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A B S T R A C T   

Multiple system atrophy (MSA) and Parkinson’s disease (PD) belong to alpha-synucleinopathy, but they have 
very different clinical courses and prognoses. An imaging biomarker that can differentiate between the two 
diseases early in the disease course is desirable for appropriate treatment. Neuroimaging-based brain age 
paradigm provides an individualized marker to differentiate aberrant brain aging patterns in neurodegenerative 
diseases. In this study, patients with MSA (N = 23), PD (N = 33), and healthy controls (N = 34; HC) were 
recruited. A deep learning approach was used to estimate brain-predicted age difference (PAD) of gray matter 
(GM) and white matter (WM) based on image features extracted from T1-weighted and diffusion-weighted 
magnetic resonance images, respectively. Spatial normative models of image features were utilized to quantify 
neuroanatomical impairments in patients, which were then used to estimate the contributions of image features 
to brain age measures. For PAD of GM (GM-PAD), patients with MSA had significantly older brain age (9.33 
years) than those with PD (0.75 years; P = 0.002) and HC (-1.47 years; P < 0.001), and no significant difference 
was found between PD and HC (P = 1.000). For PAD of WM (WM-PAD), it was significantly greater in MSA (9.27 
years) than that in PD (1.90 years; P = 0.037) and HC (-0.74 years; P < 0.001); there was no significant dif-
ference between PD and HC (P = 0.087). The most salient image features that contributed to PAD in MSA and PD 
were different. For GM, they were the orbitofrontal regions and the cuneus in MSA and PD, respectively, and for 
WM, they were the central corpus callosum and the uncinate fasciculus in MSA and PD, respectively. Our results 
demonstrated that MSA revealed significantly greater PAD than PD, which might be related to markedly different 
neuroanatomical contributions to brain aging. The image features with distinct contributions to brain aging 
might be of value in the differential diagnosis of MSA and PD.   

1. Introduction 

Multiple system atrophy (MSA) and Parkinson’s disease (PD) belong 
to alpha-synucleinopathy (Krismer and Wenning, 2017), but the two 

diseases manifest very different phenotypes (McCann et al., 2014). 
Compared to PD, patients with MSA exhibit poorer levodopa response to 
parkinsonism, additional cerebellar and autonomic deficits, and a 
shorter lifespan (Ozawa et al., 2004; Wenning et al., 2013). The 
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trajectories of neurodegeneration also differ between MSA and PD; the 
pathology initially develops in the midbrain and ascends to the limbic 
system and association cortex in PD (Brooks and Tambasco, 2016), 
while greater and faster involvement in the cerebellum and striatum 
occurs in MSA (Brenneis et al., 2007). Early differential diagnosis of 
MSA and PD is desirable for appropriate treatment (Gilman et al., 2008). 
To date, however, a definite diagnosis can only be made based on 
autopsied alpha-synuclein (α-Syn) deposition in neurons as Lewy bodies 
in PD (Dufty et al., 2007) or in oligodendrocytes as glial cytoplasmic 
inclusions (GCIs) in MSA (Tu et al., 1998). Markers for early differen-
tiation and detection of these two diseases are still lacking. 

Magnetic resonance imaging (MRI) has been employed to capture 
macro- and microstructural alterations (Brooks and Tambasco, 2016; 
Schocke et al., 2002) in MSA and PD by targeting specific brain regions 
such as the substantia nigra, striatum, brainstem, and cerebellum 
(Krismer et al., 2019; Lewis et al., 2018) using various modalities 
(Barbagallo et al., 2016; Brooks and Tambasco, 2016; Schocke et al., 
2002). Previous studies have identified higher regional apparent diffu-
sion coefficients in the putamen in patients with the parkinsonian type 
of MSA than PD and healthy controls (HC) (Schocke et al., 2002), and 
atrophied putamen and infra-tentorial regions to be characteristic of 
MSA (Krismer et al., 2019). Hence, a concise measure of brain MRI 
characteristics is deemed to facilitate the differentiation between MSA 
and PD (Barbagallo et al., 2016; Brooks and Tambasco, 2016), which is 
not available yet. 

Recent advance in the neuroimaging-based brain age paradigm 
provides a new window to reveal aberrant brain aging statuses in 

various brain disorders (Cole and Franke, 2017), which may serve as a 
biomarker of differential diagnosis. The established brain age model can 
be used to estimate brain-predicted age difference (PAD), the difference 
between an individual’s brain-predicted and chronological age. Multiple 
studies have reported premature brain aging with elevated PAD in 
various brain disorders (Chen et al., 2019; Cole and Franke, 2017; 
Kaufmann et al., 2019). To date, studies of brain age on parkinsonism 
are scanty; only two neuroimaging studies reported equivocal or slightly 
elevated brain age in PD (Beheshti et al., 2020; Eickhoff et al., 2021). No 
research has yet been conducted to specifically investigate the vari-
ability of brain aging in alpha-synucleinopathies. 

To evaluate whether the clinical discrepancy between MSA and PD 
could be detected by PAD measures, this study aimed to investigate the 
difference in brain aging between MSA and PD and to identify image 
features that underlie the aging variation. Given that PADs derived from 
different MRI modalities reflect different aspects of the brain aging 
status (Rokicki et al., 2021), and that MSA and PD have distinct 
neuropathological impairments in gray matter (GM) (Brooks and Tam-
basco, 2016) and white matter (WM) (Wenning et al., 2008), we hy-
pothesized that brain age metrics derived from both GM and WM 
features and the neuroanatomical features attributing to brain aging 
were different between MSA and PD. In practice, we estimated modality- 
specific PADs and compared their differences between MSA and PD. We 
then investigated the image features that contributed to the resulting 
PADs in MSA and PD separately and identified the features with marked 
between-disease differences in brain aging contribution. 

Fig. 1. The pipeline of image processing and brain age index estimation. Structural and diffusion MRI data were acquired in each group (A). The structural MRI 
data were analyzed with voxel-based and surface-based morphometry, and the diffusion MRI data were processed with tract-based analysis (B). The quantified image 
features from each modality were used to estimate the brain age measures (C). Finally, the brain-predicted age difference (PAD) for gray matter (GM) and white 
matter (WM), representing brain age metrics, was used for further analyses (D). Besides brain age prediction modeling, spatial normative models of image features 
were established to quantify the structural deviance of brain regions for each participant (E). The estimated correlation magnitude between the structural deviance 
(Z-score) and the brain age measures (PAD) represents the strength of contribution to brain age for each image feature in each brain region (F). 
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2. Materials and methods 

2.1. Participants 

Patients with MSA (N = 23; mean age = 64.6; standard deviation 
[SD] = 5.2; sex: 60.9% men) and PD (N = 33; mean age = 70.0; SD =
8.0; sex: 57.6% men) were recruited from the outpatient clinic of the 
Department of Neurology at National Taiwan University Hospital 
(NTUH) from 2019 to 2020 (Fig. 1A). Clinical diagnoses of MSA and PD 
were established by the consensus diagnostic criteria of Gilman et al. 
(Gilman et al., 2008) and the criteria of the United Kingdom Brain Bank 
(Hughes et al., 1993), respectively, and were conducted by experienced 
neurologists with more than 10 years of experience in this field (M.C. 
Kuo and R.M. Wu). 99mTc-TRODAT-1 imaging was also used to confirm 
the clinical diagnosis (Chou et al., 2004; Lu et al., 2004). Patients with 
similar educational years and duration of disease were included, and 
those with psychiatric disorders, autoimmune disorders, major systemic 
diseases, or other known neurological diseases were excluded. The 
symptoms at initial recruitment were assessed using the Unified Par-
kinson’s Disease Rating Scale (UPDRS) and Hoehn and Yahr Scale for 
both diseases, and the Unified Multiple System Atrophy Rating Scale 
(UMSARS) for patients of MSA. The Montreal Cognitive Assessment 
(MoCA) and Mini-Mental State Examination (MMSE) were employed to 
measure cognitive abilities. We also enrolled 34 HCs (mean age = 65.1; 
SD = 5.6; sex: 52.9% men) who met the following inclusion criteria: the 
MMSE and MoCA score of ≥ 25, no self-reported substance abuse, no 
brain injury and surgery, no current serious health problem, and no 
history of neurological diseases or psychiatric disorders. The Institu-
tional Review Board of NTUH approved the study (approval number: 
201904092RINC), and all participants provided written informed 
consent. 

For brain age modeling, brain MRI images of 482 cognitively normal 
participants (mean age = 36.9, SD = 19.1, range = 14–92; sex: 46.9% 
men) were obtained from the image database used in our previous 
studies (Chen et al., 2020a; Chen et al., 2019), including T1-weighted 
imaging and diffusion spectrum imaging (DSI) datasets; these images 
served as the training set for model building. Another independent set of 
images from 70 cognitively normal participants (mean age = 36.8, SD =
19.9, range = 14–83; sex: 47.8% men) from the database was used to test 
the reproducibility of the brain age models. These 552 participants met 
the aforementioned inclusion criteria for control participants and ethical 
approval. 

2.2. MRI image acquisition 

All brain images, including those from the training and independent 
test sets and those from patients with parkinsonism and their controls, 
were acquired using the same 3-Tesla MRI scanner (Tim Trio; Siemens, 
Erlangen, Germany) with a 32-channel phased-array head coil. High- 
resolution T1-weighted imaging was performed using a three- 
dimensional (3D) magnetization-prepared rapid gradient-echo 
sequence: repetition time/echo time (TR/TE) = 2000/3 ms, flip angle 
= 9◦, field of view (FOV) = 256 × 192 × 208 mm^3, and isotropic spatial 
resolution = 1 mm^3. DSI was performed using a pulsed-gradient spin- 
echo echo-planar imaging sequence with a twice-refocused balanced 
echo: bmax = 4000 s/mm^2: TR/TE = 9600/130 ms, slice thickness = 2.5 
mm, FOV = 200 × 200 mm^2, and in-plane spatial resolution = 2.5 ×
2.5 mm^2. The diffusion-encoding acquisition scheme comprised 102 
diffusion-encoding gradients corresponding to the Cartesian grids in the 
half-sphere of the 3D diffusion-encoding space (Kuo et al., 2008) and 
employed a bipolar diffusion-encoding gradient design to minimize the 
eddy current distortion artifact at the sequence level. Each MRI scan 
included T1-weighted imaging and DSI. 

2.3. Image analysis 

Image quality assurance (QA) was conducted before performing data 
analysis (Supplementary Material S1). All structural and diffusion MRI 
datasets used in this study passed the QA surveillance. For estimating 
brain age, we quantified GM and WM features to predict modality- 
specific brain age metrics (Fig. 1B & C). For GM features, voxel-based 
morphometry and surface-based morphometry were performed on T1- 
weighted images to quantify regional volume and cortical thickness, 
respectively, using the Computational Anatomy Toolbox (Gaser and 
Dahnke, 2016) (Fig. 1B). To estimate the volume of each region of in-
terest (ROI), the LONI probabilistic brain atlas containing 56 ROIs 
(including cortical and subcortical regions) was used as a reference for 
volumetric tissue compartmentation (Shattuck et al., 2008). Surface- 
based morphometry was employed to measure cortical thickness 
through projection-based thickness estimation (Dahnke et al., 2013). 
The estimated thickness features were sampled according to the 68 
cortical ROIs included in the Desikan–Killiany cortical atlas (Desikan 
et al., 2006). In sum, 56 volumetric features and 68 cortical thickness 
features were quantified. 

To quantify WM features, we used an in-house algorithm called tract- 
based analysis (Chen et al., 2015). First, the diffusion indices, including 
generalized fractional anisotropy (GFA) and mean diffusivity (MD), 
derived from the DSI dataset were computed using the regularization 
version of the mean apparent propagator (MAP)-MRI framework 
(Ozarslan et al., 2013). To extract the effective features of WM, GFA and 
MD were sampled according to the spatial coordinates of 45 predefined 
major fiber tract bundles over the whole brain (Chen et al., 2015; Tung 
et al., 2021). After sampling the diffusion indices, we averaged each of 
the indices for each tract bundle, and 45 GFA and 45 MD features were 
obtained per participant to estimate WM-based brain age. The details of 
image processing are provided in Supplementary Material S2. Also, the 
parcellation of GM and WM ROIs is detailed in Supplementary Material 
S4. 

2.4. Brain age modeling and estimation 

GM-based and WM-based brain age prediction models were estab-
lished using the training set’s GM and WM features, constituting 124 and 
90 features, respectively (Fig. 1D). The sex factor was also included as a 
predictor in the models. We employed a 12-layer feed-forward cascade 
neural network architecture to predict brain age (Chen et al., 2020a). 
The loss function of model optimization was specified as a mean square 
error function. A 10-fold cross-validation procedure was adopted within 
the training set to estimate model performance. The training procedure 
was implemented using MATLAB R2019a (MathWorks Inc., Natick, MA, 
USA) with an NVIDIA GeForce RTX 2080Ti (NVIDIA Inc., Santa Clara, 
CA, USA) graphics processing unit for accelerated computing. The 
trained models were also applied to the test set for the evaluation of 
reproducibility. To quantify model performance, Pearson’s correlation 
coefficient and mean absolute error (MAE) between predicted age and 
chronological age were calculated. After the model performance was 
determined, we estimated the GM-based and WM-based PAD scores in 
MSA, PD, and HC groups for further analyses. Notably, given that the 
PAD directly derived from brain age models may have age-related bias 
according to previous reports (Smith et al., 2019), we used a well- 
established linear correction method proposed by Cole et al. to mini-
mize the bias (de Lange and Cole, 2020). 

2.5. Spatial normative modeling for image features 

To estimate regional contributions of image features to brain age, we 
estimated the magnitude of regional alteration for each brain area and 
tract bundle through spatial normative modeling (Fig. 1E). The spatial 
normative modeling applied to neuroimaging features of a large-scale 
cognitively normal population-based cohort defines a normative range 
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of neurobiological idiosyncrasies such as GM volume and WM micro-
structure, providing personalized statistical inferences useful for parsing 
the heterogeneity in clinical cohorts (Verdi et al., 2021a; Verdi et al., 
2021b). Specifically, we employed the Gaussian process regression to 
establish spatial normative models for each neuroimaging feature at 
each ROI using the same training set for brain age modeling (Chen et al., 
2019). Based on a cognitively normal population-based cohort given a 
certain age and sex, the normative models defined a statistical norm for 
each structural feature (Tung et al., 2021). This method allows the 
quantification of structural deviance of an individual from the norm. 
This deviance was equivalent to a standardized score (Z-score) and 
served as a measure of the structural integrity for each brain region. 
After ROI-based normative models were established, the normative 
models were applied to patients with MSA and PD to calculate the Z- 
score for each brain region. These estimated Z-scores were further used 
to calculate regional contributions to brain age estimates (i.e. PAD) in 
patients with MSA and PD. The details of spatial normative modeling are 
provided in Supplementary Material S3. 

2.6. Statistical analysis 

First, we compared PAD scores among MSA, PD, and HC groups. The 
PAD scores derived from GM and WM were compared using analysis of 
covariance while adjusting chronological age, sex, and education. Post- 
hoc analysis was used to test the difference between groups. The Ben-
jamini–Hochberg method was used to address the multiple comparison 
problem. Partial correlation was employed to examine the correlation 
between GM-PAD and WM-PAD scores in each group while adjusting 
chronological age, sex, and education. In addition, associations of PAD 
measures with multiple clinical variables such as symptom severity and 
cognitive outcomes in MSA and PD were investigated. Moreover, we 
calculated feature importance to identify which regions contributed the 
most to brain aging in patients (Fig. 1F). This analysis consisted of two 
steps: (1) calculating patients’ Z-score profiles of structural features 
using ROI-based spatial normative models and (2) estimating the de-
pendency between patients’ Z-score values and their PAD scores by 
using robust correlation estimation with MM-estimates (Salibian-Bar-
rera, 2006). In step (1), we estimated the degree of deviance of brain 
features with respect to the normal range in terms of the Z-score, which 
indicated the extent of region impairment independent of age and sex. In 
step (2), we evaluated the association between the Z-score of an image 
feature and PAD. The resulting coefficient indicated the effect size of the 
feature association, representing the strength of contribution to the PAD 
score. The strength can reflect feature importance related to brain age in 
patients with parkinsonism, allowing us to investigate the difference in 
brain age contribution between MSA and PD. 

3. Results 

3.1. Characteristics of study participants 

As shown in Table 1, patients with PD were chronologically older 
than patients with MSA and HC. The two patient groups did not exhibit 
significant differences in sex, education, disease duration, UPDRS Part I, 
and MMSE scores. However, patients with MSA had significantly earlier 
age of disease onset, worse motor performance in the Hoehn and Yahr 
stage, higher UPDRS Part II & Part III, and total scores, and lower per-
formance in MoCA than patients with PD. 

3.2. Comparison of PAD among MSA, PD and HC 

The brain age models used in this study achieved satisfactory per-
formance in the training and test sets (Supplementary Material S5). In 
the brain age analysis, although the individual variation of PAD was 
relatively high in the clinical groups, the PAD measures in MSA were 
significantly greater than those in PD and HC. GM-PADs were 9.33 ±

6.7 years in MSA, 0.75 ± 6.9 years in PD, and − 1.48 ± 7.9 years in HC 
(F(2,84) = 11.61, P < 0.001; PD vs. HC: P = 0.532, PD vs. MSA: P = 0.002, 
HC vs. MSA: P < 0.001), indicating increased GM brain age in MSA 
relative to other groups (Fig. 2A). Similarly, WM-PADs were 9.27 ± 8.3 
years in MSA, 1.90 ± 11.7 years in PD, and − 0.74 ± 8.8 years in HC 
(F(2,84) = 4.80, P = 0.011; PD vs. HC: P = 1.000, PD vs. MSA: P = 0.026, 
HC vs. MSA: P = 0.019), revealing premature WM aging in MSA 
compared with PD and HC (Fig. 2B). In the Fig. 2B, some data points in 

Table 1 
Clinicodemographic characteristics of participants in each group.  

Characteristics Patients with 
MSA 

Patients 
with PD 

Healthy 
Controls 

P-values 

N 23 33 34 – 
Age (y) 64.6 (5.2) 70.0 (8.0) 65.1 (5.6) 0.003 

(MSA vs. PD: 
0.007) 
(MSA vs. HC: 
0.715) 
(PD vs. HC: 
0.006) 

Sex (%) 60.9% men 57.6% men 52.9% men 0.832 
Education (y) 10.6 (4.2) 11.1 (4.8) 15.0 (4.2) <0.001 

(MSA vs. PD: 
0.701) 
(MSA vs. HC: 
<0.001) 
(PD vs. HC: 
0.001) 

Age at onset (y) 61.1 (5.2) 65.7 (8.9) – 0.031 
Disease duration 

(y) 
3.5 (2.1) 4.7 (3.1) – 0.114 

MMSE 26.8 [9,30] 27.6 
[22,30] 

29.4 
[28,30] 

0.026 
(MSA vs. PD: 
0.369) 
(MSA vs. HC: 
0.034) 
(PD vs. HC: 
0.001) 

MoCA 20.1 [8,29] 25.1 
[16,30] 

28.3 
[25,30] 

<0.001 
(MSA vs. PD: 
<0.001) 
(MSA vs. HC: 
<0.001) 
(PD vs. HC: 
0.013) 

Subtype MSA-P: 7 
MSA-C: 16 

– – – 

Hoehn & Yahr 
stage 

3.4 (1.0) 
[1,5] 

1.7 (0.7) 
[1,3] 

– <0.001 

UPDRS I 2.5 (1.8) 
[0,6] 

2.3 (1.7) 
[0,6] 

– 0.686 

UPDRS II 17.4 (8.5) 
[1,34] 

5.4 (4.2) 
[1,17] 

– <0.001 

UPDRS III 26.3 (16.3) 
[2,63] 

9.7 (5.9) 
[1,28] 

– <0.001 

UPDRS total 46.2 (24.4) 
[4,103] 

17.4 (9.9) 
[2,46] 

– <0.001 

UMSARS I 19.5 (8.2) 
[3,36] 

– – – 

UMSARS II 20.5 (9.8) 
[1,37] 

– – – 

UMSARS total 40.0 (16.8) 
[6,73] 

– – – 

Note: 
Bold type: with significant difference over groups. ANOVA was used for the 
comparison of age and education across groups. ANCOVA (adjusting for age and 
education level) was used for the comparison of MMSE and MoCA across groups. 
The Chi-squared test was used for the comparison of sex across groups. Two- 
sample t tests were used for the comparison of the rest clinical variables 
(except UMSARS) between MSA and PD. Abbreviations: MMSE, Mini-Mental 
State Examination; MoCA, Montreal Cognitive Assessment; MSA, multiple sys-
tem atrophy; MSA-C, cerebellar subtype; MSA-P, parkinsonian subtype; PD, 
Parkinson’s disease; UMSARS, Unified Multiple System Atrophy Rating Scale; 
UPDRS, Unified Parkinson’s Disease Rating Scale. 

C.-L. Chen et al.                                                                                                                                                                                                                                 



NeuroImage: Clinical 34 (2022) 102997

5

each group seemed to be outliers that deviated downward from the 
mean. To confirm the statistical inference of the WM-PAD comparison, 
we excluded those observations (the lowest two in MSA, three in PD, and 
two in HC) and performed the comparison again. The results showed 
that WM-PADs were 11.01 ± 6.3 years in MSA, 4.44 ± 8.8 years in PD, 
and 0.52 ± 7.3 years in HC (F(2,77) = 6.73, P = 0.002; PD vs. HC: P =
0.087, PD vs. MSA: P = 0.037, HC vs. MSA: P < 0.001), confirming the 
inference of WM-PAD comparison. All P-values shown in this section 
were corrected for multiple comparisons. 

In the partial correlation analysis of PAD measures, a significantly 
positive correlation was found between GM-PAD and WM-PAD in PD (ρ 
= 0.409, P = 0.025), whereas no significant correlation was identified in 
MSA (ρ = 0.074, P = 0.757) and HC (ρ = -0.013, P = 0.949). When 
comparing the difference between each pair of correlation coefficients, 
no significant difference was found (MSA vs. PD: P = 0.212; PD vs. HC: P 
= 0.081; MSA vs. HC: P = 0.763). 

Besides the comparison of PAD measures between MSA and PD, we 
also tested the association of PAD with multiple clinical variables 
including symptom severity, duration of illness, age of disease onset, and 
general cognitive performance in MSA and PD. Briefly, the motor 
function assessed using Part III of UPDRS was positively correlated (ρ =
0.236, P = 0.042) with GM-PAD in MSA, and that assessed using the 
total score of UPDRS was positively correlated (ρ = 0.316, P = 0.036) 
with GM-PAD in PD. Also, the score of Part I of UMSARS was positively 
correlated (ρ = 0.601, P = 0.030) with WM-PAD in the MSA group. The 
detailed statistics and brief discussion are provided in Supplementary 
Material S6. 

3.3. Regional contributions of image feature to PAD in MSA and PD 

We estimated the linear dependency between each image feature and 
PAD. The coefficient of linear dependency indicates the effect size of 
association; the higher the coefficient, the stronger the linear de-
pendency with PAD. Fig. 3 shows the visualization of feature contribu-
tions to PAD and the top 20 features ranked as key ROIs in each patient 
group. In MSA, salient features contributing to GM-PAD included 
reduced cortical volumes in the left middle orbitofrontal gyrus, right 
inferior occipital gyrus, left cingulate gyrus, and left lateral orbitofrontal 
gyrus and decreased thickness in the right transverse temporal gyrus and 
left superior frontal gyrus (Fig. 3A). In PD, reduced volumes in the left 
cuneus, bilateral precentral gyri, and right superior parietal gyrus and 
thinner thickness in the right transverse temporal gyrus and left pre-
central gyrus were identified as strong contributors to GM brain aging 
(Fig. 3I). Among the identified features, the volumes in the right fusi-
form gyrus and left cingulate gyrus and the thickness in the right 

transverse temporal, inferior temporal, and precentral gyri were the 
features common to MSA and PD (Fig. 3A and 3I). In general, volume 
and cortical thickness had comparable contributions to brain age in MSA 
and PD (Fig. 3B and 3 J), and the contributing features did not show 
apparent inter-hemispheric lateralization (Fig. 3B and 3 J). As for the 
regional distribution, the frontal lobe appeared to contribute the most in 
PD, whereas there was no particular area with a leading contribution in 
MSA (Fig. 3B and 3 J). The brain mapping of contribution strengths (in 
terms of the effect size of linear correlation) was visualized in Fig. 3E, 
3F, 3 M, and 3 N. 

Regarding the features contributing to WM-PAD, the MD measures of 
the corpus callosum of the prefrontal lobe (genu), parietal lobe, and 
temporal lobe and the bilateral fornices had contribution strengths 
exceeding 0.6 in MSA (Fig. 3C). By contrast, in PD, only the GFA mea-
sures of the right uncinate fasciculus had an association strength larger 
than 0.6 (Fig. 3K). Generally, MD appeared to have stronger contribu-
tions than GFA in both MSA and PD (Fig. 3D and 3L), but MSA had much 
higher contribution strengths than did PD. Globally speaking, the 
contribution of the corpus callosum was most prominent in both MSA 
and PD, with slightly right hemispheric lateralization (Fig. 3D and 3L). 
The brain-wise mapping of contribution strengths was visualized in 
Fig. 3G, 3H, 3O, and 3P. 

To observe the difference in contributing features between MSA and 
PD, we highlighted features that had an absolute difference of greater 
than 0.3 in coefficients (i.e. medium effect size difference) between MSA 
and PD. Several GM regions and WM tracts were identified to be distinct 
in their contributions to brain aging (Table 2). Most of the features had 
more weights in MSA than in PD whereas only GFA in the right uncinate 
fasciculus showed more weights in PD. GM features such as the left 
middle orbitofrontal gyrus, right lateral orbitofrontal gyrus, and right 
inferior parietal gyrus were more correlated with the GM-PAD changes 
in MSA compared to PD. On the other hand, WM features related to the 
thalamic radiations and corpus callosum were more associated with the 
WM-PAD of MSA. These selected features might potentially relate to the 
difference in brain age between MSA and PD. 

4. Discussion 

To our knowledge, this is the first study employing the brain age 
paradigm to investigate image idiosyncrasies in MSA and PD. We 
observed that patients with MSA had advanced brain age of 9.33 and 
9.67 years in GM-PAD and WM-PAD, respectively. In contrast, patients 
with PD had relatively normal brain age (0.75 years in GM-PAD and 
1.90 years in WM-PAD), underlining the feasibility of using brain age as 
imaging markers to distinguish the two diseases. Moreover, we expand 

Fig. 2. Comparison of modality-specific PADs among PD, MSA, and HC. One, two, and three asterisks denote the significant level at P < 0.05, P < 0.01, and P <
0.001, respectively. 
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Fig. 3. Linear contributions of each brain region to PADs in MSA and PD based on different imaging modalities. Higher effect sizes of correlation indicate 
stronger linear relationships between image features (Volume and CT for GM-PAD; MD and GFA for WM-PAD) and brain age metrics (A, C, I, and K). The percent 
ratio of regional contributions based on macroscopic parcellation is provided for each group and feature type (B, D, J, and L). The visualization of global contribution 
based on each image feature is shown in the bottom panel of this figure (E-H and M− P). The color spectrum in the brain maps indicates the coefficients of effect size. 
The arrows shown in the Panel E, H, M, and O indicate the most salient regions (i.e. the features with the highest effect size) of the gray matter and white matter in 
MSA and PD (left middle orbitofrontal gyrus in Panel E, corpus callosum of genu in Panel H, left cuneus in Panel M, and right uncinate fasciculus in Panel O). The 
code of labeling consists of feature type, hemisphere, and anatomical regions; for example, GFA R UF indicates the GFA of the right uncinate fasciculus. Abbreviation: 
Asso: association fiber system, Callo: callosal fiber system, CT: cortical thickness, Front: frontal lobe, GFA: generalized fractional anisotropy, MD: mean diffusivity, 
Occip: occipital lobe, Parie: parietal lobe, Proj: projection fiber system, Temp: temporal lobe, Vol: volume. The full name of neuroanatomical regions (A, C, I, and K) is 
provided in Supplementary Material S4. 
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the scope of brain age paradigm with normative modeling of image 
features, exploring the neuroanatomical alterations in MSA and PD. The 
findings could enrich the knowledge of neuropathological difference in 
MSA and PD behind the difference in brain age. 

To date, only two studies investigate brain age in PD (Beheshti et al., 
2020; Eickhoff et al., 2021). Beheshti et al. found that PD had GM-based 
brain age (average: +2.12 years) slightly higher than HC, but signifi-
cantly lower than AD (average: +9.07 years). Another recent study also 
showed that GM-based brain age in PD was moderately higher (average: 
+2.9 years) than that in the normal cohort (Eickhoff et al., 2021). Both 
studies demonstrated that the advanced GM-based brain age in PD was 
mild to moderate as compared with HCs, which is consistent with our 
findings. Herein, our study extended similar findings to the WM-based 
brain age. 

Unlike PD, advanced GM brain aging was found in MSA. In a lon-
gitudinal study, Paviour et al. reported that the atrophy rate of total or 
regional brain structures in PD was not significantly different from that 
in HC (Paviour et al., 2006), but patients with MSA showed faster 
atrophic changes, particularly in volumes of the midbrain, pons, and 
cerebellum than did patients with PD and HC. These findings imply that 
apparent GM-based brain aging may exist in MSA, but not in PD. Using 
the brain age paradigm, we found that GM-PAD was partly correlated 
with the severity of motor symptoms in both diseases. We also found that 
altered GM volume and cortical thickness in areas other than putamen, 
caudate, and cerebellum contributed strongly to the advanced GM brain 
aging in MSA. Therefore, we speculate that motor impairment might 
involve more extensive GM changes in MSA. 

As for diffusion MRI, Ji et al. reported that MSA with the parkinso-
nian type had altered WM diffusivity in the bilateral corticospinal tracts 
and left anterior thalamic radiation as compared with PD and HC (Ji 
et al., 2015). Extensive WM abnormalities might reflect the pathological 
hallmark of GCIs in oligodendrocytes (Del Campo et al., 2021), which 
contribute to sophisticated functional deficits such as dysphagia (Clark 

et al., 2021), gait impairment (Chen et al., 2020b), and autonomic 
dysfunction (Snir et al., 2019) as shown in other diseases. These reports 
are in line with our findings in MSA that WM-PAD was positively 
correlated with functional impairment as graded by the UMSARS Part I 
scores. Interestingly, we demonstrated correlated GM-PAD and WM- 
PAD in PD but not in MSA or HC. This finding partly supports the 
prion-like spreading of alpha-synuclein in PD to initially unaffected 
cortexes and tracts through structural network connections (Taylor 
et al., 2018). Non-synchronization of GM and WM aging processes in 
MSA might reflect preferential WM involvement in its early stage. 

Using spatial normative modeling, we quantified the structural 
deviance of image features and estimated the strength of each feature 
contributing to overall brain age metrics. From the results, we found 
markedly different contribution strengths between MSA and PD. Our 
results indicated that in the GM regions the orbitofrontal gyri presented 
markedly different contribution strengths between MSA and PD 
(Table 2). In fact, the atrophy of the orbitofrontal lobe in MSA was re-
ported previously (Chang et al., 2009). Lee et al. used fluorodeox-
yglucose positron emission tomography (FDG-PET) and identified 
multiple cortical regions with metabolism dysfunction, including the 
orbitofrontal area, as the hallmark of early MSA (Lee et al., 2008). 
Moreover, the reduced FDG uptake in the orbitofrontal lobe was 
correlated with disease severity and duration more significantly than in 
other dysfunctional regions (Lee et al., 2008). In a pathological–clinical 
correlation study, the deposition of GCI in the orbitofrontal cortex was 
correlated with disease severity more than that in other cortical regions 
(Brettschneider et al., 2018). Together, these studies support that the 
morphological changes in the orbitofrontal regions may be pivotal for 
driving the advanced GM aging in MSA. 

The WM features with markedly different contributions to brain 
aging mainly involved the uncinate fasciculus, thalamic radiations, and 
corpus callosum (Table 2). Interestingly, these features predominantly 
showed higher contributions in MSA than PD, except for the right un-
cinate fasciculus which exhibited higher contributions in PD than MSA. 
The finding implies that the uncinate fasciculus might be more suscep-
tible to neurodegeneration in PD. Consistently, the dysfunction of ex-
ecutive control was found to be the characteristic cognitive deficit in PD 
(Green et al., 2002), which was presumably related to the altered 
integrity of the uncinate fasciculus that interacted with the control 
systems in the prefrontal areas (Di Tella et al., 2020). 

We found extensive WM tracts contributing to the advanced brain 
aging in MSA, especially those connecting cortical and subcortical re-
gions. Our findings may help characterize tract alteration patterns in 
MSA (Chelban et al., 2019). In addition to the cerebellum and brainstem, 
previous studies have found extensive WM alterations in the superior 
corona radiata, body of the corpus callosum, and external and internal 
capsules (Péran et al., 2018). Alterations were also observed in motor 
fiber pathways including the left corona radiata to the bilateral posterior 
limbs of the internal capsule, cerebral peduncles, and bilateral middle 
cerebellar peduncles (Nguyen et al., 2021). These findings may reflect 
the pathological hallmark of MSA, i.e. the α-Syn-formed GCI is exclu-
sively found in WM-related myelin-forming oligodendrocytes (Jellinger, 
2018). Ishizawa et al. reported that GCI and microglial activation 
showed a higher correlation with demyelination in WM than with 
neuronal injury in GM (Ishizawa et al., 2008). The WM-restricted neu-
roinflammation may be a precipitating factor of the advanced WM aging 
in MSA (Hoffmann et al., 2019). Our findings of the extensive tract 
involvement in the WM brain aging in MSA may support the patho-
genesis of MSA. 

This study has limitations. First, the sample size was relatively small 
which might result in non-significant associations between brain age 
measures and image features, or overlapped variations in PAD between 
groups. Our results need to be validated by studies with larger cohorts. 
Second, the contributing features identified in our analyses might shift 
their strengths depending on the disease course, different prediction 
models, bias adjustment techniques, image processing, and brain 

Table 2 
GM and WM features with marked difference in brain age contribution (i.e. 
effect size of linear dependency) between MSA and PD. The features were 
selected by having the difference in association effect size greater than 0.3 be-
tween MSA and PD. The strengths of brain age contribution in HC are provided 
as a reference. The abbreviation of each image feature is provided in Supple-
mentary Material S4. ΔES = difference of effect size.  

Measures ROIs MSA PD HC ΔESMSA-PD 

GM Vol L Mid OrbFron Gy  0.700  0.220  0.353  0.479  
R Lat OrbFron Gy  0.527  0.106  0.496  0.421  
R Inf Occi Gy  0.652  0.325  0.577  0.327  
R Gy Rectus  0.574  0.254  0.290  0.320 

GM CT R Inf Parie Gy  0.501  0.068  0.365  0.433  
R PostCen Gy  0.502  0.103  0.519  0.400  
R SupraMar Gy  0.462  0.102  0.523  0.360  
L Insula  0.338  0.020  0.407  0.318 

WM GFA R UF  0.109  0.617  0.008  − 0.507  
L TR Opt  0.604  0.261  0.358  0.343  
CC Parie  0.542  0.222  0.062  0.320 

WM MD L TR Opt  0.595  0.117  0.504  0.478  
CC Parie  0.683  0.277  0.502  0.406  
R ILF  0.444  0.041  0.143  0.403  
L TR SM  0.42  0.034  0.262  0.387  
L IFOF  0.595  0.225  0.427  0.370  
R TR Aud  0.427  0.076  0.340  0.351  
R TR Opt  0.475  0.129  0.392  0.346  
CC Temp  0.651  0.349  0.512  0.302 

Abbreviation: CC: corpus callosum, CT: cortical thickness, GFA: generalized 
fractional anisotropy, GM: gray matter, Gy: gyrus, IFOF: inferior frontal occipital 
fasciculus, ILF: inferior longitudinal fasciculus, Inf: inferior, Lat: lateral, L: left, 
MD: mean diffusivity, Mid: middle, OrbFron: orbitofrontal, Parie: parietal lobe, 
PostCen: post central, R: right, SupraMar: supramarginal, Tem: temporal, TR 
Aud: thalamic radiation of auditory part, TR Opt: thalamic radiation of optic 
part, TR SM: thalamic radiation of sensorimotor cortex, UF: uncinate fasciculus, 
Vol: volume, WM: white matter. 
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atlases. For example, infratentorial structures such as the midbrain, 
pons, and cerebellum that are conventionally recognized as MSA- 
relevant brain regions were less weighted in our models. Whether 
these identified cerebral features could serve as biomarkers for differ-
ential diagnosis or prognosis remains to be explored. A longitudinal 
study is warranted to delineate their changes across disease stages. 
Finally, the patients with MSA had lower cognitive scores than did PD, 
which might be a confounding factor in our analysis. However, this 
concern is partially alleviated by our supplementary correlation analysis 
(Supplementary Material S6), which showed no significant correlations 
of PAD with MoCA and MMSE. 

The present study explored the structural characteristics of brain 
aging status in MSA and PD, and obtained three novel findings. First, 
MSA, but not PD, exhibited advanced brain aging in both GM and WM 
compared to HC. Second, brain age measures can partly reveal the as-
sociations with symptom severity. Finally, we identified the neuroana-
tomical features underlying the brain age difference between MSA and 
PD. The most salient features included the orbitofrontal gyrus and 
anterior/central corpus callosum in MSA and the cuneus and uncinate 
fasciculus in PD. Given the unmet need of discriminating MSA from PD 
in the early stage, our results enrich the knowledge of neuropathological 
difference in MSA and PD, and might become potentially useful imaging 
biomarkers for early differential diagnosis of MSA and PD. 
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