical
variables only from position k onwards, as opposed to all of them.
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2.5. Multiplicity of tests

For either of these two test statistics, the ordering of the canonical
correlations from larger (farther from zero) to smaller (closer to zero)
imply that rejection of the null hypothesis at each k must happen
sequentially, starting from k = 1, using the respective test statistic and
associated p-value until the null /77”2, for some k = {1, ..., K}, is not
rejected at a predefined test level a. Then, at that position k, the pro-
cedure stops, and the null is retained from that position (inclusive) on-
ward until the final index K.

The ordering of the canonical correlations brings additional conse-
quences. First, because rejection of /77 implies rejection of all joint
(intersection) hypotheses that include 79, that is 79, ..., 7% |, such
sequentially rejective procedure is also a closed testing procedure (ctp),
which controls the amount of any type 1 error across all tests, i.e., the
familywise error rate (¢wer) in the strong sense (Marcus et al., 1976;
Hochberg and Tamhane, 1987). Thus, there is no need for further
correction for multiple testing. Another way of stating the same is that
the test for a given r, k > 1, has been “protected” by the test at the
position k = 1 at the level a. Adjusted p-values (in the rwer sense) can be
computed as [px|pwgr = Max(pi,...,Pk), that is, the rwer-adjusted p-value
for the canonical component k is the cumulative maximum p-value up to
position k. Such adjusted p-values can be considered significant if their
value is below the desired test level a.

The second consequence is that Fwer adjustment of p-values using the
distribution of the maximum statistic (not to be confused with the cu-
mulative maximum described in the above paragraph) will be conser-
vative for all canonical components except the first. The reason is that the
maximum statistic is always the distribution of the first, which is sto-
chastically dominant over all others. The distribution of the maximum is
usually sought as a shortcut to a cre when the condition of subset piv-
otality holds (Westfall and Young, 1993), as that reduces the computa-
tional burden from 2K tests to only K tests. Interestingly, the ordering of
the canonical correlations from largest to smallest leads to a crp that does
not use the distribution of the maximum, and yet requires only K tests,
regardless of whether subset pivotality holds.

A third consequence is that using permutation p-values outside the
above sequentially rejective procedure that controls rwer is not appro-
priate since these simple, uncorrected p-values are not guaranteed to be
monotonically related to the canonical correlations ry. Attempts to use
these uncorrected p-values outside a ctp would lead to paradoxical results
whereby higher, stronger canonical correlations might not be considered
significant, yet later ones, smaller, weaker, could be so; that is, it would
make the test inadmissible (Lehmann and Romano, 2005, p. 232). For the
same reason, such simple p-values should not be subjected to correction
using false discovery rate (pr; Benjamini and Hochberg, 1995), because
the ordering of p-values for rpr, from smallest to largest, is not guaran-
teed to match the ordering of the canonical correlations, leading similarly
to an inadmissible test.

2.6. Nuisance variables

Few authors discussed nuisance variables or confounds in canonical
correlation analysis, e.g., Roy (1957); Rao (1969); Timm and Carlson
(1976); Lee (1978); Sato et al. (2010). Let the Z be a Nx R matrix of
nuisance variables, including an intercept. Partial cca consists of
considering Z nuisance for both Y and X. This is distinct from part cca,
which consists of considering Z a nuisance for either Y or X, but not both.
Finally, bipartial cca consists of considering Z a nuisance for Y, while
considering another set of variables W, of size N x S, a nuisance for X. In
all three cases, such nuisance variables can be regressed out from the
respective set of variables of interest, then the respective residuals sub-
jected to cca (Table 1). In the parametric case, inference can proceed
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Table 1

Taxonomy of canonical correlation analysis with respect to nuisance variables. In
all cases, the aim is to find linear combinations of variables in the left and in the
right sets, such that each combination from one set is maximally correlated with a
corresponding combination from the other, but uncorrelated with all other
combinations from either set.

Name Left set Right set
cca (“full”’, no nuisance) Y X
Partial cca Rz Y RzX
Part cca RzY X
Bipartial cca Rz Y RwX

Ry is a residual forming matrix that considers the nuisance variables in Z, and is
computed as Iy,y — ZZ", where the symbol " represents a pseudo-inverse. Ry is
computed similarly, considering the nuisance variables in W. The choice which
set is on left or right side is arbitrary.

using the distribution of 4 or 6 (Equations (3) and (4)) using C = R for
partial or part, and C = max(R, S) for bipartial cca (Timm and Carlson,
1976; Lee, 1978).

Permutation inference, however, requires further considerations,
otherwise, as shown in Section 4, results will be invalid. Consider first the
case without nuisance variables. Let M = [Y, X]y, p, ) be the horizontal
concatenation of the two sets of variables whose association is being
investigated. Both Y and X occupy an N-dimensional space and, there-
fore, so does M. A random permutation of the rows of either of the two
sets of variables will not affect their dimensionalities. For example M" =
[PY,X] continues to occupy the same N-dimensional space as M.

However, residualisation changes this scenario. Let Rz =1 — ZZ" be
the residual forming matrix associated with the nuisance variables Z,
with the symbol * representing the Moore-Penrose pseudo-inverse. Rz,
has the following interesting properties: Rz =Rz’ (symmetry) and
RzRz = Rz (idempotency), both of which will be exploited later. In
partial cca, Z can be regressed out from Y and X by computing Y = RzY
and X = RzX. Let M = [Y, X] be the concatenation of the residualised
sets Y and X with respect to Z. While Y occupies an N-dimensional space,
Y occupies a smaller one; its dimensions are, at most, of a size given by
the rank of Rz, which is N — R assuming Y and Z are of full rank. The
same holds for X and X and, therefore, for M and M.

Permutation affects these relations: while M" still occupies a space of

N dimensions as the unpermuted M, 1\71*, differently than M, may now
occupy a space with dimensions anywhere between N —R and N,
depending on a given random permutation. With fewer effective obser-
vations determined by this lower space after residualisation, and the
same number of variables, the sample canonical correlations in the
unpermuted case are stochastically larger than in the permuted, which in
turn leads to an excess of spuriously small p-values. For not occupying the
same space as the original, the permuted data are no longer a similar
realisation of the unpermuted, thus violating exchangeability, and spe-
cifically causing the distribution of the test statistics to be unduly shifted
to the left.

Here the following solution is proposed: using the results from Huh
and Jhun (2001), let Q be a N x N’ semi-orthogonal basis (Abadir and
Magnus, 2005, p. 84) for the column space of Ry constructed via, e.g.,
spectral or Schur decomposition, such that Q;Q; = Rz, Q;'Qz =

Iy'xn, where N’ = N — R, and Q" = Q. Then cca on Y = Q'Y and
X = Q,’X leads to the same solutions as on Y = RzY and X = RzX. The
reason is that, from Section 2.1, E((RzY) (RzY)) = E(Y'RZ'R.Y) =
E(Y'RzY), which is the same as E((Qz’Y)’(Qz’Y)) = E(Y’'QzQ;’Y) =
E(Y'RzY), since, as discussed earlier, Rz is symmetric and idempotent,
and QzQz’ = Ryz. In a similar manner, E((Qz’X)’(Qz'X)) = E(X'RzX),
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and likewise,
by Qz’ does not affect the cca results,

E((Qz’X)’'(Qz’Y)) = E(X’RzY). While pre-multiplication
2 it changes the dependence

structure among the rows of the data: M =[Y,X] occupies an

N’-dimensional space, and so does M = [PY7 X], for a permutation
matrix P of size N’ x N’, such that exchangeability holds, thus allowing a
valid permutation test.

The treatment of partial cca, as described above, can be seen as a
particular case of bipartial cca in which W = Z, that is, the set of nuisance
variables in both sides is the same. Of course, for bipartial cca proper, this
equality does not necessarily hold, and the two sets may be different in
different ways: Z may be entirely orthogonal to W, or some or all vari-
ables from one set may be fully represented in the other, either directly
(e.g., some of the variables present in both sets), or as linear combina-
tions of one set in the other, or it may be that these two sets are simply not
orthogonal. The direct strategy of computing Rw = I — WW" and its
respective semi-orthogonal matrix Qyw leads to difficulties because, un-

less R =S, the products STK =Qz’Y and ;( = Qw’X will not have the same

number of rows: Y has N = N — R, whereas X has N> = N— S rows, thus
preventing the computation of cca.

A more general solution, that accommodates bipartial and, therefore,
is a generalisation for all cases of nuisance variables in cca, consists of

randomly permuting rows of Y and/or X using, respectively, permutation
matrices Py and Py of respective sizes N’ and N”’, therefore permuting in

the lower dimensional space where Y and X are exchangeable, then,
crucially, reestablishing the original number N of rows using the property
that the transpose of a semi-orthogonal matrix is the same as its inverse
(Q° = Q"), to only then perform cca. Therefore, cca is computed using
QzPyQz’Y and QwPxQw’X. Left and right sides will continue to have
rank N’ and N’ respectively, will have already been permuted, and will
both have N rows. The procedure is fully symmetric in that, when the
permutation matrices Py and Py are both identity matrices (of sizes N’
and N, respectively), which is equivalent to no permutation, the ex-
pressions for each side reduce to the residualised data Rz Y and RwX. The
concatenation [QzPyQz;’Y,QwPxQyw X] has the same rank as that of
[RzY,RwX], thus addressing the above problem of the unpermuted test
statistic having a different and stochastically dominant distribution over
that of the permuted data. Table 2 summarises the proposed solution for
all cases, including part cca.

2.7. Restricted exchangeability

The above method uses the Huh-Jhun semi-orthogonal matrix
applied to cca and leads to a valid permutation test provided that there
are no dependencies among the rows of M. That is, the method takes into
account dependencies introduced by the regression of Z and/or W out
from Y and/or X, but not dependencies that might already exist in the
data, and which generally preclude direct use of permutation tests.
However, structured dependencies, such as those that may exist, for
instance, in studies that involve repeated measurements, or for those in
which participants do not constitute independent observations, e.g., sib-
pairs, as in the Human Connectome Project (1cp; Van Essen et al., 2012),
can be treated by allowing only those permutations that respect such
dependency structure (Winkler et al., 2015). Unfortunately, the Huh-J-
hun semi-orthogonal matrix does not respect such structure, blurring
information from observations across blocks, and preventing the defini-
tion of a meaningful mapping from the N original observations that

2 As originally proposed, in the context of the general linear model (cLm), Huh
and Jhun (2001) use Y = Q;’RzY and X = Q;’RzX. These are equivalent to
simply Y = Q;’Y and X = Q;’X as proposed here: since Rz = Q;Qz’, Qz’
Rz = Q;°Q,Qz = InxnQz = Qy’. This simplification holds true also for the
6Lm (not discussed in this article).

Neurolmage 220 (2020) 117065

Table 2
Proposed permutation method for the various cases of cca, with respect to
nuisance variables.

Name Left set Right set
cca (“full”’, no nuisance) PyY X

Partial cca PyQzY QX

Part cca QzPyQz’Y PxX
Bipartial cca Q.PyQ,’Y QwPxQw’X

Qz is a N x N” semi-orthogonal basis for the column space of Rz, such that
QzQz =Rz, Q2Qz =Iyyn, where NV =N—R,and Qz = Q7. Qw isaN x
N’ similarly defined matrix for the column space of Ry, N’ = N— S. The
bipartial cca case generalizes all others: for “full”’ cca, Rw = Rz = Iyxn, and so,
Qw = Qz = Iyxn; for partial cca, W = Z; for part cca Rw = Iyxn, and so, Qw =
Inxn. For full and partial, pre-multiplication by Qz can be omitted since Q’
Qz = Inxn, such that results do not change. Once these simplifications are
considered, the general bipartial cca case reduces to the other three as shown in
the Table. Full and partial have matching number of rows in both sides, such that
only one side needs be permuted; part and bipartial, however, have at the time of
the permutation a different number of rows in each side, such that both can be
permuted separately through the use of suitably sized permutation matrices Py
and Px; Py is size N x N for full cca, and N’ x N’ for the three other cases; Px is
size N x N for full and for part cca, and N x N*’ for the two other cases.

Selection Selected
matrix data data

+ |1
M_\
o|w©
!!

[0fo]o]o|H 0.9 -2.97
[ofofojofofglo] = +0.96
ojofojofglo] -4.01

[o][] -1.01
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Fig. 1. A selection matrix is an identity matrix from which some specific rows
have been removed. Pre-multiplication by a selection matrix deletes specific
rows (those that correspond to columns that are all zero in the selection matrix).

define the block structure to the N° or N’’ observations that are ulti-
mately permuted.’
Such mapping, whereby each one of the N’ and N*’ rows of, respec-

tively, Y and X corresponds uniquely to one of the N rows of the original
data Y and X, can be obtained using a different method, due to Theil
(1965, 1968), and reviewed in detail by Magnus and Sinha (2005).
Consider first the case of Z. In the Theil method, that here is adapted for
cca, Qz = RZS’(SRZS’)’” 2 where the exponent —1/2 represents the
positive definite matrix square root, and S is a N x N selection matrix,
N =min(N’,N”’), that is, an identity matrix from which some max(R, S)
rows have been removed. Pre-multiplication of a matrix by a selection
matrix deletes specific rows, i.e., the ones that correspond to columns
that are all zero in the selection matrix (Fig. 1). The Qz’Y thusly
computed are the best linear unbiased residuals with scalar covariance
(BLus), in that they are unbiased estimates of Sey, where ey are the (un-
known) true errors after the nuisance effects of Z have been removed
from Y; S’ey contains the variance of interest, which may be shared
among linear combinations of variables in both sides; it is an estimate of

3 There is an exception: if Z has a block diagonal structure and the observa-
tions encompassed by such blocks coincide with the exchangeability blocks,
then an algorithm that uses Huh-Jhun and block permutation can be
constructed.
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Table 3

The semi-orthogonal matrix Q (Qz and/or Qy, subscripts dropped), dis-
cussed in Sections 2.6 and 2.7, is not unique. Two principled methods to
obtain it are below.

Method Matrix

Theil (1965)
Huh and Jhun (2001)

Q =RS’(SRS") /2
QEQ’ = R (via svp or Schur)

R is the residual-forming matrix (Rz or Ry, for the respective set of nuisance
variables, subscript dropped); since R is idempotent, all its eigenvalues (the
diagonal elements of E) are equal to 0 or 1. In the Theil method, Sisa N’ =
N x (N —R) (for Z) or N’ = N x (N —S) (for W) selection matrix; the matrix
square root (in the exponent — 1/2) is the positive definite solution. In the
Huh-Jhun method, after Schur or svp factorisations of R are computed, and
the R or S columns of Q that have corresponding zero eigenvalues in the di-
agonal of E are removed, such that Q computed from the factosisation is
reduced from size N x N to N x N” or to N x N’°. At the end of these com-
putations (see Algorithm 2, “semiortho’’, in the Appendix), for both methods,
QQ =1,QQ’ =R, and Q" = Q. Both methods aim at obtaining residuals
with a scalar covariance matrix ¢?I. Theil explictly seeks sLus residuals.
However, strictly, S does not need to be a selection matrix: choose S to be QR
(not to be confused with or decomposition) using Q computed with the
Huh-Jhun approach. Then, following Magnus and Sinha (2005, Theorem 2, p.
42), it can be shown that Huh-Jhun also provides BLus residuals.

that is subjected to cca and statistical testing. For partial cca, Q is the
same for both sides; for bipartial cca, similar computations hold for the

other side, i.e.,, Qw = RWS’(SRWS’)’l/Z. Table 3 summarises the two
methods.

To construct a permutation procedure for cca that respects the block
structure, the Theil method can be used to compute Q instead of the
Huh-Jhun approach. Choose max(R, S) observations to be removed from
both sides (for partial cca, R = S since W = Z). Construct the selection
matrix S of size N x N, define the exchangeability blocks based on N
observations, compute Q and Qy using the same S for both (for part cca,
use the same strategy as for bipartial, replacing Ry for I), residualise (in

the BLUs sense) the input variables by computing Y and X. These have the
same number of rows, and the dependencies among these rows is the
same for both sides; thus, only one side needs to be subjected to random
permutations that respect such existing dependencies. Optionally, after
permutation, the number N of observations may be reestablished by pre-
multiplication by Q7 and Qyy. Finally, cca is performed, with observation
to the aspects discussed in Sections 2.3 and 2.5. A detailed algorithm is
presented in Section 2.8.

It remains to be decided how to select the max(R, S) observations to
be dropped. In principle, any set could be considered for removal, pro-
vided that the removed rows of Z or W form a full rank matrix. Some
informed choices, however, could be more powerful than others. One of
the conclusions from Winkler et al. (2015) is that the complexity of the
dependence structure and the ensuing restrictions on exchangeability
leads to reductions in power. Thus, natural candidates for removal are
observations that, once removed, cause the overall dependence structure
to be simpler. For example, it is sometimes the case that some observa-
tions are so uniquely related to all others that there are no other obser-
vations like them in the sample. These observations, therefore, cannot be
permuted with any other, or perhaps with only a few. Their contribution
to hypothesis testing in the permutation case is minimal, and their
removal is less likely to affect a decision on rejection of the null hy-
pothesis. Consider for example a design that has many monozygotic,
dizygotic, and non-twin pairs of subjects, and that in the sample, there
happens to be a single pair of half-siblings. It is well known that, for
heritable traits, genetic resemblance depends on the kinship among in-
dividuals; half-siblings are expected to have a different degree of statis-
tical dependency among each other compared to each one of the other
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types of sibships in this sample. Thus, in there being just one such pair, it
would be reasonable to prioritise it for exclusion, while keeping others.

2.8. General algorithm

A set of steps for permutation inference for cca is described in Algo-
rithm 1. In it, input variables Y and X will have been mean-centered
before the algorithm begins, or an intercept will have been included as
nuisance variable in both Z and W. 7 = {(Py, Px);} is a set containing
pairs of permutation matrices indexed by j = {1, ...,J}. In this set, the
first permutation is always “no permutation”, i.e., (Py, PX)]-:1 = (Inxns
In-xn), such that (/lk);:l = J, for all k. For the cases in which only one
side of cca needs be permuted (Table 2), or for the cases in whichR =S,
or when there are dependencies among the data such that the Theil
method is used to construct Q (Table 3), then (Px )j can be set as I for all j.
Details on how .7 is defined in observance to the null hypothesis and
respecting structured dependencies among the data have been discussed
in Winkler et al. (2014, 2015). In the algorithm, P can be larger, equal, or
smaller than Q. Optional input arguments are the matrices with nuisance
variables Z and W, and the selection matrix S. If Z is supplied but not W,
then the algorithm performs part or partial cca, depending on the Boolean
argument pArTIAL; if both Z and W are supplied, the algorithm performs
bipartial cca; if neither is supplied, then “full’’ cca is performed. If S is
supplied, then the BLus residuals based on Theil are used; otherwise,
Huh-Jhun residuals are used. For either of these two cases, the
semi-orthogonal matrix Q is computed using a separate, ancillary func-
tion named “semiortho’’, described in the Appendix.

An initial cca using residualised data is done in line 19; this uses
another ancillary function, named “cca’’, and also described in the Ap-
pendix; this function returns three results: the canonical coefficients A
and B, and the canonical correlations r;. The canonical coefficients are
used to compute the canonical variables U and V, augmented by their
orthogonal complement needed to ensure that they span the same space
as the variables subjected to this initial cca; the canonical correlations are
ignored at this point and not stored (hence the placeholder “’). A
counter ¢ for each canonical component is initialised as 0.

The core part of the algorithm are the two loops that run over the
permutations in . and the K canonical components (between lines 25
and 35). At each permutation j, cca is executed K times. In each, the
columns of U and V that precede the current k are removed, such that
their respective variances are not allowed to influence the canonical
correlations at position k. At each permutation, the K canonical corre-
lations are obtained (the third output from the function “cca’’) and used
to compute the associated test statistic. As shown, Wilks’ statistic, J, is
used, simplified by the removal of the constant term, which does not
affect permutation p-values. For numerical stability, sum of logarithms is
favoured over the logarithm of a product (compare line 30 with Equation

(3)). For inference using Roy’s statistic, replace the condition (Ak)j > M
for (rk); >r, in line 31; this modification alone is sufficient as 6y is
permutationally equivalent to r. In that case, computations indicated in
line 30 are no longer needed and can be removed to save computational
time.

Whenever the statistic for the correlation at position k in a given
permutation is higher or equal than that for the unpermuted data, the
counter ¢ is incremented (line 32). After the loop, the counter is con-
verted into a p-value for each k. These simple, uncorrected p-values,
however, are not useful. Instead, rwer-adjusted p-values are computed
under closure using the cumulative maximum, i.e., the p-value for ry is
the largest (least significant) uncorrected p-value up to position k. The
algorithm returns then these adjusted p-values, which can be compared
to a predefined test level a to establish significance. Note that « itself is
never used in the algorithm.
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Algorithm 1. Permutation inference for CCA.

Require: Yyyup,Xnxqg,P. Optional: Zyyr, Wxxs,S, PARTIAL.

: K < min(P, Q)
if exist(Z) then
Rz «+ 1-2727Z"
[QZ]NXN/ — semiortho(Rz, S)
else
[Qz]nxn  Inxn
end if
if — exist(W) A PARTIAL then
W< 1Z
end if
. if exist(W) then
Rw < I-WWT

[ e o T
AN

: else

Qwlnxn7 — Inxn
: end if

Y+ QY

: X+ QwX
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: UN><P<_Y[A7HUH(A/)]IDXP
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: for ke {l,...,K} do

cp 0

: end for

: for all (Py,Px); € P do
for ke {l,...,K} do
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if (/\k);‘ > ()\k);le then
cp ¢+ 1
end if
end for
: end for
: for ke {l,...,K} do
[pk]unc < Ck/J
[pk:]FWER < max([pl, cee
: end for
: return [pq, ...
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U

apk:]unc)

=~ W
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As presented, the algorithm does not cover dimensionality reduction
or any penalty to enforce sparse solutions for cca. Dimensionality
reduction using methods such as principal component analysis (pca), if
included, would be performed after residualisation, but before cca. Thus,
in the algorithm, rca, if executed, would be done between lines 18 and
19. As for the many forms of sparse or penalised cca (Nielsen, 2002;
Waaijenborg and Zwinderman, 2007; Wiesel et al., 2008; Parkhomenko
et al., 2007, 2009; Witten et al., 2009; Soneson et al., 2010; Hardoon and
Shawe-Taylor, 2011; Gao et al., 2017; Ma and Li, 2018; Tan et al., 2018),

[Qw]nx N7 < semiortho(Rw, S)

: APxKaBQxKaf — CC&(Y,X, R, S)

[uk, . ,llp];f < Qz(Py)j[uk7 ..
[Vk, . ,VQ];f < QW(PX)j[Vk:a .
I3 cea ([ug, ..
X K-k41 .
(Ae)j < > n(1 - (r%i))j)
> If statistic after permutation is larger.
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> Inputs.
> Number of canonical components.
> If left-side nuisance were defined.
> Residual forming matrix due to Z.
> Qz via H-J/Theil; N'=N—R.

> Qgz is identity; N'=N.

> If W not given, and this is partial CCA.

> Re-use Z as W.

> (otherwise, it is bipartial or part CCA.)

> If right-side nuisance were defined.
> Residual forming matrix due to W.
> Qw via H-J/Theil; N"=N-5.

> Qw is identity; N”=N.
> Residualised Y, exchangeable.

> Residualised X, exchangeable.
> Initial cCcA (see Algorithm 3).

> Canonical variables from residualised Y.
> Canonical variables from residualised X.

> For each component.
> Initialise a counter.

> For each permutation.
> For each component.

., up] > Permute left side.
Vo) > Permute right side.
J5 Ve, -5 R, S) > Main CCA.

> Wilks’ test statistic.

> Increment the counter.

> For each canonical component.
> Uncorrected p-value.
> FWER-corrected p-value (closure).

> Return the FWER-corrected p-values.

in principle these can be incorporated into the algorithm through the
replacement of the classical cca in lines 19 and 29 for one of these
methods.

3. Evaluation methods
In this section we describe the synthetic data and methods used to

investigate error rates and power under the different choices for the
various aspects presented in Section 2 at each stage of a permutation test
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Table 4
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A valid permutation test for cca needs to consider several computational and statistical aspects, which can be seen as steps in a procedure; each of them may be addressed
using different strategies, some of which are studied below. The recommendations for the different options for each case (column “Use™) are based on theoretical
grounds shown in the sections as indicated in the table, and verified empirically using synthetic data (Section 4).

Step Possible strategies studied Use Theory Scenarios
Estimation of the canonical components (a) All in a single step. x Section 2.3. VI
(b) Stepwise; variance already explained removed. v
Inclusion of the complement of the canonical coefficients (a) Null space not included. x Section 2.3. VI
(b) Null space included. v
Correction for multiple testing (a) Uncorrected, simple p-values, [pxlunc- x Section 2.5. 1-VI, XVIIL
(b) Corrected, cumulative maximum, [pklcio- v
(c) Corrected, distribution of the maximum, [pi]max-
Treatment of nuisance variables (a) Simple residualisation (Q = I). X Sections 2.6 and 2.7. VIL-XVIIL
(b) Huh-Jhun method. ‘/
(c) Theil method. v
Choice of the test statistic (a) Wilks™ A. v Sections 2.2 and 2.4. XVII, XVIIL.
(b) Roy’s largest root, 6. v

v Can or should be used.
Can but should not be used.
% Cannot or should not be used.

for cca, providing empirical evidence for the approach proposed. An
overview of these aspects and choices at each stage is shown in Table 4.
For each case, we use a series of simulation scenarios: each consists of a
set of synthetic variables constructed using random values drawn from a
normal or a non-normal (kurtotic or binary) probability distribution,
sometimes with or without dimensionality reduction using principal
components analysis (pca; Hotelling, 1933; Jolliffe, 2002), sometimes
with or without signal, and sometimes with or without nuisance vari-
ables. We also consider cases with large sample sizes and large number of
variables. An overview of these scenarios (there are twenty of them) is in
Table 5.

We start by investigating aspects related to the estimation of the ca-
nonical components at each permutation. Specifically, we consider (a) a
one-step estimation of all canonical components, from 1 to K, versus (b)
sequential estimation that removes, for the k-th canonical component in a
given permutation, the variance already explained by the previous ones,
as described in Section 2.3. With respect to the inclusion of the com-
plement of the canonical coefficients, we consider (a) without the in-
clusion of the null space of the canonical coefficients, versus (b) with its
inclusion so as to ensure that all variance from the original data not

explained in the initial cca is considered in the estimation at every per-
mutation, as described in Section 2.3. With respect to multiple testing, we
consider the following strategies: (a) simple, uncorrected p-values,
[Plync» (B) corrected under closure, [pily,, and (c) corrected using the
distribution of the maximum statistic [px],,.; both [pi].,, and [pk],., offer
FWER control, as discussed in Section 2.5. Keeping the same notation, we
define scenarios -vi consisting of N = 100 observations, with P =16
variables on the left side (Y) of cca and Q = 20 variables on the right side
(X) (the procedure is symmetric; the choice of sides is arbitrary and does
not affect results); for these six scenarios, data are drawn from one of
three possible distributions: a normal distribution with zero mean and
unit variance, a Student’s t distribution with variable degrees of freedom
v=1{2,4,6,8,10} (kurtotic), or a Bernoulli distribution with parameter
q = 0.20 (binary). Analyses with and without dimensionality reduction
to 10 variables using pca are considered. The number of permutations
used to compute p-values was set as J = 2000, with 2000 realisations
(repetitions), thus allowing the computation of error rates.

We then turn our attention to aspects related to nuisance and resi-
dualisation discussed in Sections 2.6 and 2.7. We consider (a) simple
residualisation, (b) residualisation using the Huh-Jhun method, and (c)

Table 5
Simulation scenarios.

Scenarios N P Q R S #(pca) Distribution Signals #Perms. #Reps.

Without nuisance 1 100 16 20 0 0 - normal - 2000 2000
I 100 16 20 0 0 10 normal - 2000 2000
I 100 16 20 0 0 - kurtotic - 2000 2000
v 100 16 20 0 0 10 kurtotic - 2000 2000
v 100 16 20 0 0 - binary - 2000 2000
\ 100 16 20 0 0 10 binary - 2000 2000

Partial cca vt 100 16 20 15 R - normal - 2000 2000
Vi 100 16 20 15 R 10 normal - 2000 2000
X 100 16 20 15 R - kurtotic - 2000 2000
X 100 16 20 15 R 10 kurtotic - 2000 2000
XI 100 16 20 15 R - binary - 2000 2000
X1 100 16 20 15 R 10 binary - 2000 2000

Bipartial cca X1 100 16 20 15 15 - normal - 2000 2000
XIV 100 16 20 15 15 10 normal - 2000 2000

Larger samples XV * 16 20 20 R - normal - 1000 1000
XVI * 16 20 20 R 10 normal - 1000 1000

With signal XvII 100 16 20 0 0 - normal sparse 2000 2000
XVII 100 16 20 0 0 - normal dense 2000 2000

* For scenarios xv and xvi, sample size varied, N = {100, 200, ...,900,1000}. In the table, R and S refer to the number of nuisance variables other than the intercept,
which is always included (so the number of nuisance variables in left and right sides for all the simulation scenarios was always, respectively R+ 1 and S + 1). For partial
cca, the number of nuisance variables on one side is always the same as in the other, i.e., S = R, but that does not have to be for bipartial cca, even though here the same

size was used. The case with larger samples was used for investigation of partial cca.
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residualisation using the Theil method. For this purpose, scenarios vi—xvi
are constructed similarly as 1-vi, except that a third set Z of R = 15 var-
iables is used as nuisance for partial cca, whereas two other scenarios, xur
and xiv, a fourth set of variables W of S = 15 variables is used as nuisance
for bipartial cca.

The impact of ignoring, in samples substantially larger than the
number of variables, the dependencies introduced by the residualisation
of both sides of cca is studied with scenarios xv and xvi, which consider
samples progressively larger, N = {100,200, ..., 900,1000}, while
keeping the other parameters similar as in scenarios vir and vur. Finally,
we briefly investigate power and the choice of the test statistic: we
consider (a) Wilks’ statistic (), as well as (b) Roy’s largest root (), as
discussed in Sections 2.2 and 2.4. We define scenarios xvii and xvur
similarly as 1, this time including a strong, true signal in one canonical
component, thus named “sparse’’, or multiple, weaker signals shared
across multiple (half of the smaller set, thus, “dense’’). For all scenarios,
an intercept is always included as nuisance variable in both sides such
that the actual number of nuisance variables is R + 1 and S+ 1 for each
side, respectively. To report confidence intervals (95%), the Wilson
(1927) method is used.

4. Results

In the results below, Sections 4.1 and 4.2 establish empirically that
with an estimation method (i) that includes the null space of the ca-
nonical coefficients, (ii) that finds the canonical correlations in an iter-
ative manner, and (iii) that after computing p-values through a closed
testing procedure, the error rates are controlled. The subsequent results,
from Section 4.3 onwards, consider only this valid approach.

4.1. Estimation strategies

Not including the complement of the canonical coefficients (null
space) caused error rates to be dramatically inflated, well above the ex-

Table 6
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pected test level a = 0.05 (5%), regardless of whether the estimation
used the single step or the stepwise procedure, and regardless of any of
the multiple testing correction strategies discussed; these results are
shown in Table 6.

Even when the null space of the canonical coefficients was included, a
single step procedure was never satisfactory. To understand this, consider
the following consequence of the theory presented in Sections 2.2 and
2.5: for a valid, exact test in cca, the expected error rate for each 7’ ,‘2, ie.,
the per comparison error rate (pcer; Hochberg and Tamhane, 1987) is a for
k =1, but for k = 2 it is a x a, since the null can only be rejected if the
previous one has also been declared significant at a. More generally, the
pcer for a valid test is of for the k-th test, i.e., for the k-th canonical
correlation. If the test level is set at 5%, then the pcer is 5% for k = 1,
0.25% for k = 2, 0.0125% for k = 3, and so forth. Error rates above this
expectation render the test invalid; below render it conservative. In the
simulations, a single step procedure never led to an exact test, with or
without consideration to multiple testing, as shown in Table 6.

4.2. Multiple testing

As with the pcer, it is worth mentioning what the expected rwer for a
valid, exact test is. That expectation is the test level itself, i.e., a. Any
higher error rate renders a test invalid; lower error rate renders it con-
servative, though valid. Table 6 shows the rwer for the three different
correction methods considered.

If the null space was not included, since the pcer was not controlled,
the Fwer could not be controlled either (first two columns of the table). If
the null space of the canonical coefficients was included (last two col-
umns), even though the single step estimation controlled the pcer, the
FWER was not controlled for the simple, uncorrected p-values (third col-
umn, upper panel), which is not surprising. It should be emphasised,
however, that these simple p-values have another problem: they are not
guaranteed to be monotonically related to the respective canonical

Observed per comparison error rate (%) and 95% confidence intervals for the first 6 canonical correlations in scenario 1, assessed using the Wilks’ statistic and three
different multiple testing correction methods; the observed familywise error rate (rwer) for each case is also shown. Valid methods should have a rwer close to the
nominal 5%, and pcer close to the nominal (5%)"; see Sections 4.1 and 4.2 for details.

Null space not included

Null space included

Single step Stepwise

Single step Stepwise

(a) Uncorrected, simple p-values, [pi] .

k=1 91.35 (90.04-92.50) 91.35 (90.04-92.50)
k=2 93.50 (92.33-94.50) 60.40 (58.24-62.52)
k=3 94.70 (93.63-95.60) 26.70 (24.81-28.68)
k=4 95.55 (94.56-96.37) 7.25 (6.19-8.47)
k=5 96.10 (95.16-96.86) 1.45 (1.01-2.07)
k=6 96.75 (95.88-97.44) 0.25 (0.11-0.58)

FWER

(b) Corrected, cumulative maximum, [p|

99.90 (99.64-99.97)

clo

91.35 (90.04-92.50)

k=1 91.35 (90.04-92.50) 91.35 (90.04-92.50)
k=2 90.35 (88.98-91.57) 60.40 (58.24-62.52)
k=3 89.80 (88.40-91.05) 26.70 (24.81-28.68)
k=4 89.55 (88.13-90.82) 7.25 (6.19-8.47)
k=5 89.30 (87.87-90.58) 1.45 (1.01-2.07)
k=6 88.85 (87.40-90.16) 0.25 (0.11-0.58)

FWER

91.35 (90.04-92.50)

(c) Corrected, distribution of the maximum, [P .«

91.35 (90.04-92.50)

k=1 91.35 (90.04-92.50) 91.35 (90.04-92.50)
k=2 7.95 (6.84-9.22) 10.95 (9.66-12.39)
k=3 0.00 (0.00-0.19) 0.00 (0.00-0.19)
k=4 0.00 (0.00-0.19) 0.00 (0.00-0.19)
k=5 0.00 (0.00-0.19) 0.00 (0.00-0.19)
k=6 0.00 (0.00-0.19) 0.00 (0.00-0.19)
FWER 91.35 (90.04-92.50) 91.35 (90.04-92.50)

4.70 (3.86-5.72)
4.60 (3.77-5.61)
4.60 (3.77-5.61)
4.85 (3.99-5.88)
4.40 (3.59-5.39)
4.30 (3.50-5.28)
18.30 (16.67-20.05)

4.70 (3.86-5.72)
3.40 (2.69-4.29)
2.75 (2.12-3.56)
2.40 (1.81-3.17)
1.75 (1.26-2.42)
1.45 (1.01-2.07)
4.70 (3.86-5.72)

4.70 (3.86-5.72)
0.00 (0.00-0.19)
0.00 (0.00-0.19)
0.00 (0.00-0.19)
0.00 (0.00-0.19)
0.00 (0.00-0.19)
4.70 (3.86-5.72)

4.70 (3.86-5.72)
0.25 (0.11-0.58)
0.00 (0.00-0.19)
0.00 (0.00-0.19)
0.00 (0.00-0.19)
0.00 (0.00-0.19)
4.70 (3.86-5.72)

4.70 (3.86-5.72)
0.25 (0.11-0.58)
0.00 (0.00-0.19)
0.00 (0.00-0.19)
0.00 (0.00-0.19)
0.00 (0.00-0.19)
4.70 (3.86-5.72)

4.70 (3.86-5.72)
0.00 (0.00-0.19)
0.00 (0.00-0.19)
0.00 (0.00-0.19)
0.00 (0.00-0.19)
0.00 (0.00-0.19)
4.70 (3.86-5.72)

Using the Roy’s statistic led to similar results as with Wilks (not shown). Dimensionality reduction with pca led to similar results for the case in which the null space is
included (not shown). For the case in which the null space is not included, results are not comparable with the ones above because, after pca, P = Q in the simulations,
such that there is no null space to be considered as the matrices with canonical coefficients in both sides are then square.
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correlations, such that it is possible that, using these p-values, the null
hypothesis could be rejected for some canonical correlation, but retained
for another that happens to be larger than the former. The use of such
uncorrected, simple p-values, therefore, constitutes a test that is inad-
missible. The problem with lack of monotonicity with uncorrected p-
values is less severe if estimation is done in a stepwise manner (fourth
column, upper panel), but is nonetheless still present, as shown in Fig. 2,
and has potential to lead to an excess Fwer, even though that did not occur
in these simulations.

For the other two correction methods, when the null space of the
canonical coefficients was included in the estimation process, FWEr was
controlled (third and fourth columns of Table 6, middle and lower
panels), but there are particularities. Using the distribution of the
maximum (lower panel) led to very conservative pcer, for both single step
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or stepwise estimation, whereas correction with closure led to invalid
pcer for single step estimation (third column, middle panel).

The only configuration that led to exact (neither conservative or
invalid) control over pcer and Fwer, and a monotonic relationship be-
tween canonical correlations and associated p-values, is the one in which
a stepwise estimation was performed, with the null space of the canonical
coefficients included, and with correction using a closed testing pro-
cedure (fourth column, middle panel of Table 6). Moreover, the Fwer,
when controlled using the cumulative maximum or the distribution of the
maximum statistic, is guaranteed to match the pcer for k = 1: in the
former case, any further rejection of the null is conditional on the first
one having been rejected; in the latter, the distribution of the maximum
coincides with the distribution of the first as the canonical correlations
are ranked from largest to smallest.
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Fig. 2. Relationship between canonical correlations (horizontal axes) and associated p-values (vertical axes) for 10 realisations of scenario 1, considering two esti-
mation methods (single step and stepwise) and three multiple testing correction methods (uncorrected, corrected using the cumulative maximum, and corrected using
the distribution of the maximum statistic). The figure complements Table 6 by showing example realisations that average to the error rates shown in the table for the
cases in which the null space is included. For simple, uncorrected p-values, the test is inadmissible; for corrected using the distribution of the maximum statistic, the

test is overly conservative; single step does not control the familywise error rate.
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Table 7

Observed per comparison error rate (pcer, %) and 95% confidence intervals for
the first 6 canonical correlations in scenarios vu (partial cca) and xm (bipartial
cca), for the three different methods considered for treatment of nuisance
variables.

Simple residuals Huh-Jhun Theil

(a) Partial cca

k=1 (FwER) 83.85 (82.17-85.40) 5.10 (4.22-6.15) 4.85 (3.99-5.88)
k=2 44.15 (41.99-46.34) 0.30 (0.14-0.65) 0.35 (0.17-0.72)
k=3 12.75 (11.36-14.28) 0.05 (0.01-0.28) 0.00 (0.00-0.19)
k=4 1.75 (1.26-2.42) 0.00 (0.00-0.19) 0.00 (0.00-0.19)
k=5 0.20 (0.08-0.51) 0.00 (0.00-0.19) 0.00 (0.00-0.19)
k=6 0.00 (0.00-0.19) 0.00 (0.00-0.19) 0.00 (0.00-0.19)
(b) Bipartial cca

k =1 (rwER) 5.55 (4.63-6.64) 5.20 (4.31-6.26) 4.45 (3.63-5.44)
k=2 0.10 (0.03-0.36) 0.30 (0.14-0.65) 0.20 (0.08-0.51)
k=3 0.00 (0.00-0.19) 0.00 (0.00-0.19) 0.00 (0.00-0.19)
k=4 0.00 (0.00-0.19) 0.00 (0.00-0.19) 0.00 (0.00-0.19)
k=5 0.00 (0.00-0.19) 0.00 (0.00-0.19) 0.00 (0.00-0.19)
k=6 0.00 (0.00-0.19) 0.00 (0.00-0.19) 0.00 (0.00-0.19)

Estimation included the null space of the canonical coefficients and a stepwise
procedure, assessed using the Wilks’ statistic, and corrected using a closed testing
procedure (ctp). The crp guarantees that the familywise error rate (rwer) matches
the pcer for the first canonical correlation (i.e., for k = 1). Using the Roy’s sta-
tistic led to similar results as with Wilks’; likewise, dimensionality reduction with
pca led to similar results (not shown).

Table 8

Observed per comparison error rate (pcer, %) and 95% confidence intervals for
the first canonical correlation in scenarios -vi (without nuisance) and vi—xu
(partial cca, with Huh-Jhun), considering different distributions for the data.

Distribution Without nuisance Partial cca

Normal 4.70 (3.86-5.72) 5.15 (4.26-6.21)
Student v=2 3.95 (3.18-4.90) 14.70 (13.22-16.32)
v=4 5.45 (4.54-6.53) 5.40 (4.49-6.48)
v==6 4.15 (3.36-5.12) 5.40 (4.49-6.48)
v=28 4.70 (3.86-5.72) 5.00 (4.13-6.04)
v =10 3.85 (3.09-4.79) 5.10 (4.22-6.15)
Bernoulli qg=02 5.30 (4.40-6.37) 5.30 (4.40-6.37)

v: Degrees of freedom of the Student’s t distribution used to simulate data; g:
Parameter of the Bernoulli distribution used to simulate data. Estimation used
the null space of the canonical coefficients and a stepwise procedure, assessed
using the Wilks’ statistic, and corrected using a closed testing procedure (ctp).
The crp guarantees that the familywise error rate (Fwer) matches the pcer for the
first canonical correlation (i.e., for k = 1). Using the Roy’s statistic led to similar
results as with Wilks’; using Theil led to similar results as Huh-Jhun; likewise,
dimensionality reduction with pca led to similar results (not shown).

4.3. Nuisance variables

For partial cca, simple residualisation, even using the above proced-
ure (stepwise estimation, null space included, correction via closure),
resulted in the error rates being dramatically inflated, as shown in
Table 7. The Huh-Jhun and the Theil residualisation methods, in
contrast, resulted in the error rates being controlled at the nominal level,
with no excess false positives. For bipartial cca, the problem did not
happen in the simulation settings: simple residualisation of both sides by
entirely different sets of variables did not cause the error rates to be
inflated; yet, using Huh-Jhun or Theil also produced nominal error rates,
suggesting that these could be used in any configuration of nuisance
variables, regardless of whether those in one side are not independent
from those in the other.

4.4. Non-normality

Without nuisance variables and with kurtotic data simulated using a
Student’s t distribution with a small number of degrees of freedom, v =
{2,4,6,8,10}, as well as with binary data simulated using a Bernoulli
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distribution with parameter q = 0.20, error rates were controlled
nominally, as shown in Table 8. In partial cca, however, even using the
Huh-Jhun method, highly kurtotic data led to excess error rates. In
particular, for the simulated data using a Student’s t distribution with
degrees of freedom of only v = 2, the observed error rate was 14.7%, for
a test level of 5%; using the Theil method led to also inflated error rate in
this case, with 10.7% (95% confidence interval: 8.28-13.72, not shown
in the table). For v > 4, error rates were controlled at the nominal level,
for both Huh—Jhun (Table 8) and Theil (not shown).

4.5. Large samples

Increasing the sample size while keeping the number of variables
fixed progressively reduced the amount of errors for the simple residu-
alisation method to treat nuisance variables, as shown in Table 9; the
trend was similar with or without dimensionality reduction using pca.
The reduction in the error rate as the sample size increased did not affect
Huh-Jhun or Theil methods, for which error rates were already
controlled even with a relatively smaller sample compared to the number
of variables.

Without pca: P = 20, Q = 16. With pca: P = Q = 10. Estimation
included the null space of the canonical coefficients and a stepwise
procedure, assessed using the Wilks’ statistic, and corrected using a
closed testing procedure (crp). The crp guarantees that the familywise
error rate (Fwer) matches the pcer for the first canonical correlation (i.e.,
for k = 1). Using the Roy’s statistic led to similar results as with Wilks’.
The confidence intervals are wider than for other tables because the
number of realisations (and also of permutations) was smaller (Table 5).

4.6. Dimensionality reduction

Dimensionality reduction with pca did not affect error rates (pcer and
FWER) with respect to single step vs. stepwise estimation of canonical
coefficients, nor correction for multiple testing, nor method for
addressing nuisance variables. That is, these results (not shown) were
indistinguishable from those obtained without pca (shown above).
Moreover, as the simulations used the same number of principal com-
ponents for both sides of cca, including or not the null space could not
have affected results, as P = Q after dimensionality reduction. Using pca
did yield higher power to detect effects, for both Wilks’” and Roy’s test
statistics (Table 10, next item). This apparent extra power can be
attributed to the smaller number of variables after pca, as the principal
components that were retained contained most of the simulated signal,
which, given the reduced dimensionality of the set of data, could then be
detected with higher likelihood.

4.7. Choice of the statistic

The results above, that consider solely the error rates, and are based
on results with the Wilks’ statistic (), are essentially the same for Roy’s
largest root (0k; results not shown). That is, results regarding the esti-
mation strategies, multiple testing, nuisance variables, non-normality,
behaviour with large samples, and dimensionality reduction with pca,
are virtually the same for Wilks” and Roy’s statistics. In the presence of
synthetic signal, however, the two test statistics diverged. Table 10 shows
that, with signal spread across multiple canonical components (i.e.,
“dense’’), Wilks’ is substantially more powerful than Roy’s statistic. With
signal concentrated in just one (the first) canonical variable (i.e.,
“sparse’’), the trend reverses, and Roy’s become more powerful than
Wilks’.

5. Discussion
5.1. Permutation tests

Compared to univariate, multivariate tests pose the problem of
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Table 9
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Observed familywise error rate (Fwer, %, that matches the pcer for k = 1) and 95% confidence intervals for scenarios xv and xvi, used to investigate effect of different

sample sizes, for the three different methods for dealing with nuisance variables.

With pca

Simple residuals

Huh-Jhun

Theil

59.20 (56.12-62.21)
22.30 (19.83-24.98)
12.20 (10.31-14.37)
11.80 (9.95-13.95)
9.50 (7.83-11.48)
9.30 (7.65-11.26)
7.20 (5.76-8.97)
7.00 (5.58-8.75)
7.70 (6.20-9.52)
5.00 (3.81-6.53)

5.00 (3.81-6.53)
5.00 (3.81-6.53)
5.40 (4.16-6.98)
4.50 (3.38-5.97)
6.80 (5.40-8.53)
4.70 (3.55-6.19)
5.70 (4.43-7.31)
4.80 (3.64-6.31)
5.20 (3.99-6.76)
6.20 (4.87-7.87)

5.10 (3.90-6.64)
4.50 (3.38-5.97)
5.10 (3.90-6.64)
5.70 (4.43-7.31)
5.10 (3.90-6.64)
4.70 (3.55-6.19)
5.50 (4.25-7.09)
5.90 (4.60-7.54)
5.20 (3.99-6.76)
4.70 (3.55-6.19)

N Without pca
Simple residuals Huh-Jhun Theil
100 96.60 (95.29-97.56) 4.80 (3.64-6.31) 5.00 (3.81-6.53)
200 42.20 (39.17-45.29) 5.50 (4.25-7.09) 5.40 (4.16-6.98)
300 25.10 (22.51-27.88) 5.00 (3.81-6.53) 5.40 (4.16-6.98)
400 18.00 (15.74-20.50) 4.30 (3.21-5.74) 5.10 (3.90-6.64)
500 11.50 (9.67-13.63) 6.10 (4.78-7.76) 4.10 (3.04-5.51)
600 10.80 (9.02-12.88) 5.20 (3.99-6.76) 5.00 (3.81-6.53)
700 11.20 (9.39-13.31) 4.20 (3.12-5.63) 4.40 (3.29-5.86)
800 10.10 (8.38-12.12) 5.50 (4.25-7.09) 4.20 (3.12-5.63)
900 8.40 (6.84-10.28) 5.00 (3.81-6.53) 4.00 (2.95-5.40)
1000 7.70 (6.20-9.52) 4.30 (3.21-5.74) 5.90 (4.60-7.54)
Table 10

Observed power (%) and 95% confidence intervals for the first canonical correlation in scenarios xvi and xvin, that included a synthetic signal added to either one or half
(“sparse” or “dense”’, respectively) of the initial variables, thus captured by only one (sparse case) or multiple (dense case) canonical correlations.

Signals Without pca With pca
Wilks (1) Roy () Wilks (1) Roy ()
Sparse k=1 42.10 (39.95-44.28) 57.90 (55.72-60.05) 81.55 (79.79-83.19) 94.75 (93.68-95.64)
Dense k=1 83.05 (81.34-84.63) 37.05 (34.96-39.19) 95.80 (94.83-96.59) 70.70 (68.67-72.65)
=2 42.30 (40.15-44.48) 4.75 (3.90-5.77) 72.05 (70.04-73.97) 24.75 (22.91-26.69)
k=3 12.75 (11.36-14.28) 0.25 (0.11-0.58) 31.95 (29.94-34.03) 4.30 (3.50-5.28)
k=4 1.95 (1.43-2.65) 0.00 (0.00-0.19) 6.55 (5.55-7.72) 0.50 (0.27-0.92)
k=5 0.10 (0.03-0.36) 0.00 (0.00-0.19) 1.00 (0.65-1.54) 0.00 (0.00-0.19)
k=6 0.05 (0.01-0.28) 0.00 (0.00-0.19) 0.05 (0.01-0.28) 0.00 (0.00-0.19)

Estimation used the null space of the canonical coefficients and a stepwise procedure, assessed using the Wilks’ statistic, and corrected using a closed testing procedure
(ctp). The crp guarantees that the familywise error rate (Fwer) matches the pcer for the first canonical correlation (i.e., for k = 1).

establishing the distributional form for more complicated test statistics;
in the parametric case, inference is marred by a set of difficulties: the
assumption that all observations are independent and identically
distributed following normal theory, the extremely complicated formulas
for the density of the canonical correlations, which further depend on the
(unknown) population canonical correlations, the sensitivity of asymp-
totic approximations to departures from assumptions, bias in estimations
of parameters, and the validity of these approximations only for partic-
ular cases.

Permutation tests address these difficulties in different ways, and
their advantages are well known (Ludbrook and Dudley, 1998; Nichols
and Holmes, 2002; Good, 2005; Pesarin and Salmaso, 2012): no under-
lying distributions need be assumed, non-independence and even het-
eroscedastic variances can be accommodated, non-random samples can
be used, and a wide variety of test statistics are allowed. Moreover, all
information needed to build the null distribution lie within the data, as
opposed to in some idealised population.

These many benefits extend to inference for multivariate methods. In
the case of cca, one benefit is immediately obvious: the complicated
formulas and charts for the distribution of the canonical correlations can
be bypassed completely, thus with no need to appeal to distributional
assumptions. In effect, as shown in Section 4.4, even with all variables
not following a normal distribution, error rates were still controlled at the
nominal level. It should be noted, however, that extremely kurtotic data,
such as that generated with a Student’s t distribution with extremely low
degrees of freedom, caused results to be invalid in the presence of
nuisance variables, even with the Huh—Jhun or Theil methods. Such data,
however, are rare (recall that with 2 degrees of freedom, the Student’s t
distribution has infinite variance); most applications of cca investigate
datasets that have variables with data that have diverse distributional
properties.

Yet, although in the univariate case, algorithms for permutation
inference tend to be relatively straightforward to implement and do lead
to valid results, for cca, the theory presented in the previous sections and
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the results with synthetic data show that a simple permutation algorithm
that does not consider aspects such as a stepwise estimation of the ca-
nonical correlations, nor the inclusion of the null space of canonical co-
efficients when the two sets of variables do not have the same size, or that
does not accommodate specific treatment for nuisance variables, or ad-
dresses multiplicity respecting the ordering of the canonical correlations,
leads to invalid results.

5.2. Estimation and multiple testing correction

Results from Sections 4.1 and 4.2 show that the estimation method
that leads to exact, valid results (neither conservative or invalid) is the
one that estimates one canonical correlation one at a time, in a stepwise,
iterative manner, that includes the null space of the canonical coefficients
when the sets of variables have different sizes (i.e., when P # Q), and that
computes adjusted p-values using a closed testing procedure. All alter-
native approaches led to either invalid or conservative results when
considering pcer or the FWER.

It should be emphasised, however, that there are cases in which the
naive permutation method, described at the beginning of Section 2.3
remains valid. The method is valid whenever only the first (k = 1) ca-
nonical component is of interest, and there are no nuisance variables or,
if there are nuisance variables, those in the left and right side (Z and W)
are completely orthogonal (thus, excluding partial cca). Even though the
naive method was not explicitly tested, it is equivalent to the single step
method with the null space included, which in the simulations led to an
error rate of 4.70% at test level 0.05 (Table 6). The reason why it remains
valid is that, if interest is only in the first canonical component, there is
no need to perform an initial cca to allow stepwise removal of previous
(before the current k components). Moreover, there is no multiple testing
to be considered.

The last column of Table 6 may suggest that uncorrected p-values
(upper panel) and a crp (middle) are equivalent for stepwise estimation.
They are not, and their differences are manifest in two ways, both
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previously discussed: first, uncorrected p-values are not monotonically
related to the canonical correlations (Fig. 2), and second, rwer has po-
tential to be higher than the pcer for k = 1, even though that did not
happen in the simulations.

5.3. Inference in the presence of nuisance variables

It is sometimes the case that known, spurious variability needs to be
taken into account. For example, variables such as age and sex are often
considered confounds. Merely regressing out such nuisance variables
from all other variables that are subjected to cca, then proceeding to a
simple permutation test, leads to inflated error rates and an invalid test,
as expected from Section 2.6, and evidenced by the results in Section 4.3.
The dependencies among observations introduced through the residu-
alisation renders the data no longer exchangeable.

This inflated error rate, even after multiple testing correction, is the
probably the most striking finding of the current study, as the results can
be dramatically affected, particularly if the number of nuisance variables
is relatively large compared to the sample size, as shown in Section 4.5.
Transformations that make residuals exchangeable, through the use of a
lower dimensional basis where exchangeability holds, namely, the
Huh-Jhun and Theil methods, mitigate the problem, as evidenced by the
theory and through the simulations.

Even though both methods led to similarly controlled error rates, they
are not equivalent: Huh-Jhun always leads to same canonical compo-
nents as they would have been obtained from the residualised data,
whereas the Theil method can allow for multiple, different solutions
depending on the choice of the selection matrix S. Theil (1965) suggested
that the choice of the observations to be dropped should consider power;
here we suggest that the choice of S can be based on restrictions on
exchangeability: if all original data are freely exchangeable, the Huh-J-
hun method is a preferable choice in that it does not require an additional
argument that affect the results; however, it does require a Schur or
singular value decomposition of the residual-forming matrix, which is a
rank-deficient matrix, such that numerical stability should also be a
factor for consideration.

For bipartial cca, while error rates were controlled even in the simple
residualisation case, it should be noted that Z and W were generated
independently in the simulations, such that they were expected to be
orthogonal. With real data, possible overlap among columns or linear
combinations of columns between Z and W create a case that would lie
between the two extremes of partial and bipartial cca. In such case, and
given the results for partial cca, error rates are not expected to be
controlled with simple residualisation. Huh-Jhun and Theil, being able
to deal with the most extreme case of dependencies between Z and W
(that is, when the two are the same, which defines partial cca), constitute
a general solution to all cases.

5.4. Relationship with the GLM

The dangers of residualising both dependent and independent vari-
ables in the general linear model (ctm) with respect to nuisance variables,
then proceeding to a permutation test, as proposed originally by Kennedy
(1995) are well known (Anderson and Robinson, 2001). It is not a
complete surprise, therefore, that permutation inference for cca would
lead to invalid results in similar settings. The original Huh and Jhun
(2001) method (see also Kherad-Pajouh and Renaud, 2010) was pro-
posed for the cim as a way to address shortcomings of the Kennedy
method in accommodating nuisance variables. Both Kennedy and
Huh-Jhun were evaluated by Winkler et al. (2014): among the methods
that can be considered for permutation inference in the v, Huh-Jhun is
the only that cannot be used directly with exchangeability blocks, as the
reduction to a lower dimensional space does not respect the block
structure. The solution proposed here for permutation inference for cca in
the presence of exchangeability blocks, which uses the Theil method, is
expected to solve the same problem also for the Gim, i.e., as a replacement
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for Huh—Jhun in cases where the data have a block dependence structure,
as it does for freely exchangeable data (Ridgway, 2009).

As in the univariate case, permutation tests in the presence of
nuisance variables are approximate. Their exactness is in the sense that,
under the null hypothesis, the probability of finding a p-value smaller or
equal to the test level is the test level itself. Such tests are not perfectly
exact as the true relationship between the nuisance variables and the
variables of interest are not known and needs to be estimated. Even in the
absence of nuisance variables, however, permutation tests that use only a
fraction of the total number of possible permutations are also approxi-
mate, for not covering the whole permutation space (the number of po-
tential permutations tends to be very large, and grows very rapidly with
increases in sample size). The same holds for other resampling methods
that do not use all possible rearrangements of the data. Regardless of the
reason why the tests are approximate, results are known to converge
asymptotically to the true p-values.

5.5. Choice of the statistic

Among the two test statistics considered, Wilks’ (1) tends to be more
powerful than Roy’s (6) for effects that span multiple canonical com-
ponents; the converse holds for signals concentrated in only a few of the
canonical components, i.e., when many of the canonical variables are
zero; in these cases, Roy’s tend to be more powerful than Wilks’, as
shown in Section 4.7. The respective formulas (Equations (3) and (4))
give insight on why that is the case: Roy’s statistic is invariant to ca-
nonical correlations other than the first (largest), whereas Wilks’ pool
information across all correlations; past simulations, reviewed by John-
stone and Nadler (2017), corroborate to the finding.

The use of these two statistics for any canonical correlation other than
the first (i.e., for k > 1) is possible in the proposed iterative procedure
because, for the current position k being tested, all the variance associ-
ated with the previous canonical components at positions {1,...,k—1}
will have already been removed from the model (Sections 2.3 and 2.8),
such that the largest canonical correlation (Roy’s statistic) is the current
one being tested; for Wilks’, the procedure holds because these earlier
canonical correlations are not marked as zero; instead, they are ignored
altogether when the statistic is computed, as if the previous canonical
components have never existed.

Wilks’ lambda and Roy’s largest root are not the only possible sta-
tistics that can be considered for cca, and permutation tests allow the use
of yet others. Some, such as Hotelling-Lawley and Pillai-Bartlett, were
considered by Friederichs and Hense (2003). Using simulations and
Monte Carlo results, the authors found that parametric distributions of
these classical multivariate statistics were accurate, and could be ob-
tained quickly at low computational cost; it should be noted, however,
that the study used normally distributed simulated data, in which case
parametric assumptions are known to hold.

5.6. Relationship with previous studies

While a number of studies have used permutation tests with cca, not
many investigated the performance of these tests. Nandy and Cordes
(2003) proposed a non-parametric strategy for inference with cca for the
investigation of task-based fwmri time series: the method uses a
resting-state (no task-related activity) dataset to build the null distribu-
tion; as resampling time series can be challenging due to temporal
autocorrelation, the null distribution uses multiple voxels selected far
apart from each other so as to also avoid issues with spatial correlation.
The approach differs from the one presented here in that it uses
subject-level time series (as opposed to between-subject analyses), is
specific to brain imaging (the proposed method is general) and does a
resampling method that shares similarities with, yet is not the same as
permutation. Eklund et al. (2011) specifically used permutation tests for
cca with fvrr time series whitened with a combination of methods to
allow permutation; the authors demonstrated that permutation tests for
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both the cim and cca could be greatly accelerated through the use of
graphics processing units (Gpus).

Kazi-Aoual et al. (1995) proposed analytical formulas for the first
three moments of the permutation distribution of Pillai’s trace for cca;
these moments can be used to fit a Pearson (1895) type m distribution,
from which p-values can be obtained. Legendre et al. (2011) studied
parametric and permutation tests for redundancy analysis (rpa; Rao,
1964) and for canonical correspondence analysis (referred to also by the
acronym “cca’’; ter Braak, 1986); the authors found that a simultaneous
test of all canonical eigenvalues for the respective axes (eigenvectors of
predicted response variables in a linear model) in rpa, despite simple, is
not valid, whereas a marginal test on each eigenvalue, as well as a
“forward”’ test in which previously tested canonical axes are added to a
matrix of nuisance variables, performs well, even if conservatively for
axes other than the first. Yoo et al. (2012) investigated the relationship
between cca and regression, proposing the use of permutations and
studying cases without nuisance variables; in the method, for the k-th
canonical correlation, variance not already explained by canonical vari-
ables {1,...,k} in one of the sides is permuted, whereas the other vari-
ables remain fixed. Turgeon et al. (2018) considered using a small
number of permutations for cca, recording of the empirical distribution
function, then using it to estimate the parameters of a Tracy-Widom
distribution (Tracy and Widom, 1996; Johnstone, 2008) for cases in
which the number of observations is smaller than the number of variables
in either Y or X; the distribution is then used to obtain p-values; data are
assumed to follow a normal distribution, and inference is for the largest
canonical correlation.

Permutation tests for the method of partial least squares (pLs; Tucker,
1958; Wold et al., 1983; McIntosh et al., 1996; McIntosh and Lobaugh,
2004) have been considered. For example, Chin and Dibbern (2010) and
Sarstedt et al. (2011) used a permutation test to investigate how differ-
ences in the strength of association between variables (magnitude of
estimates) further differed between two or more groups. These would be
equivalent to, in the context of cca, testing whether canonical correla-
tions obtained across different groups would differ. Le Floch et al. (2012)
investigated strategies for dimensionality reduction and regularisation
for imaging and genetic data, whereas Grellmann et al. (2015) compared
the performance of variants of cca and pis for similar problems. Both
studies used direct permutation of the data, and were mostly focused on
the relative performance of the different methods, offering no specific
treatment of nuisance variables or the other aspects considered here, and
which concern validity. Monteiro et al. (2016) investigated a strategy for
sparse pLs and sparse cca in which data are split into training and hold out,
and inference uses permutation of the training data, with coefficients
applied to test data, in which measurements of association are computed.

The current paper therefore fills a substantial knowledge gap,
whereby not many studies considered at all the validity of permutation
inference with cca, but those that did approach the topic were not suf-
ficiently general; none covered the topics discussed here. Moreover, in
principle, the method as proposed can be used with subject-level fmri or
other timeseries data provided that whitening has been successful in
removing temporal dependencies. Additionally, given the conceptual
similarity between pLs and cca, it is possible that permutation inference
for ps would require similar strategies as described in Section 2,
particularly in the presence of nuisance variables and re-use of variance
already explained. Whether that is the case, it is a question that remains
open for future investigation.

5.7. Recommendations

Given the above results, the main recommendations for permutation
inference for cca can be summarised as follows:

e When studying a given k-th canonical variable or canonical correla-
tion, 1 < k <K, remove the effects of the previous ones, i.e., the
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variance from one set that has already been explained by the other, as
represented by the earlier canonical variables. These effects are surely
significant (regardless of the test level), otherwise the current ca-
nonical variable or correlation would not be under consideration.
Ignoring the earlier ones causes the error rates be inflated (empirical
evidence provided in Section 4.1).

For sets of variables with different sizes (i.e., P < Q), ensure that the
variability not represented by the canonical variables produced at the
first permutation is considered in all and every permutation. That is,
include the null space of the canonical coefficients when computing
the variables subjected to permutation. Not including the null space
leads to excess false positives (empirical evidence provided in Section
4.1).

Do not use simple p-values for inference, and make sure that a closed
testing procedure is used. Using simple, uncorrected p-values has two
negative consequences: (i) both the pcer and rwer are inflated, and (ii)
since simple p-values are not guaranteed to be monotonically related
to the canonical correlations, the resulting test is inadmissible
(empirical evidence provided in Section 4.2).

For the same reason, do not use pr to correct for multiple testing after
using simple p-values: while the p-values themselves satisfy the re-
quirements of rpr, they lead to an inadmissible test even after
correction, leading to non-sensical results whereby a stronger ca-
nonical correlation may be less significant than a weaker one
(empirical evidence provided in Section 4.2).

While valid, inference using the distribution of the maximum statistic
across canonical correlations leads do conservative results, except for
the first canonical correlation (empirical evidence provided in Section
4.2).

If regressing out nuisance variables from both sets of variables sub-
jected to cca, make sure that the residuals are transformed to be
exchangeable, e.g., with the Huh-Jhun or Theil methods, then
permuted accordingly. Failure to observe this recommendation leads
to excess false positives, particularly when the number of nuisance
variables is a large fraction of the sample size (empirical evidence
provided in Sections 4.3 and 4.5).

All these recommendations are integrated into Algorithm 1.
6. Conclusion

As evidenced by the theory and simulations in the previous sections, a
simple permutation procedure leads to invalid results: (i) simple p-values
are not admissible for inference in cca, lead to excess pcer and Fwer, and
cannot be corrected using generic methods based on p-values such as rpr;
(ii) ignoring the variability already explained by previous canonical
variables leads to inflated error rates for all canonical correlations except
for the first; (iii) regression of the same set of nuisance variables from
both sides of cca without further consideration leads to inflated error
rates; and (iv) the classical method for multiple testing correction, that
uses the distribution of the maximum statistic, leads to conservative re-
sults. The use of a stepwise estimation procedure, transformation of the
residuals to a lower dimensional basis where exchangeability holds, and
correction for multiple testing via closure, ensures the validity of per-
mutation inference for cca.
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Appendix A. Ancillary functions

Algorithm 1 requires two relevant ancillary functions: one to compute the semi-orthogonal matrix Q, and another to conduct the cca proper and
obtain the canonical coefficients A and B; these two functions are described in pseudo-code in Algorithms 2 and 3. The “semiortho’’ function takes as
input a residual-forming matrix R and, optionally, a selection matrix S. If S is supplied, it computes Q using the Theil method; otherwise, it uses the
Huh-Jhun method (Table 3).

As shown, “semiortho’’ uses Schur decomposition for Huh-Jhun, but that decomposition can be replaced by singular value decomposition (svp) or Qr
decomposition. Another possibility consists of never using R directly, computing instead an orthogonal basis for the null space of Z (not shown; it would
require taking Z as an input argument). All these are expected to produce the same results. However, as the residual-forming matrix is rank deficient and
idempotent, all its eigenvalues are identical to 0 or 1. Thus, considerations about numerical stability and float point arithmetic (Moler, 2004), as well as
speed, should determine the best choice for a particular programming language or computing architecture.

Algorithm 2. The “semiortho’ function, used in Algorithm 1.

Require: Ryxn. Optional: Sy n-. > Inputs.
1: if exist(S) then > If a selection matrix was supplied.
2:  Quxn — RS(SRS')"1/2 b Use Theil.
3: else > Otherwise, use Huh—Jhun.
4: Qnxn, E + schur(R) > Schur decomposition.
5 Qnxn' + [gn|en > 0] > Keep columns q,, with positive eigenvalues e,,.
6: end if
7: return Q > Return the semi-orthogonal matrix.

Algorithm 3. The “cca’ function, used in Algorithm 1.

Require: Yyyp,XnxQ, R, S. > Inputs.
1: K + min(P,Q) > Number of canonical components.
2: Qy, Ry, Ty + qr(Y); > QR decomposition.
3: Qx, Rx, Tk « qr(X); > QR decomposition.
4: [Lpxp,D,Mp, o] + svd(QyQx); > Singular value decomposition.
5: [r1,...,r] + [di1,. .., dxK] > Canonical correlations (diagonal of D).
6: Lpwr < [lg, k={1,...,K}] > Retain the first K columns of L.
7 Moxk ¢ [my, k={1,...,K}] > Retain the first K columns of M.
8: Apyg + TyR{{]L\/N - R > Canonical coefficients, left side.
9: Boxk TXR;(lM\/N -5 > Canonical coefficients, right side.

10: return A, B, [rq,...,7k] > Return coefficients and correlations.

The “cca” function takes as main inputs the sets of variables Y and X. These will have been mean-centered and possibly residualised outside the
function, such that no further mean-centering or residualisation is performed; if mean-centering was performed, then, at a minimum, the other two
arguments are R = S = 1; if other variables were regressed out, as in part, partial, or bipartial cca, then R and S are supplied with their corresponding
values, minus 1 to account for the mean-centering. The algorithm uses the method described by Bjorck and Golub (1973), and is based on results of
Olkin (1951) and Golub (1969); additional details can be found in Seber (1984). Inside this function, variables Q and R (subscripts omitted) refer to the
factors of a gr factorization, hence with a different meaning than the similarly named matrices used elsewhere this paper. In the algorithm, Y and X are
subjected to Qr decomposition with pivoting (hence the matrices T, subscripts omitted), using a numerically stable Householder transformation (Golub
and Van Loan, 2013). The inner product Qy’Qy of the orthogonal matrices from or is subjected to singular value decomposition; the diagonal elements
of D are the canonical correlations (line 5). The remaining computations are for the canonical coefficients: these are obtained via back substitution by
solving the triangular sets of equations L = Ry*A and M = Ry!B. The permutation matrices Ty and Tx are used for reordering. The constant factors in
the square roots are normalising scalars to ensure unit variance for the canonical variables U and V (not returned by the algorithm, but computable as
U = YA and V = XB, Equation (1)); if an intercept was explicitly included in Z and W (for bipartial), these constant factors are as shown; if instead the
data were mean-centered, further subtract 1 before taking the square root. Regardless, omission of these constant terms do not affect the canonical
correlations.

Source code

Code related to this paper is available at https://github.com/andersonwinkler/PermCCA.
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