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Mild cognitive impairment (MCI), a condition characterizing poor cognition, is associated
with aging and depicts early symptoms of severe cognitive impairment, known as
Alzheimer’s disease (AD). Meanwhile, early detection of MCI can prevent progression to
AD. A great deal of research has been performed in the past decade on MCI detection.
However, availability of biomarkers for MCI detection requires greater attention. In our
study, we evaluated putative and reliable biomarkers for diagnosing MCI by performing
different mental tasks (i.e., N-back task, Stroop task, and verbal fluency task) using
functional near-infrared spectroscopy (fNIRS) signals on a group of 15 MCI patients
and 9 healthy control (HC). The 15 digital biomarkers (i.e., five means, seven slopes,
peak, skewness, and kurtosis) and two image biomarkers (t-map, correlation map) in
the prefrontal cortex (PFC) (i.e., left PFC, middle PFC, and right PFC) between the MCI
and HC groups were investigated by the statistical analysis, linear discriminant analysis
(LDA), and convolutional neural network (CNN) individually. The results reveal that the
statistical analysis using digital biomarkers (with a p-value < 0.05) could not distinguish
the MCI patients from the HC over 60% accuracy. Therefore, the current statistical
analysis needs to be improved to be used for diagnosing the MCI patients. The best
accuracy with LDA was 76.67% with the N-back and Stroop tasks. However, the CNN
classification results trained by image biomarkers showed a high accuracy. In particular,
the CNN results trained via t-maps revealed the best accuracy (90.62%) with the N-
back task, whereas the CNN result trained by the correlation maps was 85.58% with
the N-back task. Also, the results illustrated that investigating the sub-regions (i.e., right,
middle, left) of the PFC for detecting MCI would be better than examining the whole
PFC. The t-map (or/and the correlation map) is conclusively recommended as an image
biomarker for early detection of AD. The combination of CNN and image biomarkers
can provide a reliable clinical tool for diagnosing MCI patients.

Keywords: functional near-infrared spectroscopy (fNIRS), mild cognitive impairment (MCI), linear discriminant
analysis (LDA), convolutional neural network (CNN), neural degeneration
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INTRODUCTION

Alzheimer’s disease (AD) is a degenerative brain disorder of
unknown etiology, a common form of dementia, which begins
in middle-aged or older adults (Ieracitano et al., 2018). AD results
in progressive memory loss, thinking impairment, disorientation,
changes in personality and mood (Niu et al., 2013). In the final
stages of AD, people lose the ability to communicate or respond
to their environment. They need assistance in all their activities
of daily living, and they may even lose their ability to swallow. As
reported via the Alzheimer’s Association, by 2050 one new case of
AD is expected to develop every 33 s resulting in nearly 1 million
new cases per year (Alzheimer’s Association, 2018). In addition,
in 2017, more than 16 million family members and other unpaid
caregivers, a contribution valued at more than $232 billion, were
devoting toward the care of Alzheimer’s patients. Such findings
highlight the requirement for solutions to prevent dementia-
related costs from jeopardizing the health and financial security
of the families of people with Alzheimer’s related diseases.

However, there is a relative mild condition of cognitive
impairment before the onset of AD, known as mild cognitive
impairment (MCI), a stage at which treatment can reduce the
chance for developing to AD (Yeung et al., 2016b; Fang et al.,
2018; Valenzuela et al., 2018). MCI patients are divided into two
categories; amnestic and non-amnestic. In the case of amnestic
MCI patients, the memory is affected primarily. For the case
of non-amnestic MCI, the patients have difficulty with thought
process such as planning and completing complex tasks such as
balancing a checkbook or making a judgment in a risky situation
(Marmarelis et al., 2017). There are various methods to diagnose
an MCI patient. Primarily, the diagnosis in a clinic relies on the
patient’s medical history and clinical rating scores, such as clinical
dementia rate or Mini-Mental State Examination (MMSE) (Li R.
et al., 2018). However, it is known that the MMSE performance
is influenced by education and age, and the clinical evaluation
and diagnosis through MMSE requires an experienced clinician
(Nguyen et al., 2008). To cope with these issues, the biomedical
examination methods using brain signals have been introduced,
such as the transcranial Doppler ultrasonography (Keage et al.,
2012), functional near-infrared spectroscopy (fNIRS) (Vermeij
et al., 2017), functional magnetic resonance imaging (fMRI)
(Khazaee et al., 2017; Katzorke et al., 2018), and positron emission
tomography (Beishon et al., 2017). fNIRS is a relatively new
optical imaging technology that uses light in the near infrared
range to monitor the hemodynamic responses non-invasively: A
neural firing increases blood flow in the neighboring capillary
network, and fNIRS measures the concentration changes of
the oxyhemoglobin (1HbO) and deoxyhemoglobin (1HbR) in
the cerebral cortex (Boas et al., 2014; Hong et al., 2014; Zafar
and Hong, 2018). fNIRS is known for its portability, non-
invasiveness, low cost, and high temporal resolution (compared
with fMRI) (Ferrari and Quaresima, 2012; Hong and Santosa,
2016; Pinti et al., 2018). Recently, the possibility of improving
the spatial and temporal resolutions using a bundled-optodes
configuration and the initial dip was demonstrated in the process
of brain-computer-interfaces (Nguyen and Hong, 2016; Zafar
and Hong, 2017; Hong and Zafar, 2018). Therefore, fNIRS has

distinct advantages over other modalities (Ghafoor et al., 2017;
Yap et al., 2017).

The difficulty in diagnosing the causes of diseases has a severe
frustration on patients if they do not receive an appropriate care
in a timely manner. Therefore, robust and sensitive biomarkers
for a prompt monitoring of cognitive or biological changes
between healthy elderly and MCI patients is required (Nestor
et al., 2004). A number of studies have examined the feasibility
of using fNIRS to diagnose MCI and other types of dementia
using different biomarkers (Niu et al., 2013; Katzorke et al., 2017,
2018; Perpetuini et al., 2017; Vermeij et al., 2017; Yap et al., 2017;
Halliday et al., 2018; Stuart et al., 2018). Appropriate biomarkers
may provide a reliable diagnosis for patients with MCI before the
onset of AD. Table 1 lists the existing biomarkers examined in the
previous fNIRS studies.

As shown in Table 1, there are a number of studies that have
applied different mental tasks in various brain regions to assess
meaningful biomarkers. Li R. et al. (2018) asked the subjects
to perform a cognitive task (digit verbal span task) while brain
signals were measured from the frontal and bilateral lobes. The
results showed that the mean value of 1HbO (i.e., MHbO)
and the slope of 1HbO (i.e., SHbO) were higher in healthy
control (HC) than the MCI group during the time window
of 3–12 s. Katzorke et al. (2018) also evaluated the biomarker
of MHbO and the mean value of 1HbR (i.e., MHbR) when
the subjects performed a verbal fluency task (VFT). A slight
decrease in the hemodynamic response was observed in the
inferior frontotemporal cortex in the MCI group. Some of
the studies have employed a quantitative analysis of multiscale
entropy: The results demonstrated that the resting-state brain
signal complexity was decreased in the MCI group (Perpetuini
et al., 2017; Li X. et al., 2018). Yap et al. (2017) employed
biomarkers such as active channels, MHbO, time response of
1HbO to reach the peak, and SHbO for detecting a patient
with MCI or AD. The results illustrated that MCI exhibited a
greater mean activation (than AD and HC) for both the right
and left prefrontal cortex (PFC) when the subjects performed
VFT (see Figure 5B). The results using the time to reach the
peak and SHbO presented a meaningful difference between
the left and right PFC (see Figures 5C,D). The biomarker of
using activated channels did not show a significant difference
among various brain regions. The authors also claimed that the
difference in the hemoglobin responses in the left and right
PFC was caused by neural compensation, and that the capacity
for such neural compensation was inversely proportional to the
severity of neurodegeneration (Price and Friston, 2002). Figure 1
summarizes the existing biomarkers, categories of mental tasks,
and brain regions that have been used in the fNIRS studies for
diagnosing the patients with MCI.

Even there exist a number of biomarkers in the fNIRS area as
in Table 1. Most of the studies prefer to conduct the statistical
analysis for seeking the group difference between the MCI and
HC. However, the high standard deviations (SD) illustrate that
the method of using statistical analysis is not useful in establishing
a confident diagnosis of individual patients for clinical purposes
(Labaer, 2005). To the best of authors’ knowledge, there is
no result on the evaluation the existing biomarkers, brain
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TABLE 1 | List of fNIRS biomarkers, mental tasks, and brain regions used in various studies.

No. Author (Year) Biomarkers Mental Task Brain Region

1 Li R. et al., 2018 Mean, Slope of 1HbO Digital verbal span Frontal and bilateral parietal

2 Jung et al., 2018 Clinical assessment Working memory Prefrontal

3 Katzorke et al., 2018 Mean 1HbO Verbal fluency Prefrontal

4 Li X. et al., 2018 Multi-scale entropy Resting state All scalp

5 Perpetuini et al., 2017 Entropy Working memory Prefrontal

6 Yap et al., 2017 No. active chs., Mean, Slope, Peak time Verbal fluency Prefrontal

7 Katzorke et al., 2017 Mean 1HbO Verbal fluency Inferior frontal

8 Vermeij et al., 2017 Mean 1HbO, Mean 1HbR Working memory Prefrontal

9 Marmarelis et al., 2017 Cerebral autoregulation Resting state Prefrontal

10 Uemura et al., 2016 Mean 1HbO Memory retrieval Prefrontal

11 Yeung et al., 2016b Mean 1HbO Working memory Frontal and temporal

12 Yeung et al., 2016a Mean 1HbO of active channels Category fluency Prefrontal

13 Haworth et al., 2016 Reaction time Trail making None

14 Heinzel et al., 2013 Mean 1HbO Verbal fluency Frontal and bilateral parietal

15 Doi et al., 2015 Mean 1HbO Dual-task walking Prefrontal

16 Niu et al., 2013 Mean and t-map of 1HbO Working memory Frontal and Temporal

17 Arai et al., 2006 Mean 1HbO Verbal fluency Frontal and bilateral parietal

FIGURE 1 | Summary of widely used biomarkers, categories of mental tasks, and brain regions used in various fNIRS studies for diagnosing of MCI patients (the
total number of fNIRS articles was 17).

regions, and time durations. Cotelli et al. (2008) and Park
and Reuter-Lorenz (2009) suggested the right PFC as one of
the functional compensatory regions in cognitively impaired
individuals. Additionally, the selection of a proper biomarker will
directly influence the results on classification and diagnosis of the
disease. Therefore, the evaluation of the digital biomarkers, brain
regions, and time intervals in obtaining biomarkers is necessary,
and it would become a reference for the future research.

In this study, we investigate 15 digital biomarkers and 2 image
biomarkers generated from the fNIRS hemodynamic responses
for 15 MCI patients and 9 HC. The digital biomarkers take
the form of mean, slope, peak, skewness, and kurtosis for a
certain interval of time, and the two image biomarkers include
t-map and correlation map. Finally, a conclusive result suggesting
how to combine a biomarker and a classification method will
be demonstrated, which turns out to be the combination of
t-map and CNN classification. In the study, the used headset
in Figure 2 covers the entire PFC (i.e., left PFC, middle PFC,
and right PFC) making 204 channels. However, only 48 channels
with sufficient emitter-detector distances (3 cm) are utilized.

The performed three mental tasks include the N-back task,
Stroop task, and VFT.

MATERIALS AND METHODS

Participants
Twenty-four volunteers, who were right-handed and were
able to communicate in Korean, were chosen for this study,
comprising of fifteen patients with MCI (1 male and 14 females)
and nine HC (2 males and 7 females) of similar age and
educational background. MCI patients were recruited from
the Pusan National University Hospital, Busan, Republic of
Korea. The HC were selected from the local community on a
voluntary basis. In addition, the mental state of each subject
was examined using a Korean-Mini-Mental State Examination
(K-MMSE), which is a 30-points questionnaire providing a
quantitative measure of cognitive impairment (Han et al., 2008).
The demographic information for all the volunteers including
age (mean ± SD), gender, education background (mean ± SD),
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FIGURE 2 | The configuration of the headset employed during the experiment, which consists of 24 emitters and 32 detectors (left) and the channels used in this
paper (right).

K-MMSE scores (mean ± SD), and statistical information are
summarized in Table 2. This experiment was conducted in
accordance with the latest Declaration of Helsinki upon the
approval of the Pusan National University Institutional Review
Board (General Assembly of the World Medical Association,
2014). All volunteers were given a detailed description of the
experimental procedure prior to the beginning of the experiment,
and they provided written consent agreeing to the experiments.

Channel Configuration
In this study, a near-infrared multi-channel continuous wave
system (NIRSIT, OBELAB Inc., Rep. of Korea) with 8.138 Hz
sampling rate was employed to measure the brain signals via
24 emitters and 32 detectors. The device has an active detection
sensor with a total capacity of 204 channels out of which 48
channels were used in this study, which covered the entire PFC
area. Channel 1 to channel 16 were placed in the right PFC,
channel 17 to channel 32 in the middle PFC, and channel 33
to channel 48 in the left PFC. Figure 2 shows the locations
of emitters and detectors with a reference point FPz (left) and
the 48 channels in this study (right). The wavelengths used for
detecting two chromophores (HbO, HbR) were 780 and 850 nm,

TABLE 2 | The demographic information of all participants.

Characteristics MCI (n = 15) HC (n = 9) p-value

Gender (Male/Female) 1/14 2/7 0.44

Education [years] 11.2 (±4.81) 10.56 (±2.88) 0.36

Age [years] 69.27 (±7.09) 68.33 (±4.69) 0.36

K-MMSE Score 25.13 (±2.33) 27.22 (±1.98) 0.49

K-MMSE, Korea Mini-Mental State Examination.

respectively. As reported in Strangman et al. (2013), fNIRS is
more sensitive to the gray matter and even a large source detector
separation (up to ∼4.5 cm) can be used. Considering the spatial
resolution and the differential path length factors into account,
the pairs having the source detector distance of 3 cm were used.

Experimental Paradigm
Participants seated on a comfortable chair and were instructed
to avoid movement as much as possible. First, all subjects took
a 10 min resting state. Subjects in each group participated in
three sessions, which consisted of the N-back task, Stroop task,
and semantic VFT. Each task took 60 s and was performed
three times with a 30 s rest between tasks. Figure 3 illustrates
the experimental paradigm for all three tasks. The N-back task
evaluates the working memory (Kane et al., 2007) and, in our
study, a two-back task was performed and one-digit numbers
between 1–9 were displayed on the monitor. The subjects were
asked to press the keyboard when the current number on
the display matched the second-last number displayed before.
The Stroop test is a measurement of widely used executive
function and is known as a measurement of mental control
and response flexibility. The Stroop task requires new reactions
while suppressing the dominant response, such as letter reading
conditions and color reading conditions, etc. In this study,
the Korean-Color Word Stroop test (K-CWST) was used. The
subjects were requested to read the color of letters when letters
were written in red, blue, yellow, and black colors within a limited
time (Byeon et al., 2017). The semantic VFT is a task to generate
as many words (related to the given semantic category) as possible
within a limited time (Whiteside et al., 2016). The task measures
how much information can be retrieved from the categorization
and memory repository of text for 1 min.
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FIGURE 3 | The experiment paradigms: Three tasks (N-back, Stroop, and verbal fluency) having three trials.

Data Pre-processing
The fNIRS data were pre-processed and analyzed for each
subject using MATLABTM. The optical intensity signals were first
transformed into the time series of HbO and HbR concentration
changes using the modified Beer-Lambert law (MBLL) (Sassaroli
and Fantini, 2004). The data were digitally bandpass-filtered to
remove the physiological noises (respiration, cardiac activity,
and low-frequency drift signals): For this, two fourth-order
Butterworth filters (low and high-pass) with cutoff frequencies of
0.1 and 0.001 Hz, respectively, were used to filter off the noises
from the converted hemodynamic signals (Khan and Hong, 2015,
2017). In this study, we analyzed both 1HbO and 1HbR signals
for the evaluation of biomarkers, even though HbO signals are
robust and more sensitive.

The previous comparison study between MCI and HC
investigated by Li R. et al. (2018) indicated that utilizing the
region of interest (ROI) strategy could provide the satisfying
results with the averaged means and slope changes of 1HbO. In
this study, we implemented two strategies to identify the ROI;
(i) t-value analysis and (ii) visual inspection (Privitera and Stark,
2000). In the first case, the active channels (i.e., t > 1.6469 and
p-value < 0.05) were selected by using the MATLABTM function
(robustfit), which becomes the ROI. In the second case, all the
HbO signals were inspected visually, and those signals having the
desired pattern were selected manually (i.e., visual inspection).

Feature Extraction
Diverse biomarkers were evaluated, as a possible candidate, for
an early identification of MCI. The considered digital biomarkers
include the MHbO, SHbO, MHbR, SHbR, time to peak in the
hemodynamic response, skewness, and kurtosis. In addition. we
considered two image biomarkers: The t-map of all the channels
and the correlation map of all the channels.

Digital Biomarkers
The HbO mean value change between the rest and task periods is
represented as follows.

MHbO =
Avg(1HbOt=t1:t2)− Avg(1HbOt=−10:0)

Avg(1HbOt=−10:0)
(1)

where t1 and t2 are the starting and ending time in the selected
time window, t = −10 indicates 10 s before the onset time, and
t = 0 is the onset time of the task execution. The mean change of
HbR concentration is computed as follows.

MHbR =
Avg(1HbRt=t1:t2)− Avg(1HbRt=−10:0)

Avg(1HbRt=−10:0)
(2)

We employed the polyfit function in MATLABTM to calculate
the slope of HbO (i.e., SHbO) and the slope of HbR change
(i.e., SHbR). The location of the peak, skewness, and kurtosis
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were conducted by using MATLABTM functions of findpeaks,
skewness, and kurtosis, respectively.

Activation Map (t-Map)
To quantify cortical hemodynamic activities during the mental
tasks, the general linear model (GLM, a model-based statistical
analysis tool) was utilized (Pinti et al., 2017; Salis-Perales
and Barajas-Ramirz, 2017). In GLM, the desired hemodynamic
response function (dHRF) is used to serve as a reference to
estimate the changes in HbO signals (Yennu et al., 2016). The
formula is as follows:

z(t) = βf (t)+ ε (3)

f (t) = h(t)⊗ s(t) (4)

where z(t) represents the temporal profile of the measured 1HbO
or 1HbR, β is the estimated amplitude of 1HbO/1HbR, and
ε represents the residual owing to the difference between the
measured signals and the predicted model. f (t) is the stimulation-
specific predicated response, which is expected to match the
temporal profiles of the measured hemodynamic signal (i.e.,
dHRF); h(t) represent the canonical hemodynamic response
function, and s(t) is the stimulation-specific boxcar function for
a given task. Thus, after fitting equation (3), a statistical t-value
representing a statistical significance of the brain activation with
respect to the baseline at each respective channel was obtained.
Moreover, the t-values were derived from robustfit for individual
channels and were used to generate the t-map for a topographic
image (Liu and Hong, 2017).

Channel-by-Channel Correlation Map
Comparing to fMRI, fNIRS has a significant advantage in
temporal resolution. This advantage could provide convenience
for investigating the functional connectivity of the prefrontal lobe
by exploiting the temporal correlations channel by channel (Tak
and Ye, 2014). The correlation map was calculated by using the
MATLABTM correlation function (corr).

Classification
In this study, the digital biomarkers were classified using the
linear discriminant analysis (LDA) (Naseer et al., 2016) available
as classify function in MATLABTM. The tenfold cross validation
method was used to estimate the classification performance of the
predictive LDA model. The sample size in analyzing each digital
biomarker becomes the number of subjects× the number of trials
× the number channels in the ROI. The convolutional neural
network (CNN) was utilized to conduct the classification of
image biomarkers. CNN is highly capable of learning appropriate
features automatically from the input data by optimizing the
weight parameters in individual layer by using forward and
backward propagation to minimize classification errors (Ding
et al., 2017; Hamadache and Lee, 2017; Kim et al., 2017; Moon
et al., 2018; Trakoolwilaiwan et al., 2019). The networks in
this paper consist of four layers, including two convolutional
layers and two fully connected layers. In the convolutional layers,
a convolutional filter whose width is equal to the dimension
of the input, and the kernel size of h is convolved with the

input data, where the output of the i’th filter is represented
as follows.

outputi = w · x[i : i+ h− 1] (5)

f (outputi) = ReLU(outputi) (6)

ReLU(x) = Max(o, x) (7)

where w is the weights of the matrix and x[i:j] is the
submatrix of the input from row i to j. Then the output
of the first convolutional layer f (output) is converted by
an activation function ReLU(x) to build the feature map. To
enhance the performance, additional subsampling operation,
max-pooling, and dropout (avoiding overfitting) are employed
in this subsampling layer. To obtain an appropriate predictive
model, the hyper-parameters such as the learning rate, batch
size, and the number of epochs should be considered. In our
study, the size of input data was 48 × 48. To maintain the
original feature completely, we set up the batch size by 4. The
grid search (Ou et al., 2019) and Adam optimization algorithm
(β1 = 0.9, β2 = 0.1, and ε = 10−8; Tang et al., 2019) were
utilized to choose the learning rate and the parameters in gradient
descent optimization.

RESULTS

Comparison of Hemodynamic
Responses
Figure 4 shows the hemodynamic responses of 1HbO from
three brain regions (i.e., right, middle, and left PFC) of MCI
patients and HC for three mental tasks (i.e., N-back task, Stroop
task, and VFT). The purpose behind this strategy is to observe
any visual differences between the MCI patients and HC. The
figures plot the average HbOs of individual groups. MCI Patients
are denoted by red color, whereas the corresponding SDs are
shown with red shadows. HC are marked with blue color with
its respective shadow in blue showing the SD. In the left brain
region, the averaged concentration change of HbO for HC group
is higher than that of MCI group in all three mental tasks.
In addition, HC shows an earlier increase than MCI patients.
But the middle and right PFCs do not show such a significant
difference between two groups. The plots reveal that the brain
regions have unique patterns of 1HbO fluctuations. However,
the averaged hemodynamic responses cannot tell the existence
of improvement in cognition for the MCI patients, since their
SDs were too large. Thus, the examination of the hemodynamic
responses of 1HbO is not sufficient to distinguish an individual
from MCI or HC group. This leads us to the second technique, in
which we will evaluate the digital biomarkers at using appropriate
time intervals for statistical analysis.

Statistical Analysis of Digital Biomarkers
To evaluate the digital biomarkers such as MHbO/MHbR,
SHbO/SHbR, peak location, skewness, and kurtosis for the
hemodynamic responses, we divided the PFC into three areas
(i.e., left, middle and right PFC) and applied different time
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FIGURE 4 | The average HbOs in three brain regions (left, middle, and right PFCs) of MCI patients and HC after performing three mental tasks.

intervals for three mental tasks (i.e., N-back, Stroop and VFT),
respectively. The statistical values of all the biomarkers obtained
from the ROI channels (t > 1.6469) for three mental tasks
are shown in Tables 3–5. Tables 6–8 present the statistical
information of the biomarkers obtained from those channels
selected by visual inspection. In this study, the task duration was
set to 60 s. This is to see where the MCI patients can focus on
the verbal fluency task for a somewhat long time period of time.
Also, for comparison purposes, the task durations for N-back and
Stroop tasks were to 60 s as well. The reason, why we considered
the time period between 5 and 65 s, was due to the time delay
(3–5 s) of the hemodynamic response (Naseer and Hong, 2015).
The time interval of 5–25 s was selected since the initial peak
time for hemodynamic response is nearly located in the first 20 s
period. The slope features (i.e., SHbO/SHbR) were considered
from three intervals of the hemodynamic response: First, the
initial increasing interval of 1HbO (i.e., from 5 to 15 s), the
plateau period of 1HbO during the task (i.e., from 20 to 60 s),
and the final decreasing interval of 1HbO (i.e., from 60 to 70 s).
We expect that the MCI patients would have a light decline of
1HbO during the second interval while performing the mental

tasks if they cannot focus on the tasks, as seen in Figure 4. The
time to peak (i.e., from 0 to the peak time) is to see when the peak
value of the hemodynamic response occurs owing to the provided
stimulation. Lastly, two biomarkers, skewness (from 5 to 65 s) and
kurtosis (from 5 to 65 s) are to examine whether the overall profile
of the hemodynamic responses of a MCI patient is different from
that of HC. The entire biomarkers are summarized as follows.

Biomarker 1: MHbO in the interval of 5∼65 s
Biomarker 2: MHbR in the interval of 5∼65 s
Biomarker 3: MHbO in the interval of 5∼25 s
Biomarker 4: MHbR in the interval of 5∼25 s
Biomarker 5: MHbO in the interval of 0 – Peak
Biomarker 6: SHbO from 5 to 15 s
Biomarker 7: SHbR from 5 to 15 s
Biomarker 8: SHbO from 20 to 60 s
Biomarker 9: SHbR from 20 to 60 s
Biomarker 10: SHbO from 60 to 70 s
Biomarker 11: SHbR from 60 to 70 s
Biomarker 12: SHbO from 0 to the peak
Biomarker 13: Peak time of 1HbO
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TABLE 3 | Statistical data of N-back task (based upon ROI channels).

Biomarkers Left PFC Middle PFC Right PFC

Avg. SD p-value Avg. SD p-value Avg. SD p-value

MHbO (5–65 s) MCI 7.35e−07 4.80e−06 0.1511 1.29e−07 2.61e−06 0.3811 7.88e−07 2.92e−06 0.0211

HC 4.37e−07 2.05e−06 8.25e−08 1.11e−06 4.59e−07 1.08e−06

MHbR (5–65 s) MCI −2.56e−08 8.90e−07 0.6407 −6.60e−08 3.55e−07 0.9996 −1.69e−08 9.69e−07 0.0868

HC −1.18e−08 3.96e−07 −1.08e−08 2.00e−07 −7.02e−08 3.12e−07

MHbO (5–25 s) MCI 7.24e−07 3.67e−06 0.4381 3.01e−07 2.45e−06 0.4697 7.65e−07 2.91e−06 0.0491

HC 6.87e−07 1.89e−06 2.90e−07 1.01e−06 5.06e−07 8.85e−07

MHbR (5–25 s) MCI 2.14e−08 1.33e−06 0.1062 −4.67e−08 5.53e−07 0.9690 8.33e−08 1.56e−06 0.0148

HC −5.17e−08 6.46e−07 5.10e−09 3.85e−07 −5.56e−08 5.39e−07

MHbO (0–Peak seconds) MCI 4.36e−07 5.61e−06 0.7752 2.32e−07 2.16e−06 0.6413 5.54e−07 2.41e−06 0.1252

HC 5.61e−07 1.76e−06 2.75e−07 7.42e−07 4.08e−07 6.28e−07

SHbO (5–15 s) MCI 8.03e−09 6.11e−08 0.1840 2.33e−09 2.18e−08 0.6180 8.16e−09 4.52e−08 0.0283

HC 4.55e−09 3.11e−08 2.77e−09 1.30e−08 3.50e−09 1.42e−08

SHbR (5–15 s) MCI −1.09e−09 3.88e−08 0.3311 −2.43e−10 1.30e−08 0.3528 1.33e−09 4.40e−08 0.1437

HC −1.91e−09 2.49e−08 −4.61e−10 6.51e−09 −5.00e−10 1.06e−08

SHbO (20–60 s) MCI −1.63e−09 1.46e−08 0.3163 −1.44e−09 3.51e−09 0.4562 −1.35e−09 1.28e−08 0.8269

HC −2.07e−09 7.31e−09 −1.20e−09 3.74e−09 −6.80e−10 4.88e−09

SHbR (20–60 s) MCI 4.29e−10 1.11e−08 0.4641 1.32e−10 2.45e−09 0.2921 −3.01e−10 1.24e−08 0.7714

HC 3.88e−10 3.84e−09 1.22e−11 4.13e−09 7.21e−11 3.94e−09

SHbO (60–70 s) MCI −1.68e−08 1.07e−07 0.4975 −1.13e−08 2.57e−08 0.0842 −1.84e−08 6.49e−08 0.8426

HC −1.69e−08 3.62e−08 −1.39e−08 1.96e−08 −1.49e−08 2.29e−08

SHbR (60–70 s) MCI 1.50e−09 8.36e−08 0.3460 2.44e−09 2.96e−08 0.0605 −6.23e−10 6.01e−08 0.7577

HC 5.73e−11 3.96e−08 1.81e−10 1.97e−08 1.13e−09 2.31e−08

SHbO (0–Peak seconds) MCI 1.81e−08 6.91e−08 0.2161 8.80e−09 2.65e−08 0.0842 1.97e−08 5.82e−08 0.0011

HC 1.46e−08 3.75e−08 9.16e−09 1.58e−08 1.03e−08 1.51e−08

Peak time (seconds) MCI 1.50e+01 5.62e+00 0.8265 1.47e+01 4.93e+00 0.0245 1.56e+01 5.36e+00 0.1738

HC 1.51e+01 5.36e+00 1.38e+01 5.53e+00 1.50e+01 5.36e+00

Skewness MCI −8.02e−02 6.42e−01 0.3731 −1.05e−01 6.65e−01 0.5418 −1.66e−01 6.45e−01 0.0015

HC −1.01e−01 7.61e−01 −9.73e−02 8.99e−01 −3.52e−01 8.40e−01

Kurtosis MCI 2.26e+00 9.64e−01 0.4155 2.18e+00 8.96e−01 0.5462 2.19e+00 7.74e−01 0.9987

HC 2.33e+00 9.81e−01 2.23e+00 8.77e−01 2.40e+00 8.70e−01

Biomarker 14: Skewness of 1HbO for the duration of 5 – 65 s
Biomarker 15: Kurtosis of 1HbO for the duration of 5 – 65 s

This study employed two-sample independent t-test to
conduct the statistical analysis with the significance level of 0.05.
The p-value lower than 0.05 indicates the existence of significance
difference between two groups. As demonstrated in Tables 3–8,
the biomarkers with p-value < 0.05 are considered as ones with
significant differences between the MCI and HC groups, which
are marked bold. The appearance of significant biomarkers was
random. It is remarked that the obtained biomarkers were not
repeated for all three tasks or brain regions. Only Biomarker 14
(skewness) revealed a significant difference for all three brain
regions when performing the Stroop task in the case of ROI
channels, see Table 4. Although a few biomarkers showed some
difference (similarly to Section “Comparison of Hemodynamic
Responses”), the group statistical analysis was difficult to permit
a meaningful diagnostic result for the individuals. This leads to
our third strategy, Section “Classification of Digital Biomarkers”:
Evaluating the individual classification accuracy using digital
biomarkers for three mental tasks and different brain regions.

Classification of Digital Biomarkers
The selection of the time intervals for Biomarkers 1–15 has
already been discussed in Section “Statistical Analysis of Digital
Biomarkers.” Figure 5 depicts the entire classification accuracies
between MCI and HC based upon ROI channels for (i) three
mental tasks, (ii) three brain regions, and (iii) fifteen biomarkers.
LDA was used as a classifier. On the other hand, for the channels
manually selected, Figure 6 shows the comparative data for
Figure 5. In agreement with the previous results (Yap et al.,
2017), 1HbO shows better classification results compared to
1HbR (see Biomarkers 1 and 2 of N-back and Stoop tasks
in Figures 5A,B). Therefore, in the case of manually selected
channels, the analysis of 1HbR is omitted and only 1HbO
is focused. Surprisingly, Biomarker 1 in the middle PFC when
channels were selected manually showed the higher classification
result than the case of ROI channels. It is remarked that the
biomarkers showing significant difference in Tables 3–8 are not
necessarily going to have the same satisfactory classification
results with LDA: For instance, Biomarkers 6 and 10 showed a
good classification results in Table 6, but it is not so in Figure 6A.
Even though the best accuracy of 76.67% (i.e., Biomarker 11 of
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TABLE 4 | Statistical data of Stroop task (based upon ROI channels).

Biomarkers Left PFC Middle PFC Right PFC

Avg. SD p-value Avg. SD p-value Avg. SD p-value

MHbO (5–65 s) MCI 8.43e−07 3.65e−06 0.5778 4.15e−07 2.44e−06 0.0644 9.03e−07 3.51e−06 0.3884

HC 9.26e−07 4.72e−06 8.50e−07 2.43e−06 8.30e−07 2.78e−06

MHbR (5–65 s) MCI 3.96e−07 9.66e−07 0.9089 2.06e−07 4.42e−07 0.1575 3.98e−07 8.00e−07 0.1772

HC 4.07e−07 9.07e−07 2.65e−07 4.45e−07 3.32e−07 6.49e−07

MHbO (5–25 s) MCI 1.05e−06 3.47e−06 0.6053 7.23e−07 2.41e−06 0.0298 1.21e−06 3.97e−06 0.1971

HC 1.16e−06 4.89e−06 1.21e−06 2.15e−06 9.85e−07 2.39e−06

MHbR (5–25 s) MCI 2.49e−07 1.36e−06 0.7795 1.70e−07 5.45e−07 0.5652 2.90e−07 1.21e−06 0.1860

HC 3.37e−07 1.05e−06 1.99e−07 4.88e−07 2.08e−07 6.92e−07

MHbO (0–Peak seconds) MCI 9.37e−07 2.99e−06 0.3400 5.44e−07 1.71e−06 0.0057 8.78e−07 3.13e−06 0.3101

HC 8.00e−07 3.63e−06 9.78e−07 1.39e−06 7.80e−07 1.77e−06

SHbO (5–15 s) MCI 3.27e−09 5.52e−08 0.9798 6.83e−09 2.78e−08 0.0919 1.81e−08 9.39e−08 0.0083

HC 1.16e−08 3.37e−08 4.03e−09 1.87e−08 6.03e−09 2.06e−08

SHbR (5–15 s) MCI 8.57e−09 4.05e−08 0.0344 1.98e−09 1.54e−08 0.1172 1.49e−08 9.84e−08 0.0192

HC 3.10e−09 2.37e−08 −4.08e−10 1.70e−08 2.39e−09 1.51e−08

SHbO (20–60 s) MCI −1.33e−09 9.82e−09 0.1610 −2.08e−09 6.75e−09 0.6976 −1.82e−09 1.71e−08 0.9298

HC 2.04e−11 1.04e−08 −1.81e−09 4.44e−09 −4.28e−10 5.18e−09

SHbR (20–60 s) MCI 3.37e−10 8.87e−09 0.8996 −8.35e−11 2.48e−09 0.0149 5.42e−10 9.60e−09 0.2607

HC 2.33e−10 7.89e−09 4.84e−10 2.46e−09 1.19e−10 4.00e−09

SHbO (60–70 s) MCI −3.14e−08 1.01e−07 0.0045 −3.04e−08 7.63e−08 0.0061 −2.70e−08 9.68e−08 0.0029

HC −6.23e−08 1.32e−07 −5.83e−08 1.27e−07 −5.13e−08 1.10e−07

SHbR (60–70 s) MCI −2.22e−08 7.17e−08 0.7094 −7.05e−09 1.71e−08 0.0014 −2.18e−08 6.91e−08 0.8339

HC −1.88e−08 5.78e−08 −1.40e−08 2.93e−08 −1.65e−08 4.36e−08

SHbO (0–Peak seconds) MCI 2.69e−08 7.96e−08 0.0859 1.37e−08 4.30e−08 0.9788 2.81e−08 7.13e−08 0.0008

HC 1.87e−08 5.08e−08 2.08e−08 3.32e−08 1.48e−08 3.07e−08

Peak time (seconds) MCI 1.41e+01 5.80e+00 0.0775 1.51e+01 5.85e+00 0.9238 1.47e+01 5.60e+00 0.2485

HC 1.50e+01 5.21e+00 1.52e+01 6.43e+00 1.52e+01 5.76e+00

Skewness MCI −1.36e−01 8.97e−01 0.0045 −6.57e−02 8.64e−01 0.0032 −3.61e−02 8.88e−01 0.0002

HC −4.06e−01 1.14e+00 −3.53e−01 1.17e+00 −3.43e−01 1.13e+00

Kurtosis MCI 2.48e+00 1.06e+00 0.9423 2.48e+00 1.07e+00 0.6990 2.52e+00 1.17e+00 0.3557

HC 2.67e+00 1.26e+00 2.44e+00 1.06e+00 2.43e+00 1.15e+00

N-back task and Biomarker 10 of Stroop task) was achieved by
using LDA, it is still considered low to be implemented for clinical
applications. As previously mentioned, these 15 biomarkers were
chosen based on the existing studies and our own experiences.
But, the low classification result using LDA necessitates a further
pursuit toward a reliable biomarker for MCI patients based on
the hemodynamic response. We therefore consider using the
whole or selected hemodynamic responses in combination with
a machine learning method, CNN.

CNN Classification of Hemodynamic
Responses
In this section, we investigate the CNN method for automatic
learning of the useful features from the hemodynamic responses
between MCI and HC. We regard that most of the valuable
features appearing in the digital biomarkers are already contained
in the non-linear feature form in the CNN model. As
demonstrated in Figure 7, the CNN classification results trained
by the concentration changes of the 1HbO of the N-back
task show approximately similar accuracies in the three brain
regions (i.e., whole PFC: 64.21%, right PFC: 72.46%, and middle

PFC 74.03%) except for the left PFC, which has the lowest
accuracy than other regions. The classification accuracies with
the Stroop task ranged from a minimum of 73.36% (right PFC)
to a maximum of 75.77% (left PFC). In the VFT case, the
middle PFC obtained a good classification accuracy (78.94%) in
comparison to the whole PFC, left PFC, and right PFC. The
classification accuracies were improved in comparison to the
LDA results obtained by the digital biomarkers. Even the best
accuracy in the case of CNN results trained by hemodynamic
response was nearly 80% (i.e., 78.94% in Figure 7C), the potential
to increase the accuracy still exists. To push the boundary
for a better classification accuracy, we employ the t-map and
the correlation map as biomarkers for classifying the MCI
patients from HC.

CNN Classification Results of Imaging
Biomarkers
The t-map and correlation map are widely used as an image
biomarker in the field of fMRI. Figure 8 shows the group
averaged t-maps of three mental tasks. The numbers shown in
Figure 8 represent the channel numbers on the PFC. The top
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TABLE 5 | Statistical data of VFT (based upon ROI channels).

Biomarkers Left PFC Middle PFC Right PFC

Avg. SD p-value Avg. SD p-value Avg. SD p-value

MHbO (5–65 s) MCI 9.54e−07 4.05e−06 0.7156 3.04e−06 3.04e−06 0.8332 1.34e−06 5.09e−06 0.6294

HC 1.09e−06 2.06e−06 1.04e−06 2.39e−06 1.43e−06 2.09e−06

MHbR (5–65 s) MCI 3.52e−07 9.62e−07 0.0032 1.55e−07 4.80e−07 0.0907 3.10e−07 8.44e−07 0.0000

HC 1.75e−07 3.74e−07 1.08e−07 2.45e−07 1.03e−07 2.39e−07

MHbO (5–25 s) MCI 9.27e−07 3.21e−06 0.8961 3.07e−06 3.07e−06 0.9405 1.29e−06 5.49e−06 0.6196

HC 1.20e−06 2.37e−06 1.21e−06 2.49e−06 1.39e−06 1.85e−06

MHbR (5–25 s) MCI 2.65e−07 1.38e−06 0.5851 2.23e−07 8.54e−07 0.2009 3.34e−07 1.82e−06 0.1186

HC 2.87e−07 7.17e−07 1.73e−07 3.87e−07 1.98e−07 5.84e−07

MHbO (0–Peak seconds) MCI 7.63e−07 2.59e−06 0.6852 2.63e−06 2.63e−06 0.7594 7.56e−07 4.85e−06 0.8759

HC 8.44e−07 1.78e−06 8.40e−07 1.86e−06 1.06e−06 1.53e−06

SHbO (5–15 s) MCI 6.80e−09 1.04e−07 0.6619 5.04e−08 5.04e−08 0.9667 1.93e−08 1.25e−07 0.0393

HC 9.12e−09 2.77e−08 1.12e−08 3.22e−08 7.43e−09 3.61e−08

SHbR (5–15 s) MCI 1.08e−08 5.56e−08 0.0347 3.82e−09 2.71e−08 0.2267 1.58e−09 1.09e−07 0.4574

HC 3.37e−09 2.98e−08 2.37e−09 1.33e−08 8.90e−10 1.30e−08

SHbO (20–60 s) MCI 8.45e−10 1.26e−08 0.0002 1.12e−08 1.12e−08 0.4277 −1.08e−10 2.02e−08 0.1714

HC −1.92e−09 7.42e−09 −1.70e−09 4.83e−09 −1.15e−09 6.04e−09

SHbR (20–60 s) MCI −1.42e−11 1.01e−08 0.0922 −5.89e−10 4.50e−09 0.1039 7.31e−10 1.47e−08 0.044

HC −9.76e−10 5.00e−09 −9.98e−10 2.24e−09 −8.23e−10 3.83e−09

SHbO (60–70 s) MCI −1.65e−08 7.67e−08 0.8321 1.12e−08 4.82e−08 0.429 −2.18e−08 9.44e−08 0.6000

HC −1.22e−08 3.45e−08 −6.72e−09 3.22e−08 −2.04e−08 4.50e−08

SHbR (60–70 s) MCI −1.75e−08 6.75e−08 0.9888 −2.68e−09 1.46e−08 0.1605 −1.01e−08 8.96e−08 0.8797

HC −7.53e−09 2.23e−08 −4.73e−09 1.42e−08 −3.83e−09 1.46e−08

SHbO (0–Peak seconds) MCI 2.41e−08 7.05e−08 0.1679 4.82e−08 3.55e−08 0.9989 4.05e−08 1.25e−07 0.0098

HC 2.02e−08 3.02e−08 2.34e−08 2.68e−08 2.44e−08 3.99e−08

Peak time (seconds) MCI 1.54e+01 5.55e+00 0.3332 5.68e+00 5.68e+00 0.0051 1.56e+01 5.20e+00 0.0624

HC 1.50e+01 5.44e+00 1.40e+01 5.73e+00 1.47e+01 5.66e+00

Skewness MCI −4.01e−02 6.38e−01 0.6858 6.97e−01 6.97e−01 0.9286 −7.38e−02 7.17e−01 0.2114

HC 3.08e−02 6.86e−01 −2.59e−02 7.78e−01 −1.47e−01 7.29e−01

Kurtosis MCI 2.29e+00 9.39e−01 0.3276 2.28e+00 1.08e+00 0.4949 2.29e+00 1.02e+00 0.2745

HC 2.36e+00 9.26e−01 2.28e+00 7.88e−01 2.25e+00 8.25e−01

three figures in Figure 8 (i.e., A–C) present the t-maps generated
by MCI group with the N-back task, Stroop task, and VFT,
respectively, and the lower three maps represent those of HC
(i.e., Figures 8D–F). The results reveal that the activated regions
between MCI patients and HC are different. Figure 9, portrays
the correlation maps of three mental tasks for MCI (Figures 9A–
C) and HC (Figures 9D–F). Finally, the CNN results trained by
t-map and correlation map are compared in Figure 10. All the
CNN results (accuracy) trained by both image biomarkers were
higher than 82.05%, except for the VFT task and t-map (71.59%).
Particularly, the CNN result trained by t-map with the N-back
task showed a highest accuracy of 90.62%.

DISCUSSION

In this paper, our goal is to propose the best biomarker for
diagnosing the MCI patients for clinical usage. For this, 15
digital biomarkers (5 means and 7 slopes of 1HbO/1HbR,
peak time, skewness, kurtosis), three PFC regions, and two
image biomarkers (t-map, correlation map) were investigated

for detecting neural degeneration in the MCI patients. This
study also aims at developing a novel method for diagnosing
the MCI patients from the elderly in their everyday environment
using fNIRS. To the best of the authors’ knowledge, this
is the first work for evaluating the digital biomarkers in
relation to MCI/AD with fNIRS. The obtained results can
become a reference for utilizing appropriate biomarkers for
neural information detection, and may provide a new tool
to diagnose MCI patients in a harmless, non-invasive and
portable manner.

(i) Statistical analysis and individual classification: In Figure 4
and Tables 3–8, the existence of differences of hemodynamic
responses between two groups (MCI, HC) is shown. Most
biomarkers in Tables 3–8 as well as the differences in HbOs
in Figure 4 reveal the existence. This is consistent with the
former studies (Katzorke et al., 2017; Vermeij et al., 2017; Yap
et al., 2017; Li R. et al., 2018). However, the LDA classification
accuracies based up the biomarkers shown in Figure 5 are too
low for clinical applications. That means that the statistical
analysis approach is not reliable for the detection of an MCI
patient clinically. Beyond the current method, a new method
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TABLE 6 | Statistical data of N-back task (manually selected channels).

Biomarkers Left PFC Middle PFC Right PFC

Avg. SD p-value Avg. SD p-value Avg. SD p-value

MHbO (5–65 s) MCI 7.99e−07 6.54e−07 0.0827 6.44e−07 6.76e−07 0.0108 7.78e−07 5.65e−07 0.5999

HC 1.05e−06 6.93e−07 9.70e−07 7.08e−07 8.35e−07 6.62e−07

MHbO (5–25 s) MCI 9.23e−07 6.23e−07 0.7490 8.25e−07 7.61e−07 0.2285 8.16e−07 5.81e−07 0.0047

HC 1.03e−06 9.00e−07 7.03e−07 9.99e−07 4.85e−07 8.46e−07

MHbO (0–Peak seconds) MCI 6.62e−07 4.92e−07 0.9820 8.25e−07 5.20e−07 0.1477 4.94e−07 4.81e−07 0.0056

HC 6.65e−07 7.56e−07 3.64e−07 8.60e−07 2.00e−07 6.65e−07

SHbO (5–15 s) MCI 5.94e−09 8.40e−09 0.0025 8.59e−09 1.20e−08 0.5788 1.06e−08 1.33e−08 0.7049

HC 1.24e−08 1.04e−08 9.79e−09 1.15e−08 9.71e−09 1.29e−08

SHbO (20–60 s) MCI −2.45e−09 2.58e−09 0.4853 −2.52e−09 3.58e−09 0.0002 −2.49e−09 3.82e−09 0.0002

HC −2.48e−09 4.16e−09 3.22e−10 4.40e−09 3.00e−10 4.41e−09

SHbO (60–70 s) MCI −6.43e−09 1.41e−08 0.0128 −8.51e−09 1.75e−08 0.0040 −7.55e−09 1.46e−08 0.7138

HC −1.58e−08 1.90e−08 −1.83e−08 1.91e−08 −5.36e−09 2.86e−08

SHbO (0–Peak seconds) MCI 1.28e−08 1.09e−08 0.7124 1.29e−08 9.43e−09 0.4330 1.29e−08 8.34e−09 0.1379

HC 1.20e−08 8.63e−09 1.15e−08 9.47e−09 1.04e−08 1.01e−08

Peak time (seconds) MCI 1.65e+01 5.07e+00 0.1711 1.62e+01 4.90e+00 0.5788 1.61e+01 5.16e+00 0.2327

HC 1.79e+01 4.83e+00 1.66e+01 5.36e+00 1.72e+01 5.03e+00

Skewness MCI −8.92e−02 6.39e−01 0.6745 −9.64e−02 6.60e−01 0.1374 −7.30e−02 6.90e−01 0.0067

HC −3.88e−02 4.93e−01 −2.95e−01 7.98e−01 −4.37e−01 7.91e−01

Kurtosis MCI 2.28e+00 9.35e−01 0.3903 2.26e+00 1.05e+00 0.0121 2.32e+00 8.19e−01 0.7654

HC 2.46e+00 9.53e−01 2.73e+00 9.78e−01 2.44e+00 1.06e+00

TABLE 7 | Statistical data of Stroop task (manually selected channels).

Biomarkers Left PFC Middle PFC Right PFC

Avg. SD p-value Avg. SD p-value Avg. SD p-value

MHbO (5–65 s) MCI 1.40e−06 1.33e−06 0.0129 1.60e−06 1.39e−06 0.6469 1.68e−06 1.23e−06 0.5993

HC 2.27e−06 1.29e−06 1.75e−06 1.44e−06 1.52e−06 1.24e−06

MHbO (5–25 s) MCI 1.27e−06 8.05e−07 0.9999 2.00e−06 1.50e−06 0.7069 2.10e−06 1.29e−06 0.2326

HC 2.47e−06 1.42e−06 2.13e−06 1.48e−06 1.76e−06 1.10e−06

MHbO (0–Peak seconds) MCI 9.21e−07 6.42e−07 0.0009 1.42e−06 1.04e−06 0.7069 1.46e−06 9.74e−07 0.2140

HC 1.67e−06 1.01e−06 1.51e−06 1.08e−06 1.20e−06 8.01e−07

SHbO (5–15 s) MCI 1.27e−08 1.38e−08 0.0555 2.13e−08 1.85e−08 0.9113 1.97e−08 1.75e−08 0.3121

HC 1.99e−08 1.47e−08 2.09e−08 1.53e−08 1.81e−08 1.22e−08

SHbO (20–60 s) MCI −9.36e−10 4.49e−09 0.3268 −3.66e−09 3.27e−09 0.1450 −3.00e−09 3.49e−09 0.9623

HC 7.47e−11 3.22e−09 −2.64e−09 2.50e−09 −1.81e−09 2.25e−09

SHbO (60–70 s) MCI −8.95e−09 2.01e−08 0.0000 −2.19e−08 3.76e−08 0.0471 −1.17e−08 1.82e−08 0.0001

HC −3.98e−08 1.74e−08 −3.27e−08 2.05e−08 −3.43e−08 2.62e−08

SHbO (0–Peak seconds) MCI 1.53e−08 9.22e−09 0.9999 2.26e−08 1.57e−08 0.8587 2.67e−08 1.83e−08 0.2631

HC 3.29e−08 2.12e−08 2.78e−08 2.34e−08 2.23e−08 1.43e−08

Peak time (seconds) MCI 1.82e+01 6.33e+00 0.0104 1.71e+01 4.07e+00 0.6153 1.68e+01 5.41e+00 0.9528

HC 1.50e+01 3.67e+00 1.76e+01 5.51e+00 1.68e+01 4.61e+00

Skewness MCI −4.56e−01 7.31e−01 0.3755 −1.09e−01 9.53e−01 0.1087 −2.62e−01 9.96e−01 0.7460

HC −2.90e−01 7.03e−01 −4.49e−01 8.28e−01 −3.34e−01 9.03e−01

Kurtosis MCI 3.00e+00 1.32e+00 0.6991 2.53e+00 9.36e−01 0.6885 2.61e+00 1.11e+00 0.6029

HC 3.14e+00 1.50e+00 2.63e+00 1.23e+00 2.47e+00 1.32e+00

of using the averaged hemodynamic responses of MCI patients
and HC should be investigated, for instance, adaptive estimation
algorithms (Iqbal et al., 2018; Nguyen et al., 2018; Yazdani et al.,
2018; Yi et al., 2018) or advanced signal processing (Chen et al.,
2018; Hong et al., 2018a).

(ii) Better results in local PFCs: In the literature, Goh and
Park (2009) proposed the scaffolding theory for aging and
cognition. Similar results (Cabeza et al., 2002; Katzorke et al.,
2018) also verified that a neural compensatory mechanism exists
and an additional neural passageway is recruited to support the
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TABLE 8 | Statistical data of VFT (manually selected channels).

Biomarkers Left PFC Middle PFC Right PFC

Avg. SD p-value Avg. SD p-value Avg. SD p-value

MHbO (5–65 s) MCI 1.56e−06 9.50e−07 0.0371 1.60e−06 1.39e−06 0.6469 1.24e−06 7.60e−07 1.0000

HC 2.12e−06 1.06e−06 1.75e−06 1.44e−06 2.21e−06 1.59e−06

MHbO (5–25 s) MCI 1.09e−06 1.26e−06 0.0004 2.00e−06 1.50e−06 0.7069 1.18e−06 9.32e−07 0.9934

HC 2.29e−06 1.23e−06 2.13e−06 1.48e−06 1.82e−06 1.62e−06

MHbO (0–Peak seconds) MCI 7.33e−07 8.93e−07 0.0001 1.42e−06 1.04e−06 0.7069 6.98e−07 5.18e−07 0.9993

HC 1.79e−06 9.83e−07 1.51e−06 1.08e−06 1.24e−06 1.11e−06

SHbO (5–15 s) MCI 8.50e−09 1.99e−08 0.2225 2.13e−08 1.85e−08 0.9113 1.97e−08 2.29e−08 0.8179

HC 1.41e−08 1.42e−08 2.09e−08 1.53e−08 1.84e−08 2.74e−08

SHbO (20–60 s) MCI −7.78e−10 5.29e−09 0.1965 −3.66e−09 3.27e−09 0.1450 −3.39e−09 7.52e−09 0.9903

HC −2.42e−09 4.26e−09 −2.64e−09 2.50e−09 −9.40e−11 5.40e−09

SHbO (60–70 s) MCI −4.39e−09 2.14e−08 0.0597 −2.19e−08 3.76e−08 0.0471 −6.18e−09 1.40e−08 0.0126

HC −1.37e−08 1.49e−08 −3.27e−08 2.05e−08 −1.45e−08 1.73e−08

SHbO (0–Peak seconds) MCI 1.26e−08 1.46e−08 0.0110 2.26e−08 1.57e−08 0.8587 1.46e−08 1.91e−08 0.0145

HC 2.34e−08 1.74e−08 2.78e−08 2.34e−08 2.55e−08 2.30e−08

Peak time (seconds) MCI 1.84E+01 4.47E+00 0.9834 1.71E+01 4.07E+00 0.6153 1.71E+01 4.07E+00 0.4011

HC 1.84E+01 3.76E+00 1.76E+01 5.51E+00 1.76E+01 5.51E+00

Skewness MCI −6.96e−02 5.60e−01 0.7028 −1.09e−01 9.53e−01 0.1087 1.55e−02 4.91e−01 0.0409

HC −1.22e−01 4.90e−01 −4.49e−01 8.28e−01 −2.31e−01 6.38e−01

Kurtosis MCI 2.12E+00 6.62e−01 0.9957 2.53E+00 9.36e−01 0.6885 1.90E+00 1.04E+00 0.9623

HC 2.75E+00 1.05E+00 2.63E+00 1.23E+00 2.25E+00 7.70e−01

FIGURE 5 | Panels (A–C) are the LDA classification results of 15 digital biomarkers based upon ROI channels with N-back, Stroop, and VFT task, respectively.

FIGURE 6 | Panels (A–C) are the LDA classification results of 10 digital biomarkers based upon manually selected ROI channels with N-back, Stroop, and VFT task,
respectively.
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FIGURE 7 | Classification results by CNN (repeated six times) using the HbO data in the ROI.

FIGURE 8 | Comparison of average t-maps between MCI and HC for three mental tasks: (A) N-back MCI, (B) Stroop MCI, (C) VFT MCI, (D) N-back HC, (E) Stroop
HC, and (F) VFT HC.

declining brain function if it becomes inefficient. Similar with this
compensation theory, the 1HbO of HC in the left PFC (shown
in Figure 3) appeared higher than that of MCI, but this was not
obvious in the right and middle PFCs. This result is consistent
with the work of Reuter-Lorenz et al. (2000), which claims that
the contralateral right PFC of the patients with MCI can increase
recruitment of both working memory and episodic encoding.
Also, the higher classification result when using the middle PFC,
as seen in Figure 7, indicates that the middle brain activity got
decreased in the MCI patients. This may coincide with the fact
that the gray matter in the middle PFC gets reduced during the
process of aging (Minkova et al., 2017).

(iii) ROI strategy: Two strategies for selecting the signals
for analysis were evaluated; t-value based selection and manual
selection by visual examination. The t-value based ROI selection
is widely employed in the bio-signal processing areas (Plichta
et al., 2006), since it has the advantage of being convenient and
consumes lesser time. However, in this study, we found that
the automatic ROI selection with t > tcrit included many data
with high noise oscillations. As revealed in Figures 5, 6 and
Tables 3–8, the results obtained by using the manually selected
active channels showed a better performance than the automatic

ROI selection. It reveals that the channel selection is very sensitive
to the final result because the poor performance could be caused
by the wrong selection of ROI channels algorithmically. In light
of the above-mentioned advantage, the automatic ROI selection
would be convenient when analyzing a big data set.

(iv) Mental tasks: Three mental tasks (N-back, Stroop, VFT)
were employed to classify the MCI patients from HC. Based
on the hemodynamic response of 1HbO, the statistical digital
biomarkers analysis, and digital/image biomarkers classification,
the N-back task showed a robust and stable performance in
contrast to the Stroop task and VFT. Especially, the CNN
result using the t-map data obtained the accuracy over 90% by
performing the N-back task. This might be an indication that
the memory-related neural degeneration is more apparent in the
MCI patients when compared with the other mental functions. It
will be interesting to apply another deep learning technique such
as the recurrent neural network (RNN) (Sanchez et al., 2017; Li
X. F. et al., 2018; Liu, 2018).

A number of different time intervals were evaluated in line
with the statistical digital biomarkers in this study. As shown
in Figures 5, 6 and Tables 3–8, the significant results (i.e.,
accuracy > 60% or p-value < 0.05) occurred randomly. It was
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FIGURE 9 | Comparison of the correlation maps between MCI and HC for three mental tasks: (A) N-back MCI, (B) Stroop MCI, (C) VFT MCI, (D) N-back HC,
(E) Stroop HC, and (F) VFT HC (the color bar in the right shows the correlation coefficient from –1 to 1).

FIGURE 10 | Classification results of t-maps and correlation maps by CNN (repeated six times) for three mental tasks.

difficult to conclude the best time interval for MCI detection.
In addition, most of the studies (as listed in Table 1) prefer
to conduct the statistical analysis using the entire task period
between the groups of MCI and HC. However, as per the
obtained results, the biomarkers were not consistent to make a
satisfactory classification result. Therefore, the statistical analysis
is not recommended to detect the early stage of AD. Therefore, as

shown in Figure 9, the combined technique (deep learning and an
imaging biomarker) shows a promising advantage for detecting
the MCI patients from HC in the fNIRS field.

Since the present study accessed a relatively small number of
MCI patients, no attempt was made to exclude patients based on
other criteria. To substantiate the findings, research with a larger
sample size would help ensuring that participants with secondary
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comorbidities can be excluded. In addition, a study with more
participants will allow assessing separately, participants with
different subtypes of MCI. In this study, we considered only the
prefrontal lobes for our investigation, as PFC is widely (>90%)
used for diagnosing MCI in the fNIRS area. Another issue for
improvement can be found from the used headset. NIRSIT has a
specific channel configuration for the PFC. It cannot be used over
the entire brain. Meanwhile, several former studies claimed that
MCI patients have a reduced activation in the hippocampus and
PFC (Johnson et al., 2006; Dannhauser et al., 2008). A broader
brain region than the PFC might give the better opportunity for
examining more effective biomarkers. In the future, the whole
brain with a hybrid technique including EEG and fNIRS (Khan
et al., 2014, 2018; Hong et al., 2018b) with a greater number of
subjects will be pursued hoping that more effective and reliable
biomarkers for diagnosing the early stage of AD are disclosed.

CONCLUSION

For the purpose of diagnosing MCI patients using fNIRS, we
investigated three approaches (statistical analysis, LDA, CNN) in
classifying the measured fNIRS signals. Fifteen digital biomarkers
(i.e., 5 means and 7 slopes of 1HbO/1HbR, peak time, skewness,
kurtosis) in combination of LDA and two image biomarkers (t-
map, correlation map) in combination with CNN were analyzed.
It appears that the classical statistical analysis method is not
reliable for clinical application, because the biomarkers (p < 0.05)
that provided good LDA classification results (> 60%) were not
consistent throughout the trials. However, the CNN classification
result using the t-map input data provided the best classification
accuracy (90.62%) between MCI and HC. Secondly, the local
analyses in the PFC (left PFC, or middle PFC, or right PFC)
provided better classification accuracies than examining the
entire PFC. This leads to the conclusion that the task-related
brain activity in the PFC may be localized per person, and
the use of a few channels of fNIRS may be acceptable for

MCI diagnosis. Finally, the N-back task presented a robust and
accurate performance than the Stroop or VF tasks when the
image biomarkers with CNN were analyzed.

DATA AVAILABILITY

The datasets generated for this study are available on request to
the corresponding author.

ETHICS STATEMENT

This experiment was conducted in accordance with the latest
Declaration of Helsinki upon the approval of the Pusan National
University Institutional Review Board. All volunteers were given
a detailed description of the experimental procedure prior to the
beginning of the experiment, and they provided written consent
agreeing to these experiments.

AUTHOR CONTRIBUTIONS

DY carried out the data processing and wrote the first draft
of the manuscript. K-SH suggested the theoretical aspects of
the current study, corrected the manuscript, and supervised
the entire process leading to the manuscript generation. S-HY
participated in collecting experimental data. C-SK has examined
the data. All authors have approved the final manuscript.

FUNDING

This work was supported by the National Research Foundation
(NRF) of Korea under the auspices of the Ministry of
Science and ICT, Republic of Korea (Grant Nos. NRF-
2017R1A2A1A17069430 and NRF-2017R1A4A1015627).

REFERENCES
Alzheimer’s Association, (2018). 2018 Alzheimer’s disease facts and figures.

Alzheimers Dement. 14, 367–429. doi: 10.1016/j.jalz.2016.03.001
Arai, H., Takano, M., Miyakawa, K., Ota, T., Takahashi, T., Asaka, H., et al.

(2006). A quantitative near-infrared spectroscopy study: a decrease in cerebral
hemoglobin oxygenation in Alzheimer’s disease and mild cognitive impairment.
Brain Cogn. 61, 189–194. doi: 10.1016/j.bandc.2005.12.012

Beishon, L., Haunton, V. J., Panerai, R. B., and Robinson, T. G. (2017). Cerebral
hemodynamics in mild cognitive impairment: a systematic review. J. Alzheimers
Dis. 59, 369–385. doi: 10.3233/JAD-170181

Boas, D. A., Elwell, C. E., Ferrari, M., and Taga, G. (2014). Twenty years
of functional near-infrared spectroscopy: introduction for the special issue.
Neuroimage 85, 1–5. doi: 10.1016/J.NEUROIMAGE.2013.11.033

Byeon, H., Jin, H., and Cho, S. (2017). Development of Parkinson’s disease
dementia prediction model based on verbal memory, visuospatial memory, and
executive function. J. Med. Imag. Heal. Inform. 7, 1517–1521. doi: 10.1166/
jmihi.2017.2196

Cabeza, R., Anderson, N. D., Locantore, J. K., and McIntosh, A. R. (2002).
Aging gracefully: compensatory brain activity in high-performing older adults.
Neuroimage 17, 1394–1402. doi: 10.1006/nimg.2002.1280

Chen, H. T., Jiang, B., and Lu, N. Y. (2018). A multi-mode incipient sensor fault
detection and diagnosis method for electrical traction systems. Int. J. Control
Autom. Syst. 16, 1783–1793. doi: 10.1007/s12555-017-0533-0

Cotelli, M., Manenti, R., Cappa, S. F., Zanetti, O., and Miniussi, C. (2008).
Transcranial magnetic stimulation improves naming in Alzheimer disease
patients at different stages of cognitive decline. Eur. J. Neurol. 15, 1286–1292.
doi: 10.1111/j.1468-1331.2008.02202.x

Dannhauser, T. M., Shergill, S. S., Stevens, T., Lee, L., Seal, M., Walker, R. W., et al.
(2008). An fMRI study of verbal episodic memory encoding in amnestic mild
cognitive impairment. Cortex 44, 869–880. doi: 10.1016/j.cortex.2007.04.005

Ding, Z. Y., Chen, Y. M., Chen, Y. L., and Wu, X. Y. (2017). Similar hand gesture
recognition by automatically extracting distinctive features. Int. J. Control
Autom. Syst. 15, 1770–1778. doi: 10.1007/s12555-015-0403-6

Doi, T., Shimada, H., Park, H., Makizako, H., Tsutsumimoto, K., Uemura, K.,
et al. (2015). Cognitive function and falling among older adults with mild
cognitive impairment and slow gait. Geriatr. Gerontol. int. 15, 1073–1078. doi:
10.1111/ggi.12407

Fang, C., Li, C. F., Cabrerizo, M., Barreto, A., Andrian, J., Rishe, N., et al.
(2018). Gaussian discriminant analysis for optimal delineation of mild cognitive
impairment in Alzheimer’s disease. Int. J. Neural. Syst. 28:1850017. doi: 10.1142/
S012906571850017X

Frontiers in Human Neuroscience | www.frontiersin.org 15 September 2019 | Volume 13 | Article 317

https://doi.org/10.1016/j.jalz.2016.03.001
https://doi.org/10.1016/j.bandc.2005.12.012
https://doi.org/10.3233/JAD-170181
https://doi.org/10.1016/J.NEUROIMAGE.2013.11.033
https://doi.org/10.1166/jmihi.2017.2196
https://doi.org/10.1166/jmihi.2017.2196
https://doi.org/10.1006/nimg.2002.1280
https://doi.org/10.1007/s12555-017-0533-0
https://doi.org/10.1111/j.1468-1331.2008.02202.x
https://doi.org/10.1016/j.cortex.2007.04.005
https://doi.org/10.1007/s12555-015-0403-6
https://doi.org/10.1111/ggi.12407
https://doi.org/10.1111/ggi.12407
https://doi.org/10.1142/S012906571850017X
https://doi.org/10.1142/S012906571850017X
https://www.frontiersin.org/journals/human-neuroscience/
https://www.frontiersin.org/
https://www.frontiersin.org/journals/human-neuroscience#articles


fnhum-13-00317 September 5, 2019 Time: 17:48 # 16

Yang et al. Biomarkers Evaluation of MCI

Ferrari, M., and Quaresima, V. (2012). A brief review on the history of human
functional near-infrared spectroscopy (fNIRS) development and fields of
application. Neuroimage 63, 921–935. doi: 10.1016/j.neuroimage.2012.03.049

General Assembly of the World Medical Association, (2014). World medical
association declaration of helsinki: ethical principles for medical research
involving human subjects. JAMA-J. Am. Med. Assoc. 310, 2191–2194. doi: 10.
1001/jama.2013.281053

Ghafoor, U., Kim, S., and Hong, K.-S. (2017). Selectivity and longevity of
peripheral-nerve and machine interfaces: a review. Front. Neurorobot. 11:59.
doi: 10.3389/fnbot.2017.00059

Goh, J. O., and Park, D. C. (2009). Neuroplasticity and cognitive aging: the
scaffolding theory of aging and cognition. Restor. Neurol. Neurosci. 27, 391–403.
doi: 10.3233/RNN-2009-0493

Halliday, D. W. R., Hundza, S. R., Garcia-Barrera, M. A., Klimstra, M.,
Commandeur, D., Lukyn, T. V., et al. (2018). Comparing executive function,
evoked hemodynamic response, and gait as predictors of variations in mobility
for older adults. J. Clin. Exp. Neuropsychol. 40, 151–160. doi: 10.1080/13803395.
2017.1325453

Hamadache, M., and Lee, D. (2017). Principal component analysis-based signal-to-
noise ratio improvement for inchoate faulty signals: application to ball bearing
fault detection. Int. J. Control Autom. Syst. 15, 506–517. doi: 10.1007/s12555-
015-0196-7

Han, C., Jo, S., Jo, I., Kim, E., Park, M., Kang, Y., et al. (2008). An adaptation
of the korean mini-mental state examination (K-MMSE) in elderly koreans:
demographic influence and population-based norms (the AGE study). Arch.
Gerontol. Geriatr. 47, 302–310. doi: 10.1016/j.archger.2007.08.012

Haworth, J., Phillips, M., Newson, M., Rogers, P. J., Torrens-Burton, A., and
Tales, A. (2016). Measuring information processing speed in mild cognitive
impairment: clinical versus research dichotomy. J. Alzheimers Dis. 51, 263–275.
doi: 10.3233/JAD-150791

Heinzel, S., Haeussinger, F. B., Hahn, T., Ehlis, A.-C., Plichta, M. M., and Fallgatter,
A. J. (2013). Variability of (functional) hemodynamics as measured with
simultaneous fNIRS and fMRI during intertemporal choice. Neuroimage 71,
125–134. doi: 10.1016/j.neuroimage.2012.12.074

Hong, K.-S., Khan, M. J., and Hong, M. J. (2018b). Feature extraction and
classification methods for hybrid fNIRS-EEG brain-computer interfaces. Front.
Hum. Neurosci. 12:246. doi: 10.3389/fnhum.2018.00246

Hong, K.-S., Aziz, N., and Ghafoor, U. (2018a). Motor-commands decoding using
peripheral nerve signals: a review. J. Neural. Eng. 15:031004. doi: 10.1088/1741-
2552/aab383

Hong, K.-S., Naseer, N., and Kim, Y. H. (2014). Classification of prefrontal and
motor cortex signals for three-class fNIRS-BCI. Neurosci. Lett. 587, 87–92.
doi: 10.1016/j.neulet.2014.12.029

Hong, K.-S., and Santosa, H. (2016). Decoding four different sound-categories in
the auditory cortex using functional near-infrared spectroscopy. Hear. Res. 333,
157–166. doi: 10.1016/j.heares.2016.01.009

Hong, K.-S., and Zafar, A. (2018). Existence of initial dip for BCI: an illusion or
reality. Front. In Neurorobot. 12:69. doi: 10.3389/fnbot.2018.00069

Ieracitano, C., Mammone, N., Bramanti, A., Hussain, A., and Morabito, F. C.
(2018). A convolutional neural network approach for classification of dementia
stages based on 2D-spectral representation of EEG recordings. Neurocomputing
323, 96–107. doi: 10.1016/j.neucom.2018.09.071

Iqbal, M., Rehan, M., and Hong, K.-S. (2018). Robust adaptive synchronization of
ring configured uncertain chaotic fitzhugh-nagumo neurons under direction-
dependent coupling. Front. Neurorobot. 12:6. doi: 10.3389/fnbot.2018.00006

Johnson, S. C., Schmitz, T. W., Moritz, C. H., Meyerand, M. E., Rowley, H. A.,
Alexander, A. L., et al. (2006). Activation of brain regions vulnerable to
Alzheimer’s disease: the effect of mild cognitive impairment. Neurobiol. Aging
27, 1604–1612. doi: 10.1016/j.neurobiolaging.2005.09.017

Jung, E. S., Lee, J. H., Kim, H. T., Park, S. S., Kim, J. E., Kim, J. E., et al.
(2018). Effect of acupuncture on patients with mild cognitive impairment
assessed using functional near-infrared spectroscopy on week 12 (close-out):
a pilot study protocol. Integr. Med. Res. 7, 287–295. doi: 10.1016/j.imr.2018.
06.002

Kane, M. J., Conway, A. R. A., Miura, T. K., and Colflesh, G. J. H. (2007). Working
memory, attention control, and the n-back task: a question of construct validity.
J. Exp. Psychol. Learn. Mem. Cogn. 33, 615–622. doi: 10.1037/0278-7393.33.
3.615

Katzorke, A., Zeller, J. B. M., Müller, L. D., Lauer, M., Polak, T., Deckert, J.,
et al. (2018). Decreased hemodynamic response in inferior frontotemporal
regions in elderly with mild cognitive impairment. Neuroimaging 274, 11–18.
doi: 10.1016/j.pscychresns.2018.02.003

Katzorke, A., Zeller, J. B. M., Müller, L. D., Lauer, M., Polak, T., Reif, A., et al.
(2017). Reduced activity in the right inferior frontal gyrus in elderly APOE-
E4 carriers during a verbal fluency task. Front. Hum. Neurosci. 11:46. doi:
10.3389/fnhum.2017.00046

Keage, H. A. D., Churches, O. F., Kohler, M., Pomeroy, D., Luppino, R., Bartolo,
M. L., et al. (2012). Cerebrovascular function in aging and dementia: a
systematic review of transcranial doppler studies. Dement. Geriatr. Cogn. Dis.
Extra. 2, 258–270. doi: 10.1159/000339234

Khan, M. J., Ghafoor, U., and Hong, K.-S. (2018). Early detection of hemodynamic
responses using EEG: a hybrid EEG-fNIRS study. Front. Hum. Neurosci. 12:479.
doi: 10.3389/fnhum.2018.00479

Khan, M. J., and Hong, K.-S. (2015). Passive BCI based on drowsiness detection: an
fNIRS study. Biomed. Opt. Express. 6, 4063–4078. doi: 10.1364/BOE.6.004063

Khan, M. J., and Hong, K.-S. (2017). Hybrid EEG-fNIRS-based eight-command
decoding for BCI: application to quadcopter control. Front. Neurorobot. 11:6.
doi: 10.3389/fnbot.2017.00006

Khan, M. J., Hong, M. J., and Hong, K.-S. (2014). Decoding of four movement
directions using hybrid NIRS-EEG brain-computer interface. Front. Hum.
Neurosci. 244:8. doi: 10.3389/fnhum.2014.00244

Khazaee, A., Ebrahimzadeh, A., and Babajani-Feremi, A. (2017). Classification of
patients with MCI and AD from healthy controls using directed graph measures
of resting-state fMRI. Behav. Brain Res. 322, 339–350. doi: 10.1016/J.BBR.2016.
06.043

Kim, H. H., Park, J. K., Oh, J. H., and Kang, D. J. (2017). Multi-task convolutional
neural network system for license plate recognition. Int. J. Control Autom. Syst.
15, 2942–2949. doi: 10.1007/s12555-016-0332-z

Labaer, J. (2005). So, you want to look for biomarkers - (Introduction to the special
biomarkers issue). J. Proteome Res. 4, 1053–1059. doi: 10.1021/pr0501259

Li, R., Rui, G., Chen, W., Li, S., Schulz, P. E., and Zhang, Y. (2018). Early detection
of Alzheimer’s disease using non-invasive near-infrared spectroscopy. Front.
Aging Neurosci. 10:366. doi: 10.3389/fnagi.2018.00366

Li, X., Zhu, Z., Zhao, W., Sun, Y., Wen, D., Xie, Y., et al. (2018). Decreased resting-
state brain signal complexity in patients with mild cognitive impairment and
Alzheimer’s disease: a multi-scale entropy analysis. Biomed. Opt. Express. 9,
1916–1929. doi: 10.1364/BOE.9.001916

Li, X. F., Fang, J. A., and Li, H. Y. (2018). Exponential synchronization of
stochastic memristive recurrent neural networks under alternate state feedback
control. Int. J. Control Autom. Syst. 16, 2859–2869. doi: 10.1007/s12555-018-
0225-4

Liu, P. L. (2018). Further improvement on delay-range-dependent stability criteria
for delayed recurrent neural networks with interval time-varying delays. Int. J.
Control Autom. Syst. 16, 1186–1193. doi: 10.1007/s12555-016-0359-1

Liu, X., and Hong, K.-S. (2017). Detection of primary RGB colors projected on
a screen using fNIRS. J. Innov. Opt. Health Sci. 10:1750006. doi: 10.1142/
s1793545817500067

Marmarelis, V. Z., Shin, D. C., Tarumi, T., and Zhang, R. (2017). Comparison
of model-based indices of cerebral autoregulation and vasomotor reactivity
using transcranial doppler versus near-infrared spectroscopy in patients with
amnestic mild cognitive impairment. J. Alzheimers Dis. 56, 89–105. doi: 10.
3233/JAD-161004

Minkova, L., Habich, A., Peter, J., Kaller, C. P., Eickhoff, S. B., and Klöppel, S.
(2017). Gray matter asymmetries in aging and neurodegeneration: a review and
meta-analysis. Hum. Brain Mapp. 38, 5890–5904. doi: 10.1002/hbm.23772

Moon, J., Kim, H., and Lee, B. (2018). View-point invariant 3d classification for
mobile robots using a convolutional neural network. Int. J. Control Autom. Syst.
16, 2888–2895. doi: 10.1007/s12555-018-0182-y

Naseer, N., and Hong, K.-S. (2015). fNIRS-based brain-computer interfaces: a
review. Front. Hum. Neurosci. 9:172. doi: 10.3389/fnhum.2015.00003

Naseer, N., Noori, F. M., Qureshi, N. K., and Hong, K.-S. (2016). Determining
optimal feature-combination for LDA classification of functional near-infrared
spectroscopy signals in brain-computer interface application. Front. Hum.
Neurosci. 10:237. doi: 10.3389/fnhum.2016.00237

Nestor, P. J., Scheltens, P., and Hodges, J. R. (2004). Advances in the early detection
of Alzheimer’s disease. Nat. Med. 10, S34–S41. doi: 10.1038/nrn1433

Frontiers in Human Neuroscience | www.frontiersin.org 16 September 2019 | Volume 13 | Article 317

https://doi.org/10.1016/j.neuroimage.2012.03.049
https://doi.org/10.1001/jama.2013.281053
https://doi.org/10.1001/jama.2013.281053
https://doi.org/10.3389/fnbot.2017.00059
https://doi.org/10.3233/RNN-2009-0493
https://doi.org/10.1080/13803395.2017.1325453
https://doi.org/10.1080/13803395.2017.1325453
https://doi.org/10.1007/s12555-015-0196-7
https://doi.org/10.1007/s12555-015-0196-7
https://doi.org/10.1016/j.archger.2007.08.012
https://doi.org/10.3233/JAD-150791
https://doi.org/10.1016/j.neuroimage.2012.12.074
https://doi.org/10.3389/fnhum.2018.00246
https://doi.org/10.1088/1741-2552/aab383
https://doi.org/10.1088/1741-2552/aab383
https://doi.org/10.1016/j.neulet.2014.12.029
https://doi.org/10.1016/j.heares.2016.01.009
https://doi.org/10.3389/fnbot.2018.00069
https://doi.org/10.1016/j.neucom.2018.09.071
https://doi.org/10.3389/fnbot.2018.00006
https://doi.org/10.1016/j.neurobiolaging.2005.09.017
https://doi.org/10.1016/j.imr.2018.06.002
https://doi.org/10.1016/j.imr.2018.06.002
https://doi.org/10.1037/0278-7393.33.3.615
https://doi.org/10.1037/0278-7393.33.3.615
https://doi.org/10.1016/j.pscychresns.2018.02.003
https://doi.org/10.3389/fnhum.2017.00046
https://doi.org/10.3389/fnhum.2017.00046
https://doi.org/10.1159/000339234
https://doi.org/10.3389/fnhum.2018.00479
https://doi.org/10.1364/BOE.6.004063
https://doi.org/10.3389/fnbot.2017.00006
https://doi.org/10.3389/fnhum.2014.00244
https://doi.org/10.1016/J.BBR.2016.06.043
https://doi.org/10.1016/J.BBR.2016.06.043
https://doi.org/10.1007/s12555-016-0332-z
https://doi.org/10.1021/pr0501259
https://doi.org/10.3389/fnagi.2018.00366
https://doi.org/10.1364/BOE.9.001916
https://doi.org/10.1007/s12555-018-0225-4
https://doi.org/10.1007/s12555-018-0225-4
https://doi.org/10.1007/s12555-016-0359-1
https://doi.org/10.1142/s1793545817500067
https://doi.org/10.1142/s1793545817500067
https://doi.org/10.3233/JAD-161004
https://doi.org/10.3233/JAD-161004
https://doi.org/10.1002/hbm.23772
https://doi.org/10.1007/s12555-018-0182-y
https://doi.org/10.3389/fnhum.2015.00003
https://doi.org/10.3389/fnhum.2016.00237
https://doi.org/10.1038/nrn1433
https://www.frontiersin.org/journals/human-neuroscience/
https://www.frontiersin.org/
https://www.frontiersin.org/journals/human-neuroscience#articles


fnhum-13-00317 September 5, 2019 Time: 17:48 # 17

Yang et al. Biomarkers Evaluation of MCI

Nguyen, C. T., Couture, M. C., Alvarado, B. E., and Zunzunegui, M. V. (2008). Life
course socioeconomic disadvantage and cognitive function among the elderly
population of seven capitals in latin america and the Caribbean. J. Aging Health
20, 347–362. doi: 10.1177/0898264308315430

Nguyen, H.-D., and Hong, K.-S. (2016). Bundled-optode implementation for 3D
imaging in functional near-infrared spectroscopy. Biomed. Opt. Express. 7,
3491–3507. doi: 10.1364/BOE.7.003491

Nguyen, Q. C., Piao, M., and Hong, K.-S. (2018). Multivariable adaptive control
of the rewinding process of a roll-to-roll system governed by hyperbolic partial
differential equations. Int. J. Control Autom. Syst. 16, 2177–2186. doi: 10.1007/
s12555-017-0205-0

Niu, H. J., Li, X., Chen, Y. J., Ma, C., Zhang, J. Y., and Zhang, Z. J. (2013).
Reduced frontal activation during a working memory task in mild cognitive
impairment: a non-invasive near-infrared spectroscopy study. CNS Neurosci.
Ther. 19, 125–131. doi: 10.1109/SIBGRAPI.2001.963071

Ou, M., Wei, H., Zhang, Y., and Tan, J. (2019). A dynamic adam based deep neural
network for fault diagnosis of oil-immersed power transformers. Energies
12:995. doi: 10.3390/en12060995

Park, D. C., and Reuter-Lorenz, P. (2009). The adaptive brain: aging and
neurocognitive scaffolding. Annu. Rev. Psychol. 60, 173–196. doi: 10.1146/
annurev.psych.59.103006.093656

Perpetuini, D., Bucco, R., Zito, M., and Merla, A. (2017). Study of
memory deficit in Alzheimer’s disease by means of complexity analysis
of fNIRS signal. Neurophotonics 5:011010. doi: 10.1117/1.NPh.5.1.0
11010

Pinti, P., Merla, A., Aichelburg, C., Lind, F., Power, S., Swingler, E., et al. (2017). A
novel GLM-based method for the automatic identification of functional events
(AIDE) in fNIRS data recorded in naturalistic environments. Neuroimage 155,
291–304. doi: 10.1016/j.neuroimage.2017.05.001

Pinti, P., Tachtsidis, I., Hamilton, A., Hirsch, J., Aichelburg, C., Gilbert, S., et al.
(2018). The present and future use of functional near-infrared spectroscopy
(fNIRS) for cognitive neuroscience. JPN. Psychol. Res. 60, 347–373. doi: 10.1111/
nyas.13948

Plichta, M. M., Herrmann, M. J., Baehne, C. G., Ehlis, A. C., Richter, M. M.,
Pauli, P., et al. (2006). Event-related functional near-infrared spectroscopy
(fNIRS): are the measurements reliable? Neuroimage 31, 116–124. doi: 10.1016/
j.neuroimage.2005.12.008

Price, C. J., and Friston, K. J. (2002). Degeneracy and cognitive anatomy. Trends
Cogn. Sci. 6, 416–421. doi: 10.1016/S1364-6613(02)01976-9

Privitera, C. M., and Stark, L. W. (2000). Algorithms for defining
visual regions-of-lnterest: comparison with eye fixations. IEEE
Trans. Pattern Anal. Mach. Intell. 22, 970–982. doi: 10.1109/34.87
7520

Reuter-Lorenz, P. A., Jonides, J., Smith, E. E., Hartley, A., Miller, A., Marshuetz,
C., et al. (2000). Age differences in the frontal lateralization of verbal and
spatial working memory revealed by PET. J. Cogn. Neurosci. 12, 174–187. doi:
10.1162/089892900561814

Salis-Perales, G., and Barajas-Ramirz, J. G. (2017). Activation of neuronal
ensembles via controlled synchronization. Int. J. Control Autom. Syst. 15,
122–128. doi: 10.1007/s12555-015-0203-z

Sanchez, E. N., Rodriguez-Castellanos, D. I., Chen, G., and Ruiz-Cruz, R. (2017).
Pinning control of complex network synchronization: a recurrent neural
network approach. Int. J. Control. Autom. Syst. 15, 1405–1414. doi: 10.1007/
s12555-016-0364-4

Sassaroli, A., and Fantini, S. (2004). Comment on the modified Beer–Lambert law
for scattering media. Phys. Med. Biol. 49, N255–N257. doi: 10.1088/0031-9155/
49/14/N07

Strangman, G. E., Li, Z., and Zhang, Q. (2013). Depth sensitivity and source-
detector separations for near infrared spectroscopy based on the colin27 brain
template. PLoS One 8:e66319. doi: 10.1371/journal.pone.0066319

Stuart, S., Vitorio, R., Morris, R., Martini, D. N., Fino, P. C., and Mancini, M.
(2018). Cortical activity during walking and balance tasks in older adults and
in people with Parkinson’s disease: a structured review. Maturitas 113, 53–72.
doi: 10.1016/j.maturitas.2018.04.011

Tak, S., and Ye, J. C. (2014). Statistical analysis of fNIRS data: a comprehensive
review. Neuroimage 85, 72–91. doi: 10.1016/J.NEUROIMAGE.2013.06.016

Tang, W., Cha, H., Wei, M., Tian, B., and Ren, X. (2019). An atmospheric
refractivity inversion method based on deep learning. Results Phys. 12, 582–584.
doi: 10.1016/j.rinp.2018.12.014

Trakoolwilaiwan, T., Lee, J., Choi, J., Trakoolwilaiwan, T., Behboodi, B., Lee,
J., et al. (2019). Convolutional neural network for high-accuracy functional
near- infrared spectroscopy in a brain – computer interface: three-class
classification of rest, right-, and left- hand motor execution functional near-
infrared spectroscopy in. Neurophotonics 5:011008. doi: 10.1117/1.NPh.5.1.01
1008

Uemura, K., Doi, T., Shimada, H., Makizako, H., Park, H., and Suzuki,
T. (2016). Age-related changes in prefrontal oxygenation during memory
encoding and retrieval. Geriatr Gerontol Int. 16, 1296–1304. doi: 10.1111/ggi.
12642

Valenzuela, O., Jiang, X. J., Carrillo, A., and Rojia, I. (2018). Multi-objective genetic
algorithms to find most relevant volumes of the brain related to Alzheimer’s
disease and mild cognitive impairment. Int. J. Neural Syst. 28:1850022. doi:
10.1142/S0129065718500223

Vermeij, A., Kessels, R. P. C., Heskamp, L., Simons, E. M. F., Dautzenberg, P. L. J.,
and Claassen, J. A. H. R. (2017). Prefrontal activation may predict working-
memory training gain in normal aging and mild cognitive impairment. Brain
Imaging Behav. 11, 141–154. doi: 10.1007/s11682-016-9508-7

Whiteside, D. M., Kealey, T., Semla, M., Luu, H., Rice, L., Basso, M. R., et al. (2016).
Verbal fluency: language or executive function measure? Appl. Neuropsychol.
Adult 23, 29–34. doi: 10.1080/23279095.2015.1004574

Yap, K. H., Ung, W. C., Ebenezer, E. G. M., Nordin, N., Chin, P. S., Sugathan,
S., et al. (2017). Visualizing hyperactivation in neurodegeneration based on
prefrontal oxygenation: a comparative study of mild Alzheimer’s disease, mild
cognitive impairment, and healthy controls. Front. Aging Neurosci. 9:287. doi:
10.3389/fnagi.2017.00287

Yazdani, M., Salarieh, H., and Foumani, M. S. (2018). Bio-inspired decentralized
architecture for walking of a 5-link biped robot with compliant knee
joints. Int. J. Control Autom. Syst. 16, 2935–2947. doi: 10.1007/s12555-017-
0578-0

Yennu, A., Tian, F., Gatchel, R. J., and Liu, H. (2016). Prefrontal hemodynamic
mapping by functional near-infrared spectroscopy in response to thermal
stimulations over three body sites. Neurophotonics 3:045008. doi: 10.1117/1.
NPh.3.4.045008

Yeung, M. K., Sze, S. L., Woo, J., Kwok, T., Shum, D. H. K., Yu, R., et al. (2016b).
Reduced frontal activations at high working memory load in mild cognitive
impairment: near-infrared spectroscopy. Dement. Geriatr. Cogn. Disord. 42,
278–296. doi: 10.1159/000450993

Yeung, M. K., Sze, S. L., Woo, J., Kwok, T., Shum, D. H. K., Yu, R., et al. (2016a).
Altered frontal lateralization underlies the category fluency deficits in older
adults with mild cognitive impairment: a near-infrared spectroscopy study.
Front. Aging Neurosci. 8:59. doi: 10.3389/fnagi.2016.00059

Yi, G., Mao, J. X., Wang, Y. N., Guo, S. Y., and Miao, Z. Q. (2018). Adaptive
tracking control of nonholonomic mobile manipulators using recurrent neural
networks. Int. J. Control Autom. Syst. 16, 1390–1403. doi: 10.1007/s12555-017-
0309-6

Zafar, A., and Hong, K.-S. (2017). Detection and classification of three-class initial
dips from prefrontal cortex. Biomed. Opt. Express. 8, 367–383. doi: 10.1364/
BOE.8.000367

Zafar, A., and Hong, K.-S. (2018). Neuronal activation detection using vector phase
analysis with dual threshold circles: a functional near-infrared spectroscopy
study. Int. J. Neural Syst. 28:1850031. doi: 10.1142/S0129065718500314

Conflict of Interest Statement: The authors declare that the research was
conducted in the absence of any commercial or financial relationships that could
be construed as a potential conflict of interest.

Copyright © 2019 Yang, Hong, Yoo and Kim. This is an open-access article
distributed under the terms of the Creative Commons Attribution License (CC BY).
The use, distribution or reproduction in other forums is permitted, provided the
original author(s) and the copyright owner(s) are credited and that the original
publication in this journal is cited, in accordance with accepted academic practice. No
use, distribution or reproduction is permitted which does not comply with these terms.

Frontiers in Human Neuroscience | www.frontiersin.org 17 September 2019 | Volume 13 | Article 317

https://doi.org/10.1177/0898264308315430
https://doi.org/10.1364/BOE.7.003491
https://doi.org/10.1007/s12555-017-0205-0
https://doi.org/10.1007/s12555-017-0205-0
https://doi.org/10.1109/SIBGRAPI.2001.963071
https://doi.org/10.3390/en12060995
https://doi.org/10.1146/annurev.psych.59.103006.093656
https://doi.org/10.1146/annurev.psych.59.103006.093656
https://doi.org/10.1117/1.NPh.5.1.011010
https://doi.org/10.1117/1.NPh.5.1.011010
https://doi.org/10.1016/j.neuroimage.2017.05.001
https://doi.org/10.1111/nyas.13948
https://doi.org/10.1111/nyas.13948
https://doi.org/10.1016/j.neuroimage.2005.12.008
https://doi.org/10.1016/j.neuroimage.2005.12.008
https://doi.org/10.1016/S1364-6613(02)01976-9
https://doi.org/10.1109/34.877520
https://doi.org/10.1109/34.877520
https://doi.org/10.1162/089892900561814
https://doi.org/10.1162/089892900561814
https://doi.org/10.1007/s12555-015-0203-z
https://doi.org/10.1007/s12555-016-0364-4
https://doi.org/10.1007/s12555-016-0364-4
https://doi.org/10.1088/0031-9155/49/14/N07
https://doi.org/10.1088/0031-9155/49/14/N07
https://doi.org/10.1371/journal.pone.0066319
https://doi.org/10.1016/j.maturitas.2018.04.011
https://doi.org/10.1016/J.NEUROIMAGE.2013.06.016
https://doi.org/10.1016/j.rinp.2018.12.014
https://doi.org/10.1117/1.NPh.5.1.011008
https://doi.org/10.1117/1.NPh.5.1.011008
https://doi.org/10.1111/ggi.12642
https://doi.org/10.1111/ggi.12642
https://doi.org/10.1142/S0129065718500223
https://doi.org/10.1142/S0129065718500223
https://doi.org/10.1007/s11682-016-9508-7
https://doi.org/10.1080/23279095.2015.1004574
https://doi.org/10.3389/fnagi.2017.00287
https://doi.org/10.3389/fnagi.2017.00287
https://doi.org/10.1007/s12555-017-0578-0
https://doi.org/10.1007/s12555-017-0578-0
https://doi.org/10.1117/1.NPh.3.4.045008
https://doi.org/10.1117/1.NPh.3.4.045008
https://doi.org/10.1159/000450993
https://doi.org/10.3389/fnagi.2016.00059
https://doi.org/10.1007/s12555-017-0309-6
https://doi.org/10.1007/s12555-017-0309-6
https://doi.org/10.1364/BOE.8.000367
https://doi.org/10.1364/BOE.8.000367
https://doi.org/10.1142/S0129065718500314
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/journals/human-neuroscience/
https://www.frontiersin.org/
https://www.frontiersin.org/journals/human-neuroscience#articles

	Evaluation of Neural Degeneration Biomarkers in the Prefrontal Cortex for Early Identification of Patients With Mild Cognitive Impairment:An fNIRS Study
	Introduction
	Materials and Methods
	Participants
	Channel Configuration
	Experimental Paradigm
	Data Pre-processing
	Feature Extraction
	Digital Biomarkers
	Activation Map (t-Map)
	Channel-by-Channel Correlation Map

	Classification

	Results
	Comparison of Hemodynamic Responses
	Statistical Analysis of Digital Biomarkers
	Classification of Digital Biomarkers
	CNN Classification of Hemodynamic Responses
	CNN Classification Results of Imaging Biomarkers

	Discussion
	Conclusion
	Data Availability
	Ethics Statement
	Author Contributions
	Funding
	References


