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ABSTRACT

Traumatic injury or disease of the spinal cord and brain
elicits multiple cellular and biochemical reactions that
together cause or are associated with neuropathology.
Specifically, injury or disease elicits acute infiltration and
activation of immune cells, death of neurons and glia, mito-
chondrial dysfunction, and the secretion of substrates that
inhibit axon regeneration. In some diseases, inflammation is
chronic or non-resolving. Ligands that target PPARs (perox-
isome proliferator-activated receptors), a group of ligand-
activated transcription factors, are promising therapeutics
for neurologic disease and CNS injury because their activa-
tion affects many, if not all, of these interrelated pathologic
mechanisms. PPAR activation can simultaneously weaken or
reprogram the immune response, stimulate metabolic and
mitochondrial function, promote axon growth and induce
progenitor cells to differentiate into myelinating oligoden-
drocytes. PPAR activation has beneficial effects in many pre-
clinical models of neurodegenerative diseases and CNS in-
jury; however, the mechanisms through which PPARs exert
these effects have yet to be fully elucidated. In this review
we discuss current literature supporting the role of PPAR ac-
tivation as a therapeutic target for treating traumatic injury
and degenerative diseases of the CNS.
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INTRODUCTION

Neurodegenerative diseases [e.g. MS (multiple sclerosis), ALS
(amyotrophic lateral sclerosis), and Alzheimer’s disease] and
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traumatic or ischemic CNS injuries [e.g. SCI (spinal cord in-
jury), stroke, TBI (traumatic brain injury)] all elicit neuroin-
flammatory cascades. Specifically, the collective effects of
activated glia, inflammatory cytokines and chemokines, a
compromised blood–brain/spinal cord barrier, and infiltrat-
ing leukocytes exacerbate axon damage and demyelination,
mitochondrial dysfunction, and glial scar formation. The re-
sult is a tissue environment that favors cell death and inhibits
mechanisms of endogenous repair (Norenberg et al., 2004;
Fleming et al., 2006; Popovich and Longbrake, 2008). Since
mature CNS neurons are post-mitotic and regenerate poorly,
the destructive effects of trauma, disease and neuroinflam-
mation render affected individuals permanently disabled.

PPARs (peroxisome proliferator-activated receptors) com-
prise a family of ligand-activated transcription factors that
play a vital role in cellular processes such as cell differ-
entiation and metabolism (Kersten et al., 2000; Bensinger
and Tontonoz, 2008). They also are potent regulators of
macrophage differentiation that, when activated, can atten-
uate pathology associated with various chronic neuroinflam-
matory diseases (Odegaard et al., 2008; Bouhlel et al., 2009;
Chawla, 2010;). PPARs exist as three different isoforms, α,
δ (also called β), and γ, and all are expressed by microglia,
astrocytes, neurons and oligodendrocytes, albeit at different
levels (Kliewer et al., 1994).

PPARs form obligate heterodimers with RXRs (retinoid X
receptors), and ligand binding to either PPAR or RXR initi-
ates gene transcription. PPAR–RXR heterodimers are termed
‘permissive’ because ligation of either component of the het-
erodimer can induce transcriptional activation of the recep-
tor complex. This means that PPAR activation can be induced
to varying degrees by ligands activating RXRs. Since the pre-
cise mechanisms by which RXR ligands affect PPAR signaling
are not yet defined, it is important to note that RXR ac-
tivation may not be identical with direct PPAR activation.
Currently, FDA-approved agonists of PPARα and PPARγ are
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Table 1 Commonly used PPAR agonists for CNS studies
This table is a list of commonly utilized PPAR agonists that have been tested experimentally to attenuate neurological disease/injury. Instances of clinical use in
humans are restricted to the following neurological conditions: Alzheimer’s disease, multiple sclerosis, stroke, amyotrophic lateral sclerosis and Parkinson’s disease.

Drug (other names) Receptor target FDA approved
Prescribed
treatment Toxicity/side effects

Clinical trial for CNS
disease/trauma References

Pioglitazone (Actos) PPARγ Yes Type 2 diabetes Associated with
bladder tumors.
Weight gain

Multiple sclerosis,
Alzheimer’s disease,
stroke amyotrophic
lateral sclerosis
Parkinson’s disease

Wilcox et al., 2007;
Hanyu et al., 2009;
Kaiser et al., 2009;
Shukla et al., 2010;
Geldmacher et al.,
2011; Sato et al.,
2011; Dupuis et al.,
2012

Rosiglitazone (Avandia) PPARγ Yes Type 2 diabetes Increased
cardiovascular risk

Alzhiemer’s disease Watson et al., 2005;
Kume et al., 2012

Troglitazone (Rezulin,
Resulin, Romozin, Noscal)

PPARγ Formerly, taken
off the
market by
FDA

Type 2 diabetes Liver toxicity N/A

15-deoxy-Delta(12,14)-
prostaglandin J(2)

PPARγ No N/A

Telmisartan (Micardis) PPARγ/PPARδ Yes Hypertension Tacy/bradycardia,
edema, hypotension

Alzheimer’s disease,
stroke

Diener et al., 2008;
Yusuf et al., 2008;
Bath et al., 2009;
Kume et al., 2012

Gemfibrozil (Lopid, Jezil,
Gen-Fibro)

PPARα Yes Hyperlipidemia Gastrointestinal
distress,
musculoskeletal
pain, gallstones,
increased risk of
cancer, reduced
blood K+ levels

N/A

Fenofibrate (Tricor, Trilipix) PPARα Yes Hyperlipidemia Gastrointestinal
distress, skin
reactions, severly
reduced
high-density
lipoprotein levels

N/A

used to treat hyperlipidemia and Type II diabetes, respec-
tively (Table 1). These same drugs are also ideal candidates
for translational research in models of CNS trauma and dis-
ease (Lehmann et al., 1995; Staels et al., 1998).

In vivo studies document that agonists for different PPAR
isoforms typically improve outcomes in pre-clinical models
of CNS injury or disease. For instance, in EAE (experimen-
tal autoimmune encephalomyelitis, an animal model of MS),
several PPAR agonists have proven effective in delaying the
onset and progression of disease (Niino et al., 2001; Diab et al.,
2002, 2004; Feinstein et al., 2002; Gocke et al., 2009). PPARδ

and PPARγ agonists also have shown benefits in experimental
models of SCI, TBI and stroke (McTigue et al., 2007; Yi et al.,
2008; Allahtavakoli et al., 2009; Sauerbeck et al., 2011; Thal
et al., 2011; Villapol et al., 2012). Activation of these recep-
tors attenuated inflammation and apoptosis, reduced lesion
size and improved functional recovery; they also promoted
oligodendrogenesis and differentiation (McTigue et al., 2007;
Park et al., 2007; Yi et al., 2008; Allahtavakoli et al., 2009;
Paterniti et al., 2010; Meng et al., 2011; Sauerbeck et al.,
2011; Thal et al., 2011; Villapol et al., 2012). Neuropathol-

ogy was exacerbated after CNS injury in mice deficient in
PPARα, suggesting that endogenous PPAR ligands may limit
neuropathology (Genovese et al., 2005). PPARα activation
facilitated recovery after TBI, but surprisingly had no effect
or worsened recovery after SCI (Besson et al., 2005; Chen
et al., 2007, 2008; Almad et al., 2011) suggesting that PPAR
activation may not be uniformly beneficial.

In animal models of ALS, a disease that causes paralysis
and eventual death due to loss of upper and lower motor
neurons, PPARγ agonists extend survival and attenuate motor
neuron loss (Kiaei et al., 2005; Shibata et al., 2008). However,
in a phase II double-blind controlled clinical trial, the PPARγ

agonist pioglitazone did not increase survival in ALS patients
(Dupuis et al., 2012).

Activation of PPARs also yielded conflicting data in ro-
dent models of Alzheimer’s disease and in human subjects.
For example, in some, but not all studies, PPAR activation re-
duced amyloid deposition and reversed cognitive and mem-
ory decline (Yan et al., 2003; Pedersen and Flynn, 2004;
Heneka et al., 2005; Nicolakakis et al., 2008; Escribano et al.,
2010; Toledo and Inestrosa, 2010; Mandrekar-Colucci et al.,
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Figure 1 PPARs modulate multiple pathways in the CNS
PPAR activation after CNS injury/trauma promotes recovery through multiple mechanisms by promoting (1) axon outgrowth, (2)
mitochondrial bioenergetics, (3) inhibition of Th1 and Th17 T-cell differentiation, (4) OPC maturation, and (5) polarization of macrophages
from an inflammatory ‘M1’ to an anti-inflammatory ‘M2’ activation state.

2012). The inconsistencies in the reported data may be due to
use of different animal models of Alzheimer’s disease, poor
blood–brain barrier penetrance of PPAR agonists (i.e. incon-
sistent drug distribution) and widely variable dosing strate-
gies (Maeshiba et al., 1997; Hemauer et al., 2010). Phase III
clinical trials testing another PPARγ agonist, rosiglitazone,
failed to show efficacy in patients with mild to moderate
stages of Alzheimer’s disease; however, the doses used in
clinical trials were significantly lower than those shown to
be beneficial in the rodent models (Gold et al., 2010).

Clearly, PPAR activation has the potential to be benefi-
cial in many neuropathological conditions. The mechanisms
of action of PPAR agonists are so diverse that they may be
advantageous at many stages of injury. Thus, the best timing
and dose of agonists may vary depending on injury sever-
ity, progression of disease or the cellular target (i.e. neurons,
microglia, oligodendrocytes), and may explain the conflict-
ing results in studies listed above. A clearer understanding of
how and where PPARs act will facilitate designing the most
effective pre-clinical and clinical studies. This review will ad-
dress the many mechanisms through which PPAR activation
is known to alleviate pathology and improve neurological
function in the damaged CNS (Figure 1).

PPARs AND MACROPHAGE POLARIZATION

Microglia are the primary immune effector cells of the CNS.
Pathological changes in the brain or spinal cord cause rapid
microglial migration to the affected area where they undergo
phenotypic and morphologic transformation. If sufficiently
activated, these cells also release chemotactic and inflam-
matory cytokines that signal the recruitment of monocytes
from the circulation into the pathological CNS (Davalos et al.,
2005; Nimmerjahn et al., 2005).

The phenotype and corresponding function of macro-
phages and microglia are shaped by a cadre of signals present
in pathological tissue (Gordon and Martinez, 2010). These
signals collaborate to instruct a population of cells that,
at any given time, can be quite heterogeneous. To simplify
this intrinsic complexity, working models of microglia and
macrophage function are often used in which the cells are
broadly defined using nomenclature and phenotypic signa-
tures developed from in vitro models. For example, ‘classically’
activated M1 macrophages and ‘alternatively’ activated M2
macrophages are distinct macrophage subsets that can be
generated in vitro using defined stimuli (Mosser and Edwards,
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2008). Classical activation of macrophages is associated with
antigen presentation and the production of inflammatory
cytokines, chemokines and reactive oxygen species. Chronic
persistence of M1 macrophages is thought to exacerbate
disease and tissue pathology (Horn et al., 2008; Busch et al.,
2009; Kigerl et al., 2009; Martinez et al., 2009; Hu et al.,
2012). In contrast, M2 macrophages produce immune regu-
latory cytokines including TGF-β (transforming growth factor
β), IL (interleukin)-10, IL-13 and IL-4 as well as wound heal-
ing molecules such as Arg1 (Arginase 1), YM1, MR (mannose
receptor, CD206) and FIZZ1 (RELMα).

Using canonical molecular indicators of macrophage
phenotype, recent studies have identified M1 and M2
macrophages in the pathological brain and spinal cord (Kigerl
et al., 2009; Mandrekar-Colucci and Landreth, 2010; Kumar
et al., 2013). In many models of neurologic disease, the mag-
nitude of pathology or functional loss correlates with a robust
M1 macrophage response, and blocking inflammatory signal-
ing often confers neuroprotection (Colton and Wilcock, 2010;
David and Kroner, 2011; Shechter and Schwartz, 2013). Simi-
larly, functional inhibition or acute depletion of macrophages
in rats and mice after traumatic SCI is neuroprotective and
promotes functional recovery (Giulian and Robertson, 1990;
Blight, 1994; Popovich et al., 1999; Gris et al., 2004)

Recent data indicate that PPARγ and PPARδ are critical
transcriptional ‘gatekeepers’, i.e. they control transcriptional
modules that influence macrophage phenotype. PPAR acti-
vation inhibits the expression of M1 genes in cells exposed to
M1-type stimuli and enhances the expression of M2 mark-
ers in the presence of M2 stimuli. In particular, activation of
these PPARs in macrophages induces the M2 markers Arg1,
CD206, YM1 and FIZZ1; these effects are lost in mice de-
ficient for either receptor (Bouhlel et al., 2007; Odegaard
et al., 2007, 2008; Gallardo-Soler et al., 2008; Kang et al.,
2008). PPAR activation produces similar effects in microglia
(Storer et al., 2005a; Xu et al., 2005b; Ramanan et al., 2009;
Antonietta Ajmone-Cat et al., 2012). For instance, PPAR ac-
tivation of microglia promotes phagocytosis of pathological
protein aggregates and is neuroprotective in models of MS
and Alzheimer’s disease (Mandrekar-Colucci et al., 2012;
Yamanaka et al., 2012). Activation of all three PPAR isoforms
inhibits NF-κB (nuclear factor κB)-mediated induction of in-
flammatory cytokine genes (Chawla, 2010). PPARγ achieves
this through ligand-activated sumolyation of the receptor,
which then binds to and stabilizes the interaction between
NF-κB and its co-repressor complex, thereby preventing the
transcription of inflammatory cytokines (Pascual et al., 2005).

In Alzheimer’s disease, which is characterized by chronic
neuroinflammation, PPARγ activation attenuates neuroin-
flammation and augments expression of M2 macrophage
markers, indicating that peripheral administration of PPAR
agonists can influence an active and chronic inflammatory
milieu in the CNS (Mandrekar-Colucci et al., 2012). PPAR acti-
vation is beneficial in other pathological conditions including
TBI, SCI, EAE, stroke and ALS (Kiaei et al., 2005; Schutz et al.,
2005; Drew et al., 2006; Sundararajan et al., 2006; Yi et al.,

2008; Villapol et al., 2012). In EAE, infiltration of monocytes
correlates with progression to the severe paralytic stages of
disease (Ajami et al., 2011). Treating EAE animals with PPAR
agonists is anti-inflammatory and slows disease progression;
however, whether PPARs act solely by altering macrophage
polarization in this model has not been confirmed (Niino
et al., 2001; Diab et al., 2002, 2004; Feinstein et al., 2002;
Gocke et al., 2009).

The molecular phenotype of microglia or macrophages af-
fects the ability of these cells to phagocytose debris. For in-
stance, activation of PPARδ in macrophages promotes clear-
ance of apoptotic cells (Mukundan et al., 2009). This occurs
through increased expression of opsonins (e.g. complement
C1q) by macrophages, which increases phagocytosis of apop-
totic cells (Mukundan et al., 2009). Similarly, PPARγ activa-
tion in microglia promotes phagocytosis by up-regulating the
scavenger receptor CD36 (Yamanaka et al., 2012). Considering
traumatic CNS injuries produce large amounts of myelin and
cell debris, PPAR-induced M2 polarization of macrophages
and microglia may be beneficial by promoting removal
of debris in addition to the other mechanisms mentioned
above.

Finally, it should be noted that while the in vitro-
derived M1 and M2 nomenclature is widely used to describe
macrophage activation states, these classifications are im-
perfect and reflect only a subset of states existing on a
continuum of macrophage activation (Mosser and Edwards,
2008). Thus, characterizing M1 as ‘bad’ and M2 as ‘good’
macrophages is overly simplistic since both types have im-
portant functions and it is likely that an imbalance in their
ratios causes pathology, especially if the imbalance is pro-
longed. Chronic inflammation involving both M1 and M2
macrophages is documented in many CNS diseases and in-
juries such as Alzheimer’s disease, MS, SCI, TBI, and stroke
(Colton et al., 2006; Kigerl et al., 2009; Mikita et al., 2011;
Hu et al., 2012; Kumar et al., 2013). Therapeutically targeting
PPARs may help to ‘re-balance’ these two phenotypes in the
injured CNS and promote neuroprotection.

PPARs AND ASTROCYTES

Astrocytes are highly reactive cells, and in the pathologi-
cal state, they can release damaging molecules that cause
neuron loss (Bal-Price and Brown, 2001). The ability of astro-
cytes to promote inflammation and their responsiveness to
PPAR agonists positions these cells to play a critical role in
the progression and treatment of neurological disease. PPAR
agonists attenuate pathological astrocyte activation and im-
prove disease progression (Diab et al., 2002, 2004; Storer
et al., 2005a, 2005b; Mandrekar-Colucci and Landreth, 2010;
Hong et al., 2012). Given that astrocytes play an important
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role in most CNS disorders, targeting them with PPAR ago-
nists may prove effective in multiple settings.

Astrocytes can regulate how they respond to PPAR
ligands through changes in receptor expression. In LPS
(lipopolysaccharide)-stimulated astrocytes, PPARγ activation
leads to a positive feed-forward signal that increases ex-
pression of PPARδ, and PPARδ activation increases expres-
sion of PPARα (Aleshin et al., 2009). In turn, PPARα pro-
vides a negative-feedback signal inhibiting PPARδ expression
(Aleshin et al., 2009). This coordinated signaling helps reg-
ulate how PPAR activation influences inflammation (Aleshin
et al., 2009). Since the environment surrounding astrocytes
can change dramatically with injury or disease, the ability
for astrocytes to alter their responses to PPAR ligands allows
more precise control of inflammation.

Modulating inflammation is one of the best-studied roles
of PPAR activation in astrocytes and has been examined
in multiple experimental models (Diab et al., 2002; Giri
et al., 2004; Storer et al., 2005a, 2005b; Xu and Drew, 2007;
Xu et al., 2007; Lee et al., 2008; Tjalkens et al., 2008; Pineau
et al., 2010; Cowley et al., 2012; Hong et al., 2012). In the
spinal cord, the PPARγ agonist pioglitazone reduces astro-
cyte activation in a receptor-dependent manner (Jia et al.,
2013). Similarly, the PPARγ agonists 15d-PGJ2 (15-deoxy-�-
12,14-prostaglandin J-2) and rosiglitazone, and PPARα ago-
nists gemfibrozil and fenofibrate reduced levels of the IL-12
family of cytokines, nitric oxide, IL-6, IL-1β and MCP-1 in pri-
mary astrocyte cultures exposed to LPS (Xu and Drew, 2007;
Xu et al., 2006, 2007). It is important to note that each drug
has different effects on cytokine expression, which can be
advantageous since similarly acting drugs can be combined
for more potent effects (Diab et al., 2004). Furthermore, at-
tenuating inflammatory signals reduces disease severity in
models of MS, even after the onset of clinical symptoms
(Diab et al., 2002, 2004). Notably, these beneficial effects
can occur through PPAR-dependent and PPAR-independent
mechanisms. For example, pioglitazone reduced intraspinal
astrocyte activation in a receptor dependent manner in the
sciatic nerve transection model (Jia et al., 2013), while 15d-
PGJ2, another PPARγ agonist, promoted astrocyte-mediated
neuroprotection independent of PPARγ (Giri et al., 2004;
Haskew-Layton et al., 2013).

In models of Alzheimer’s disease, activation of PPARs
in astrocytes is protective against amyloid-β accumulation
(Kalinin et al., 2009; Valles et al., 2010; Wang et al., 2010;
Benito et al., 2012; Mandrekar-Colucci et al., 2012). Given the
well-established effects of PPAR ligands in other cell types, it
is not surprising that these effects occur both through astro-
cytes and microglia (Wang et al., 2010; Mandrekar-Colucci
et al., 2012). The ability of astrocytes to attenuate amyloid-
β-induced toxicity depends on the activation and presence
of PPARs (Valles et al., 2010; Benito et al., 2012). Exposing
astrocytes with reduced PPAR expression to amyloid-β ex-
acerbated production of the inflammatory molecules TNFα
(tumour necrosis factor α), IL-6, iNOS (inducible nitric ox-
ide synthase), and COX-2 (cyclo-oxygenase 2) compared

with wild-type astrocytes (Benito et al., 2012). Further-
more, treating with a PPARα or PPARγ agonist attenu-
ated the increased inflammatory response in amyloid-β-
treated astrocytes (Benito et al., 2012). Encouragingly, the
reduced amyloid-dependent toxicity led to improved cogni-
tion (Mandrekar-Colucci et al., 2012).

PPARs AND T-CELL ACTIVATION

T-cells cross the blood–brain/spinal barrier and secrete vari-
ous cytokines, including IFNγ (interferon γ), IL-17, and TNFα,
all of which can damage myelin and neurons. These pro-
cesses play an integral role during neurological insult. For
example, MS is mediated primarily by autoreactive T-cells of
the Th1 (T helper type 1) or Th17 phenotype (Trinchieri et al.,
2003; Fletcher et al., 2010). Given that T-cells express PPARα

and PPARγ, these PPARs can influence the adaptive immune
system by modifying the activity of these cells (Marx et al.,
2002). Several studies show that agonists for all three PPAR
isoforms inhibit Th1-cell expansion and cytokine production,
and in some cases, can concomitantly increase expression of
Th2 cytokines (Niino et al., 2001; Diab et al., 2002, 2004;
Feinstein et al., 2002; Gocke et al., 2009; Kanakasabai et al.,
2010). This may explain why Th1 responses are enhanced in
PPARγ-deficient mice, and EAE pathology is exacerbated
in mice treated with PPARγ antagonists (Natarajan et al.,
2003; Raikwar et al., 2005).

PPARs AND OLIGODENDROCYTES

Oligodendrocytes are the myelinating cells of the CNS and are
highly susceptible to various components of the pathologic
cascades that occur in most or all neurological diseases (Mc-
Tigue and Tripathi, 2008). Oligodendrocytes are vulnerable
to inflammatory mediators (e.g. cytokines and chemokines)
and because of their high intracellular iron and low levels of
antioxidant molecules, they are exquisitely sensitive to ox-
idative damage from reactive oxygen and nitrogen species
(Thorburne and Juurlink, 1996; Juurlink et al., 1998). Loss
of myelinating oligodendrocytes exposes axons to the injury
milieu, which can lead to axon degeneration and, in some
cases, neuronal death.

Within the CNS, NG2 + OPCs (oligodendrocyte precursor
cells) can differentiate into mature myelinating oligoden-
drocytes following injury or demyelination (McTigue and Tri-
pathi, 2008). However, the mechanisms that regulate these
processes after injury or insult are not well understood
(McTigue et al., 1998; McTigue and Tripathi, 2008; Whit-
taker et al., 2012). In models of MS, clinical symptoms and
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Figure 2 NG2 + oligodendrocyte progenitor cells express PPARδ
Spinal cord section from a normal rat spinal cord gray matter (ventral horn) immunolabeled for PPARδ (brown) and NG2 (gray), a marker
for oligodendrocyte progenitor cells. In the normal spinal cord, PPARδ is expressed by NG2 cells (arrow, inset) and is also visible in
NG2-negative motor neurons (arrowheads). Scale bar = 50 μm; scale bar in inset = 20 μm.

demyelination are exacerbated in PPARγ heterozygous mice
(Natarajan et al., 2003). Work by De Nuccio et al. (2011)
points to a potential mechanism; they show that PPARγ ag-
onists promote OPC differentiation by inducing mitochon-
drial respiratory chain activity and oscillatory Ca2 + waves,
which are crucial for oligodendrocyte differentiation. Fur-
thermore, PPARγ activation directly promotes differentia-
tion of rat OPCs into mature oligodendrocytes (Bernardo
et al., 2009). Since myelin is composed mostly of lipid and
since PPARs play a major role in lipid metabolism, it is not
surprising that PPARs regulate the differentiation and func-
tion of oligodendrocytes (Saluja et al., 2001; Leisewitz et al.,
2008; Kanakasabai et al., 2012). Statins (cholesterol-reducing
drugs) also promote oligodendrocyte maturation by inducing
PPARγ, an effect that is blocked by PPARγ antagonism (Sim
et al., 2008). Thus, targeting oligodendrocytes through PPARs
will likely enhance the production and maturation of OPCs,
repopulate lost oligodendrocytes and maintain myelination
and the integrity of axons during CNS pathology.

Like PPARγ, PPARδ also appears to be important in oligo-
dendrocyte lineage cell regulation. It is expressed by OPCs in
the adult CNS (Figure 2) and, after SCI, the number of PPARδ-
expressing OPCs increases along the lesion border where ro-
bust oligodendrocyte genesis occurs (Tripathi and McTigue,
2007; Almad and McTigue, 2010). In EAE, PPARδ promotes
oligodendrocyte differentiation by limiting the effects of

BMPs (bone morphogenetic proteins). Oligodendrocytes ex-
press BMPs and their receptors, and during CNS development,
BMPs restrict OPC maturation (Gross et al., 1996; Hardy and
Friedrich, 1996). PPARδ activation counteracts BMP signal-
ing by increasing the expression of noggin, a BMP antagonist
produced by astrocytes. In the presence of noggin, BMPs are
inhibited and the number of myelin-producing oligodendro-
cytes is increased (Simonini et al., 2010). Thus, these findings
further indicate a direct role for PPARδ in the regulation of
oligodendrocytes.

Even with evidence showing a role for PPARs in oligoden-
drocyte regulation, conflicting data regarding the efficacy of
these agonists on promoting OPC maturation or differentia-
tion have been documented. In one study, undifferentiated
C6 glioma cells were shown to up-regulate oligodendrocyte
markers in response to agonists that target PPARγ, but not
PPARδ or PPARα. In the same study, however, overexpres-
sion of PPARδ committed C6 cells to oligodendrocyte fate
through the up-regulation of PPARγ (Leisewitz et al., 2008).
These studies suggest that oligodendrocyte differentiation
may depend on the coordinate activation of PPARs.

Activating PPARs may also enhance oligodendrocyte sur-
vival in the injured or diseased CNS. Oligodendrocytes express
all three PPAR isoforms and PPAR activation promotes dif-
ferentiation and myelin gene expression (Granneman et al.,
1998; Saluja et al., 2001; Roth et al., 2003; Woods et al., 2003;
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Jana et al., 2012). Indeed, genes for many of the myelin pro-
teins contain PPAR response elements indicating they can
be directly targeted by PPARs (Jana et al., 2012). For exam-
ple, the PPARα agonist gemfibrozil stimulates expression of
the myelin genes MBP (myelin basic protein), MOG (myelin
oligodendrocyte glycoprotein), PLP (proteolipid protein) and
CNPase. Using chromatin immunoprecipitation assays, it is
possible to show that gemfibrozil enhances binding of PPARδ

rather than PPARα, its receptor target, to promoters of myelin
genes in human oligodendrocytes (Jana et al., 2012). More-
over, activation of PPARδ promotes myelin protein expression
(Saluja et al., 2001).

Additionally, CNS pathology can alter PPAR expression by
oligodendrocyte lineage cells. For instance, PPARδ expression
is enhanced in OPCs and oligodendrocytes after SCI, suggest-
ing these cells would be responsive to PPAR signaling (Almad
and McTigue, 2010). Indeed, activation of PPARγ and PPARδ

after SCI decreases lesion area, increases myelination and
promotes locomotor activity (McTigue et al., 2007; Park et al.,
2007; Paterniti et al., 2010). PPARγ activation also protects
myelin in an in vitro model of inflammatory demyelination
(Paterniti et al., 2010). Similarly, PPAR activation in the EAE
model delays onset and reduces the severity of clinical symp-
toms (Niino et al., 2001; Diab et al., 2002; Feinstein et al.,
2002; Genovese et al., 2005; Gocke et al., 2009).

Enhanced myelination and oligodendrocyte survival fol-
lowing PPAR activation could occur independent of changes
in myelin gene expression. PPAR activation suppresses syn-
thesis of inflammatory cytokines/chemokines and reactive
oxygen (ROS) and nitrogen (RNS) species, all of which are
toxic to oligodendrocytes (Springer et al., 1997; Zhao et al.,
2006; McTigue, 2008). These inflammatory mediators are
inhibited by PPAR activation in macrophages and astro-
cytes (Ricote et al., 1998; Bernardo et al., 2000; Xu et al.,
2006). PPARγ activation increases cellular antioxidants, in-
cluding catalase and copper-zinc superoxide dismutase, both
of which are expressed at low levels in oligodendrocyte lin-
eage cells (Juurlink et al., 1998; Bernardo et al., 2009). Treat-
ing OPCs with the PPARγ antagonist GW9662 abolished the
anti-inflammatory and antioxidant effects of PPAR agonists,
demonstrating a direct role for PPAR signaling in these sig-
naling cascades (Bernardo et al., 2009).

Oligodendrocytes are vulnerable to glutamate excitotox-
icity (McAdoo et al., 1999; Pitt et al., 2000; Xu et al., 2005a).
High levels of extracellular glutamate are believed to con-
tribute to several neurological diseases and after CNS in-
jury (McAdoo et al., 1999; Pitt et al., 2000; Bogaert et al.,
2010; Hinzman et al., 2010, 2012; Thomas et al., 2012; Mehta
et al., 2013). Indeed, glutamate antagonists are neuropro-
tective in many pre-clinical models of neurologic disease
(Wrathall et al., 1997; Rosenberg et al., 1999; Faden et al.,
2001). Like traditional glutamate antagonists, PPAR acti-
vation may also attenuate excitotoxicity. For instance, the
PPARγ agonist rosiglitazone increases expression of the glu-
tamate transporter GLT1/EEAT2 mRNA and protein in cul-
tured astrocytes (Romera et al., 2007). An increase in func-

tional GLT1 would promote glutamate uptake by astrocytes
thereby reducing extracellular levels. However, when tested
in vivo in a model of focal cerebral ischemia, rosiglitazone did
not affect GLT1/EAAT2 expression (Verma et al., 2011). Thus,
the effects may be context-dependent or require a more
rigorous analysis of dosing schedule or pharmacokinetics.

Collectively, data from these studies suggest that PPARs
likely act in concert to promote oligodendrocyte survival and
OPC differentiation and may represent a novel molecular
target, that, if activated appropriately, could promote oligo-
dendrocyte replacement and remyelination in the injured or
diseased CNS.

PPARs: NEURON SURVIVAL AND AXON
REGENERATION

Neuron loss is a devastating and permanent effect of CNS
trauma or disease. Several studies have shown neuropro-
tective effects of PPARs, most notably PPARγ. For instance,
lipid peroxidation was shown to raise PPARγ levels in motor
neurons in a model of ALS (Benedusi et al., 2012). This was be-
lieved to be a self-protective mechanism since PPARγ activa-
tion promotes the expression of lipid detoxifying genes such
as lipoprotein lipase and glutathione transferase a-2 (Bene-
dusi et al., 2012). PPARγ also may regulate neuronal responses
to ischemia since conditional deletion of PPARγ in neurons
increases their susceptibility to ischemia in vitro (Zhao et al.,
2009). Further, the PPARγ agonist troglitazone enhances sur-
vival of rat motor neurons in culture and PPARγ activation by
15d-PGJ2 protects PC12 cells from nitrosative-induced cell
death (Lim et al., 2004). In vivo, activating PPARγ in a mid-
dle cerebral artery occlusion model of stroke reduces infarct
size and lowers cyclin D1, a protein involved in programmed
cell death (Pei et al., 2010). Additionally, PPARγ activation
can stabilize mitochondria and protect neurons against apop-
totic cell death and oxidative stress by upregulating the anti-
apoptotic protein bcl-2 (Fuenzalida et al., 2007). At least part
of the neuroprotective effects of PPARγ involves synergis-
tic signaling with neurotrophins. For instance, NGF (nerve
growth factor)-induced neuronal differentiation is mediated
through activation of PPARγ in a TrkA-dependent manner.
Further, PPARγ activation increases NGF and BDNF levels af-
ter SCI (Fuenzalida et al., 2005; Meng et al., 2011). Together
these studies suggest that activation of PPARs, and in partic-
ular PPARγ, may be neuroprotective and promote neuronal
survival.

Injured axons have a limited capacity to spontaneously
regenerate. Therefore, interventions that enhance or stim-
ulate axon growth may further increase recovery or min-
imize the functional deficits caused by CNS injury. A few
studies have reported that PPAR activation promotes axonal
growth in neuronal cell lines and primary DRG (dorsal root
ganglion) neuron cultures. Specifically, the PPARγ agonists
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pioglitazone and 15d-PGJ2 increase the number and lengths
of neurites (Jung et al., 2003; Miglio et al., 2009). These effects
may occur through modulating RhoA, which is increased in
injured neurons and limits axon regeneration after CNS in-
jury (Dubreuil et al., 2003; Madura et al., 2004). Ibuprofen
(which activates PPARγ at micromolar levels) inhibits RhoA
and stimulates corticospinal and serotonergic axon sprouting
after spinal cord transection in rats (Lehmann et al., 1997;
Fu et al., 2007). Work by others showed that the growth-
promoting effects of ibuprofen involved PPARγ activation
and its ability to inhibit RhoA activation (Dill et al., 2010).
This effect may be mediated by SHP-2 (Src homology region
2-containing protein tyrosine phosphatase-2), which is in-
volved in the PPARγ-dependent inhibition of RhoA (Wakino
et al., 2004). However, the potential role of SHP-2 in PPAR-
mediated neurite outgrowth has not yet been studied in the
CNS. Like their ability to promote neuronal survival, these
studies show that PPAR activation can positively affect axon
regeneration.

PPARs AND NEUROPATHIC PAIN

Neuropathic pain is a debilitating consequence of CNS in-
jury, MS, and other neurological diseases. Currently, there is
no cure for chronic neuropathic pain and most analgesics are
ineffective. Interestingly, emerging pre-clinical data indicate
that agonists for PPARα and PPARγ attenuate neuropathic
pain following peripheral nerve injury (Churi et al., 2008;
Maeda et al., 2008; Taylor, 2009; Takahashi et al., 2011; Ruiz-
Medina et al., 2012). The anti-inflammatory effects of PPAR
activation, occurring through genomic and non-genomic
PPAR-dependent mechanisms, may mediate such effects. For
example, intrathecal injection of the PPARγ agonists 15d-
PGJ2 or rosiglitazone rapidly (<5 min) attenuated pain-like
behaviors in rodents; the effects were PPARγ-dependent
since co-administering PPARγ antagonists blocked the ef-
fects (Churi et al., 2008). It is thought that because ac-
tions occur within minutes of drug administration that these
analgesic effects must be non-genomic (Fehrenbacher et al.,
2009).

PPARs also may affect pain sensations by modulating
glucocorticoid action. Glucocorticoids are steroid hormones
released during periods of acute or sustained stress, both
physiological and psychological, and signal via the GR
(glucocorticoid receptor), another nuclear receptor. Glu-
cocorticoids can pass the blood–brain/spinal barrier and
excess levels are detrimental to neuronal survival in the
brain, inducing synaptic loss, atrophy of the hippocampus
and cognitive deficits. In the CNS, glucocorticoid signaling
enhances pain-like behaviors and is up-regulated in parallel
with inflammatory cytokines after injury (Blackburn-Munro
and Blackburn-Munro, 2003). PPARγ activation inhibits the
autonomic and neuroendocrine responses to stress in rats

and may explain why activation of this receptor reduces
circulating corticosterone levels (Ryan et al., 2012). A 5-day
treatment with rosiglitazone attenuates corticosterone
levels, heart rate, and expression of c-Fos (a marker of
neuronal activation) in the hypothalamus of rats that were
subjected to restraint stress (Ryan et al., 2012). Rosiglitazone
also decreased circulating corticosterone levels in a mouse
model of Alzheimer’s disease (Escribano et al., 2009). While
the mechanisms through which PPARs attenuate corticos-
terone remain to be fully elucidated, PPARα activation does
interfere with GR-dependent gene expression by blocking
the recruitment of RNA polymerase II to the glucocorticoid
response elements on the promoter of GR target genes
(Bougarne et al., 2009). While the effects of glucocorticoids
after injury are complicated, it is apparent in these studies
that PPARs play an integral role in this signaling pathway.

PPARs AND MITOCHONDRIAL
BIOENERGETICS

Mitochondrial dysfunction is common in the CNS with stroke,
SCI, TBI, ALS, MS, Huntington’s disease and Alzheimer’s dis-
ease (Mecocci et al., 1996; Mattiazzi et al., 2002; Wiedemann
et al., 2002; Korde et al., 2005, 2007; Vijayvergiya et al., 2005;
Dutta et al., 2006; Singh et al., 2006; Sullivan et al., 2007;
Robertson et al., 2007; Regenold et al., 2008; Vyshkina et al.,
2008; Martin et al., 2009; Pandya et al., 2009; Patel et al.,
2009; Readnower et al., 2011; Sauerbeck et al., 2011; Zhao
et al., 2011; Lunnon et al., 2012). In these conditions, mito-
chondrial dysfunction correlates with cell death, functional
impairment, and cognitive deficit. This is intuitively obvious
since energy production by mitochondria is essential for sur-
vival of all cells, including neurons (Nicholls and Budd, 2000;
Stephans et al., 2002; Borland et al., 2008). Oligodendro-
cytes also have high energy demands since they must main-
tain large amounts of plasma membrane as myelin. Damage
to oligodendrocyte mitochondria impairs energy metabolism
resulting in reduced myelin production and compaction, and
ultimately hypo-myelination or complete axon demyelina-
tion (Kalman et al., 1997). Accordingly, finding new therapies
that protect mitochondria should help protect neurons and
oligodendrocytes in most, if not all, forms of CNS disease.

PPAR agonists have been extensively studied for their role
in modulating metabolism and energy production (Alaynick,
2008; Sugden et al., 2009). Activation of PPAR receptors by
fatty acids promotes mitochondrial β-oxidation allowing for
greater cellular energy production (Gulick et al., 1994). Many
of the effects of PPARs on bioenergetics occur through reg-
ulation of gene expression. Specifically, activation of PPARδ

increases production of mTFA (mitochondrial transcription
factor), UCPs (uncoupling proteins) 2 and 3 (UCP2/3), and
lipoprotein lipase (Muoio et al., 2002; Dressel et al., 2003;
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Jiang et al., 2010). Similarly, PPARα activation increases the
transport and utilization of fatty acids needed during β-
oxidation and PPARγ activation increases cytochrome c ox-
idase 6A2 (Desvergne and Wahli, 1999; Allen et al., 2006).
Activation of PPARγ also induces the expression of lipopro-
tein lipase and stimulates mitochondrial biogenesis (Strum
et al., 2007; Benedusi et al., 2012; Morino et al., 2012). Fur-
ther, PPARγ activation stabilizes existing mitochondria and
prevents their dysfunction (Fuenzalida et al., 2007; Quin-
tanilla et al., 2008). These effects may underlie the increased
mitochondrial energy production observed following admin-
istration of PPARγ agonists in models of CNS insult (Hunter
et al., 2007; Sauerbeck et al., 2011).

In addition to driving gene transcription, some PPAR ag-
onists interact directly with mitochondria (Colca et al., 2004;
Geldenhuys et al., 2010). These effects can occur via mi-
toNEET, a protein in the mitochondrial outer membrane that
is essential for maximal energy production (Wiley et al., 2007).
Pioglitazone binds to mitoNEET and stabilizes its conforma-
tional structure (Colca et al., 2004; Paddock et al., 2007).
The mitochondrial effects of pioglitazone likely extend to
other PPAR agonists such as rosiglitazone, which also binds
to mitoNEET (Geldenhuys et al., 2010; Bieganski and Yarmush,
2011). Given this novel direct mitochondrial target for PPAR
agonists, work has focused on creating specific ligands for
mitoNEET (Geldenhuys et al., 2010, 2011; Bieganski and
Yarmush, 2011). These new ligands may prove effective at
targeting mitochondrial dysfunction and improving recovery
similar to traditional PPAR ligands.

RXRs AS A MEANS TO TARGET PPARs

RXRs are essential for PPAR signaling. Specifically, RXRs het-
erodimerize with PPARs, creating ‘permissive’ signaling com-
plexes that increase expression of PPAR target genes fol-
lowing ligation with either a RXR-specific agonist or a PPAR
partner ligand (Mangelsdorf and Evans, 1995; Szanto et al.,
2004). There are three RXR isotypes: RXRα, RXRβ and RXRγ. In
the intact CNS, neurons and glia constitutively express RXRs
(Schrage et al., 2006). In injury or disease, the subcellular
location of RXR switches from the cytoplasm to the nucleus,
suggesting transcriptional activation of RXR-containing het-
erodimers (Schrage et al., 2006). Known ligands for RXRs
include honokiol (a naturally occurring ligand from the bark
of the magnolia tree), the synthetic agonist Bexarotene (Tar-
gretin), and 9-cis retinoic acid (Qu and Tang, 2010; Kotani
et al., 2010). Considering that Bexarotene is already FDA-
approved and has an excellent side-effect profile, it is an
optimal candidate for translational studies on neurodegen-
erative diseases or injuries (Lansigan and Foss, 2010).

Activation of RXR elicits a response similar to that ob-
served after PPAR activation. For instance, RXR activation

promotes an anti-inflammatory milieu by down-regulating
inflammatory signaling in microglia and astrocytes (Xu and
Drew, 2006). It also can initiate oligodendrocyte progenitor
proliferation, differentiation and myelination (Chao et al.,
2010; Nunez et al., 2010; Huang et al., 2011; Kaushik et al.,
2012). Interestingly, transcripts for all RXRs are highly up-
regulated in demyelinated lesions, with the RXRγ isoform
being the highest of the three (Huang et al., 2011). Further-
more, 9-cis retinoic acid enhances OPC differentiation in cul-
ture and increases remyelination in cerebellar slice cultures
(Huang et al., 2011). Thus, RXR activation could be therapeu-
tic in demyelinating diseases. Additionally, their enhanced
ability to readily cross the blood–brain barrier, compared
with popular PPAR agonists, makes RXR agonists attractive
candidates for the treatment of neurologic diseases (Cramer
et al., 2012).

Moreover, due to the promiscuous nature of RXR het-
erodimer activation, PPAR signaling pathways may be ini-
tiated through the use of RXR agonists. Thus, RXR ago-
nists could benefit any disease in which PPAR activation has
proven effective. This promiscuity also creates unique chal-
lenges and opportunities. Since these signaling cascades may
be differentially activated based on the binding specificity
and affinity of various ligands to the receptor, RXR activa-
tion may not mimic the spectrum of changes that occur when
PPAR-specific agonists are used to activate the heterodimer
complex. Currently, it is not known which heterodimeric part-
ner RXR exerts its beneficial effects through. Thus, a level
of precision concerning RXR signaling is missing. Given the
similarity of actions between PPAR and RXR activation, RXR
activation may be exerting its effects by concurrently ac-
tivating multiple PPAR pathways. Also, studies have shown
that PPAR and RXR agonists, when used together to simulta-
neously activate the heterodimer complex, have synergistic
effects allowing for maximal stimulation and expanding pos-
sible treatment paradigms (Papi et al., 2009; Yamanaka et al.,
2012).

NON-TRADITIONAL ACTIONS OF PPARs

PPAR agonists can influence pathological processes through
mechanisms that are independent of their classical PPAR re-
ceptors. For example, when given at extremely low doses
(0.5 and 1 mg/kg), far below those needed to activate PPARγ

receptors, pioglitazone still attenuates inflammatory signal-
ing by reducing TNF-α, iNOS, and IL-1β (Thal et al., 2011).
Indeed, co-administration of a PPARγ antagonist does not
prevent the anti-inflammatory effects of low-dose pioglita-
zone, confirming a PPARγ receptor-independent mechanism
(Thal et al., 2011). Similarly, although pioglitazone reduces
tissue loss and cognitive impairment after TBI by PPARγ

activation, this drug reduces microglial activation via a
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PPARγ-independent mechanism (Sauerbeck et al., 2011).
A different PPARγ agonist, rosiglitazone, has similar anti-
inflammatory effects after TBI, yet its effects depend on
PPARγ activation (Yi et al., 2008). The ability to reduce in-
flammation and the different receptor dependency of pi-
oglitazone and rosiglitazone is likely explained by immune
cells expressing both PPARγ and PPARδ receptors and each
receptor having different thresholds for activation by rosigli-
tazone (Sakamoto et al., 2000; Gordon and Martinez, 2010).
Additionally, the PPARγ-independent actions of these ago-
nists likely result from their ability to directly target mito-
chondria and also activate other PPAR receptors (Sakamoto
et al., 2000; Colca et al., 2004; Paddock et al., 2007; Orasanu
et al., 2008; Geldenhuys et al., 2011). Evidence of receptor-
dependent and independent effects, especially within the
same animal, provides strong support for the diverse nature
of the beneficial effects of PPAR agonists.

CONCLUSIONS

The beneficial effects of PPAR activation have been inde-
pendently reproduced in many rodent models of traumatic
injury and neurodegenerative disease and there are sev-
eral potential mechanisms through which PPAR activation
promotes CNS repair and functional recovery. Activation of
PPARs can reduce inflammation and confer neuroprotection,
in part through their ability to minimize cell death and re-
duce mitochondrial dysfunction. PPAR activation may also
enhance axonal growth and remyelination. Through non-
genomic mechanisms, PPAR agonists may have analgesic ef-
fects. Since the pathophysiology of traumatic CNS injury and
neurodegeneration is dynamic, the timing of PPAR activation
likely needs to be tailored to meet the specific characteristics
of the disease in question. Still, the broad effects on over-
lapping mechanisms of neurologic injury make these drugs
very promising therapeutics for treating traumatic injuries to
the brain or spinal cord as well as various neurodegenerative
diseases.
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