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ABSTRACT: The reactivity of phosphorus and sulfur ylides toward
carbonyl compounds constitutes a well-known dichotomy that is a
common educational device in organic chemistrythe former gives
olefins, while the latter gives epoxides. Herein, we report a
stereodivergent carbonyl olefination that challenges this dichotomy,
showcasing thiouronium ylides as valuable olefination reagents. With
this method, aldehydes are converted to Z-alkenes with high
stereoselectivity and broad substrate scope, while N-tosylimines
provide a similarly proficient entry to E-alkenes. In-depth computa-
tional and experimental studies clarified the mechanistic details of this
unusual reactivity.

■ INTRODUCTION

Alkenes are among the most prevalent functional groups in
natural products and industrial chemicals, with one chem-
informatics study estimating that 40% of the former contain an
alkene.1 As such, the development of olefination methods has
been a central and rewarding challenge to organic chemistry,2

contributing some of the most valued reactions in the
“synthetic toolbox”.3 Nevertheless, the wide structural and
electronic parameters of olefin chemical space continue to pose
a challenge, implying that no single method is universally apt
for their synthesis. As a result, the development of
complementary olefination methods remains an active area of
research.
The Wittig olefination is part of a mechanistic dichotomy

that is a common educational device in organic chemistry.4,5 It
is generally accepted to proceed by the addition of a
phosphorus ylide to an aldehyde or ketone to give an
oxaphosphetane, which then undergoes cycloreversion to
produce an alkene and a phosphine oxide (Figure 1A).6,7

The major thermodynamic driving force for this reaction is
known to be the strength of the resulting phosphorus−oxygen
double-bond.5 Notably, the reaction of a sulfur-ylidethe
Corey−Chaykovsky reactionfollows a different pathway,
involving an intermediate betaine and resulting in the
formation of an epoxide by displacement of the sulfonium
group (Figure 1A).8−10 This textbook difference in reactivity is
attributed to the lower oxophilicity of sulfur, the better leaving-
group ability of the sulfonium group, and kinetic factors.5,11,12

The sulfur−phosphorus ylide dichotomy is therefore com-
monly used in chemical education to convey the concepts of
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Figure 1. Revisiting the textbook reactivity dichotomy of phosphorus
and sulfur ylides with carbonyl compounds.
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leaving group ability, oxophilicity, as well as kinetic/
thermodynamic reaction control.4

Our group’s long-standing interest in novel olefination
methods13,14 and sulfur ylide reactivity15 led us to interrogate
the universality of the phosphorus/sulfur ylide dichotomy in
organic chemistry. Herein, we report a novel carbonyl
olefination method relying on thiouronium ylides, which
challenges this dichotomy (Figure 1B). This method
selectively affords Z-alkenes from aldehydes and E-alkenes
from N-tosylimines, typically in greater that 20:1 selectivity,
while exhibiting broad substrate scope, making it suitable for
late-stage functionalization.

■ RESULTS AND DISCUSSION
Our group recently reported the reaction of thiouronium salts
with alcohols to afford thioethers without requiring the use of
thiol reactants.16 The formation of a stable urea (CO) in
exchange for a less stable thiourea (CS) derivative was
identified as a plausible thermodynamic driving force of the
reaction.17

By analogy, we surmised that the reaction of thiouronium
ylides with carbonyl compounds might also be thermodynami-
cally biased toward the formation of a urea byproduct and thus
favor an olefination pathway, in a manner akin to the Wittig
reaction. These considerations, along with the potential
tuneability of reactivity that is offered by thiouronium salts
(by modulation of their N- substituents), prompted us to
investigate them as olefination reagents.
Between 1976 and 1978, Burgess and co-workers described

syntheses of thiouronium compounds and a preliminary
assessment of their reactivity with aldehydes.18 Interestingly,
the authors reported the formation of both epoxide and olefin
products, as typified by the reaction of 1 with benzaldehyde to
give methyl cinnamate (2a) and 3 in a 1:1 ratio (Figure 2A).
This precedent provided initial support for our hypotheses and
a starting point for our investigations.18a

First, we examined the reaction of 1 with 2-naphthaldehyde
and benzaldehyde. While we did observe the formation of
alkenes (2) with low E/Z selectivity, no epoxide products were
detected under a range of different reaction conditions (Figure
2B and the Supporting Information (SI)). Instead, we found
that episulfide 4 was the major byproduct of the reaction,
prompting us to consider the possibility that 3 had been
misassigned by Burgess and co-workers.18a Unfortunately,

characterization data for the compound 3 was not reported by
Burgess, and we can only speculate that the true identity of
originally described epoxide 3 was that of its episulfide
congener 4. With proof of principle in hand, we sought to
optimize this reaction to improve its stereoselectivity and yield,
as well as to suppress the formation of the episulfide
byproduct.
Early in our investigations, we found that the solubility of

bromide 1 was poor in ethereal solvents, preventing us from
investigating strong bases at cryogenic temperatures. We later
found that solubility could be increased by exchanging the
bromide counterion for bistriflimide (NTf2), and thiouronium
5a thus became the starting point for optimization. First, we
examined the influence of the base on the reaction outcome,
noting that olefin 2b was produced in moderate to high yield
(55−93%, Table 1, entries 1−4, and SI) with several bases

stronger than triethylamine, including DBU, LDA, and
Barton’s base (BMTG). Unfortunately, the stereoselectivity
observed with thiouronium 5a was poor even at low
temperature, and we decided to explore modulation of the
reagent structure. To this end, we treated 5b and 5c, carrying
bulkier N-substituents, with BTMG in the presence of 2-
naphthaldehyde. Pleasingly, a marked increase in stereo-
selectivity was observed. In the case of reagent 5c, Z-alkene
2b was delivered as the single detectable isomer in 92% yield
when 1.2 eq of BTMG was deployed.
These optimized conditions for Z-selective olefination were

then applied to a broad range of substrates (Figure 3, 2c).
Aromatic and heteroaromatic aldehydes performed well,
delivering a range of substituted acrylates (2a and c−i) in
high yield and >20:1 stereoselectivity, which compared
favorably with the bench-mark Still−Gennari protocol (Z/E
2.5:1−11.5:1), as did several other examplessee color coding
in Figure 3. Ferrocenecarboxaldehyde was also found to be a
competent substrate (2j). Aliphatic aldehydes performed well,
being cleanly converted to the respective Z-alkenesagain
with typically high stereoselectivity. Among these substrates

Figure 2. Revisiting Burgess’ observations in carbonyl olefination with
thiouronium ylides.

Table 1. Optimization of the Z-Selective Olefinationa

entry thiouronium salt base olefin (E:Z)

1 5a Et3N
2 5a DBU 55% (1/2.6)
3 5a LDA 91% (1.2/1)
4 5a BTMG 93% (1/3.6)
5 5b BTMG 60% (1/18)
6 5c BTMG 92%b (only Z)

aBTMG = 2-tert-butyl-1,1,3,3,-tetramethylguanidine; DBU = 1,8-
diazabiocyclo[5.4.0]-undec-7-ene; LDA = lithium diisopropylamide;
b1.2 BTMG, 0.3 M, isolated yield. See the SI for full details.
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were notable chiral pool building blocks N-Boc-D-phenyl-
alaninal, citronellal and (R)-glyceraldehyde acetonide. Im-
portantly, no racemization of the sensitive chiral center of N-
Boc-D-phenylalaninal took place and 2n was formed with 99%
ee (100% es). Next, we extended the scope of aliphatic
aldehydes to enals, which were found to react with similarly
high yields and selectivities, including important monoterpene
perillaldehyde (giving 2u).
We then sought to validate this Z-selective olefination on

complex bioactive scaffolds. A derivative of hypertension drug
losartan was found to smoothly undergo olefination to give 2v
in >20:1 stereoselectivity. Pleasingly, even spiramycin, a large
macrolide antibiotic bearing unprotected alcohols, tertiary
amines, a 1,3-diene, and glycosides, could be converted into
the desired Z-acrylate 2w in 61% yield, showcasing the
synthetic potential of this olefination.
Regarding the thiouronium reactant, modification of the

ester group was well--tolerated, and synthetically useful tert-
butyl, ethylene-TMS, and benzyl esters were installed (2x, 2y,
and 2z) in essentially identical yield and selectivity compared
to the model methyl ester 2b. Additionally, gram-scale
synthesis of 2b proceeded with near identical efficiency (88%).

Having established that thiouronium ylides can indeed be
competent olefination reagents, we sought to probe how
general this divergence from canonical S-ylide reactivity was.
N-Tosylimines are known to react with sulfur ylides to give N-
tosylaziridines, in analogy to the Corey−Chaykovsky epox-
idation.8−10,19 We surmised that thiouronium ions might also
contradict this reactivity paradigm.
Preliminary investigations of the reactivity of 1 with N-

tosylimines indeed showed a clear bias toward olefination.20

Interestingly, the E-olefin was formed preferentially, presenting
the possibility of developing a general method for divergent
access to both olefin geometries. We optimized the reaction for
E-stereoselectivity, finding the sterically unencumbered thio-
uronium bromide 1 to be ideal and the reaction to proceed
smoothly at −40 °C.
We then examined the substrate scope of the reaction,

focusing initially on the imine component (Figure 4).
Treatment of a range of N-tosylimines with 1.1 equiv of 1
and 1.2 equiv of Barton’s base delivered the respective olefins
as single stereoisomers in good to excellent yields (6a−6p, 2a).
Next, we examined the use of different thiouronium ylides
carrying ester, ketone, amide, nitrile, steroid, and aromatic

Figure 3. Substrate scope of the Z-selective olefination of aldehydes; reaction conditions: aldehyde (0.2 mmol), thiouronium salt (0.22 mmol),
BMTG (0.24 mmol) at −78 °C in THF (1.0 M) for 2 h; [a]Still−Gennari Z/E ratios given from two separate literature reports; [b]Still−Gennari
reaction executed in-housesee the SI refs to all other Still−Gennari data; [c]combined yield by 1H NMR.
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substituentsall delivering the products in moderate to high
yield, in greater than 20:1 selectivity in all cases but one (6p).
At this stage we sought to shed light on the mechanisms at

play. In the early work of Burgess, a quasi-Wittig reaction
mechanism involving oxasulfetane 7 was proposed (Figure
5A).18a However, we deemed the presence of such an
intermediate unlikely due to the necessary production of
thiourea S-oxide 8, which was never observed in our
investigations. Instead, we persistently observed urea by-
products, alongside elemental sulfur and in some cases
episulfide 4b (Figure 5B). This led us to consider episulfide
4b as an intermediate en route to the olefin 2b, and indeed, we
observed the stereospecific formation of olefin 2b when
diastereomerically pure episulfide 4b was treated with DBU or
BTMG.21 With these experimental observations in mind, we
initiated an in-depth computational study to interrogate the
precise mechanism of the olefination reactions.
Density functional theory (DFT) calculations were

performed at the PBE0-D3BJ/def2-TZVP,SMD//PBE0-
D3BJ/def2-SVP,SMD level of theory (see the SI for details
and discussion). The mechanisms for the formation of
products syn-4a and anti-4a were calculated for the coupling
of the in situ generated thiouronium ylide 9 with benzaldehyde
(Figure 6a) and N-tosyl imine 10 with thiouronium ylide 11
(Figure 6b).

Figure 4. Substrate scope of the E-selective olefination of tosyl imines; reaction conditions: tosyl imine (0.2 mmol), thiouronium (0.22 mmol),
BMTG (0.24 mmol) at −78 °C in CHCl3 (0.1 M) for 12 h.

Figure 5. Experimental observations of mechanistic relevance.
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The Gibbs free energy profile for the reaction with
benzaldehyde (Figure 6) shows an irreversible (3 + 2)-
cycloaddition-type transition state (TSAld‑Z‑AB), with simulta-
neous C−S bond cleavage to give a diastereomeric pair of
acyclic intermediates (trans, Ald-Z-B or cis, Ald-E-B). From
both of these structures, an SN2-type attack of the sulfide
breaks the C−O bond, forming the urea and leading to the
corresponding episulfides Ald-Z-C, via TSAld‑Z‑BC (profile in
blue, major), and Ald-E-C via TSAld‑E‑BC (profile in gray,
minor). The lower activation barrier for the formation of the
major episulfide, Ald-Z-C (ΔG‡(Ald-A*→ Ald-Z-B) = 17.3
kcal mol−1 while
ΔG‡(Ald-A*→ Ald-E-B) = 21.2 kcal mol−1) strongly

suggests that the reaction is kinetically controlled. Energy

decomposition analysis revealed that a greater steric clash in
TSAld‑E‑BC compared with TSAld‑Z‑BC accounts for this kinetic
selectivity (see the SI for details). Unlike the case of aldehyde
olefination, episulfide formation of N-tosylimine 10 with 11
(Figure 6B) is a stepwise process. This first entails C−C bond
formation via an acyclic transition state (TSTsI‑E‑AB or
TSTsI‑Z‑AB), yet again generating two possible epimeric
pathways (steps TsI-A*→ TsI-E-B in the profile in blue and
TsI-A*→ TsI-Z-B in the profile in gray).
Nucleophilic attack of the tosyl amide at the thiouronium

moiety of TsI-E-B or TsI-Z-B leads to C−N bond formation,
producing discrete thiazolidines TsI-E-C and TsI-Z-C via
TSTsI‑E‑BC and TSTsI‑Z‑BC, respectively. Thiazolidine intermedi-
ates TsI-E-C and TsI-Z-C readily ring open by C−S bond

Figure 6. Energy profiles of the C−C coupling of ylide 9 with benzaldehyde (A), and 11 and tosyl imine 10 (B) for the two possible epimers: cis-
episulfide or trans-episulfide. Favored profile shown in blue and disfavored shown in gray. Relative Gibbs free energies are presented in kcal mol−1

(298 K). The separated reactants (Ald/TsI-A*) serve as a reference (0.0 kcal mol−1). Calculations were performed at the PBE0-D3BJ/def2-
TZVP,SMD//PBE0-D3BJ/def2-SVP,SMD level of theory (see the SI for details and discussion).
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cleavage, forming the intermediates TsI-E-D and TsI-Z-D,
respectively. Similarly to the scenario described in Figure 6A,
the last step is an SN2-type attack, which cleaves the C−N
bond and yields the episulfides with inversion of the
configuration. Therefore, in contrast to the reaction with the
aldehyde electrophile, the bulkiness of the N-tosylimine
promotes a stepwise mechanism toward formation of the
experimentally observed trans-episulfide TsI-E-E, which is
both thermodynamically and kinetically favorable.
The observed selective formation of Z-olefin from the cis-

episulfide and E-olefin from the trans-episulfide (Figure 5 and
the SI) indicated that the sulfur extrusion mechanism is
stereospecific. Our calculations were consistent with this
observation, showing that excision of a sulfur atom from
either episulfide anti-4a or syn-4a by BTMG to selectively yield
the corresponding olefin was thermodynamically feasible under
the reaction conditions (Figure 7 and the SI). Together with

the formation of an olefin, the BMTG-sulfur adduct 14 would
then be generated. The initial stoichiometry of BTMG is 1.2
equiv, of which 1 equiv is required to form the thiouronium
ylide. Given that only 0.2 equiv of base would remain,
desulfurization evidently did not require stoichiometric base,
and we sought to interrogate if BTMG could be regenerated in
a pseudocatalytic process. As such, the pathway for base
regeneration was also studied (Figure 7), considering the
experimentally observed formation of elemental sulfur.
The obtained Gibbs free energy profile showed that

nucleophilic attack on the episulfide was kinetically more
favorable when performed by the BTMG-sulfur adduct 14
[ΔG‡(growth phase, first step) = 13.3 kcal mol−1] than by
BTMG alone (ΔG‡ = 19.5 kcal mol−1). This suggested that the
formation of BTMG-sulfur adduct 14 served as an initiation
step and that ensuing sulfur extrusion steps would form a
BTMG-polysulfide adduct through iterative S−S bond
formation (termed the growth phase, Figure 7). Our
calculations showed that early termination of the growth
phase through release of S2 was kinetically and thermodynami-
cally unfavorable. Instead, termination of the growth phase by
release of S8 from BTMG-octasulfide adduct 15 was shown to
be a favorable pathway to BTMG regeneration.

■ CONCLUSION
In summary, we have developed a stereodivergent olefination
method based on thiouronium ylides. This selective trans-
formation, suitable for complex molecule synthesis and late-

stage functionalization, challenges the canonical reactivity of S-
ylides toward carbonyl derivatives. In-depth computational
studies revealed that selective episulfide generation is at the
heart of the olefination process, while clarifying the role of the
base in a domino sulfur extrusion event. While enhancing the
“synthetic toolbox” for carbonyl olefination, we believe this
work adds a subtle new layer to the textbook phosphorus/
sulfur ylide dichotomy.
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