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A B S T R A C T   

Investigating the spatial epidemic dynamics of COVID-19 is crucial in understanding the routine of spatial 
diffusion and in surveillance, prediction, identification and prevention of another potential outbreak. However, 
previous studies attempting to evaluate these spatial diffusion dynamics are limited. Using city as the research 
unit and spatial association analysis as the primary strategy, this study explored the changing primary risk factors 
impacting the spatial spread of COVID-19 across Chinese cities under various diffusion assumptions and 
throughout the epidemic stage. Moreover, this study investigated the characteristics and geographical distri-
butions of high-risk areas in different epidemic stages. The results empirically indicated rapid intercity diffusion 
at the early stage and primarily intracity diffusion thereafter. Before countermeasures took effect, proximity, 
GDP per capita, medical resources, outflows from Wuhan and intercity mobility significantly affected early 
diffusion. With speedily effective countermeasures, outflows from the epicenter, proximity, and intracity out-
flows played an important role. At the early stage, high-risk areas were mainly cities adjacent to the epicenter, 
with higher GDP per capita, or a combination of higher GDP per capita and better medical resources, with more 
outflow from the epicenter, or more intercity mobility. After countermeasures were effected, cities adjacent to 
the epicenter, or with more outflow from the epicenter or more intracity mobility became high-risk areas. This 
study provides an insightful understanding of the spatial diffusion of COVID-19 across cities. The findings are 
informative for effectively handling the potential recurrence of COVID-19 in various settings.   

1. Introduction 

The COVID-19 pandemic is impacting all of us. The symptom onset 
date of the first identified case was on Dec 1, 2019, in Wuhan, China 
(Huang et al., 2020). Since then, the virus has spread across cities and 
countries and gradually led to an ongoing worldwide pandemic. 
Although various efforts have been made to bring the disease under 
control and many high-income countries have managed to build a robust 
testing system, implement widespread vaccinations and provide timely 
and accessible treatments, globally, it continues to wreak havoc (WHO, 
2022) and COVID-19 resurgence has been frequently and widely re-
ported (Basov et al., 2022; Fox News, 2022). Vaccines are critical tools in 
protecting people against diseases caused by many variants (Lopez 
Bernal et al., 2021) and ending the pandemic. However, vaccines are not 
100% protective, and there are vaccine breakthrough infections 

(Juthani et al., 2021). The distribution of vaccines is heavily skewed 
with more than half of the planet being currently unvaccinated (Alt-
mann and Boyton, 2022). Moreover, given the currently rapid trans-
mission worldwide, both the evolution rate and the risk of the 
emergence of new variants are very high. Because the primary series 
vaccines show reduced effectiveness against new variants such as Om-
icron (WHO, 2022), vaccines alone cannot end the pandemic (Zhao 
et al., 2021). Being well informed about the disease and its transmission 
process is also vital in solving the pandemic and accelerating global 
recovery. 

The impacts of the COVID-19 pandemic on the health system and 
economy have been devastating (Gössling et al., 2020). Because a 
widespread uptake of vaccines and accessible treatments are still un-
derway, a thorough understanding of the linked features is necessary. To 
date, numerous studies have explored genomic, epidemiological, 
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clinical and laboratory features, as well as possible treatments and 
clinical outcomes (Huang et al., 2020). The effectiveness of non-
pharmaceutical interventions has been estimated (Tian et al., 2020; 
Ferguson et al., 2020), and the transmission dynamics have been 
modeled (He et al., 2020; Kissler et al., 2020; Zhang et al., 2020). 
Moreover, the role of meteorological features in affecting transmission 
has received extensive scientific attention (Rahman et al., 2021), and 
there are some cross-sectional studies working on social environmental 
factors (Hu et al., 2020; Lee et al., 2021). However, due to a lack of a 
thorough understanding of the whole transmission process, researchers 
are still contemplating why and how COVID-19 spreads in colleges (Bahl 
et al., 2021), across cities (Coşkun et al., 2021), and among countries 
(Lin et al., 2020). 

The values of spatially located data, such as infectious diseases, are 
very likely to be related to space (Meng et al., 2005). In epidemiology, 
the spatial pattern of diseases can provide information useful in 
capturing important facets of their diffusion processes (Kanga et al., 
2020). Although spatial analysis is of great help in understanding the 
route of transmission (Meng et al., 2005), a spatial investigation of 
COVID-19 is still lagging. Moreover, although the spatial linkages be-
tween areas and the spatial patterns of high-risk areas are helpful in 
surveillance, prediction, identification and prevention (Wang et al., 
2006), research on these issues is far from sufficient. 

As the first country hit by COVID-19, China reported its first case at 
the end of December 2019 (Wuhan Municipal Health Commission, 
2019), and declared the peak to be over on March 13, 2020 (XinhuaNet, 
2020). According to governmental documents (Wuhan Municipal 
Health Commission, 2020), the symptom onset date of the first 
confirmed case was December 8, 2019, instead of December 1 as re-
ported in the literature (Huang et al., 2020). The virus spread rapidly at 
the early stage, during which effective countermeasures were not taken 
until the lockdown of Wuhan city on January 23, 2020. Subsequently, 
numerous intervention measures were implemented (Burki, 2020). On 
February 16, National Health Commission (NHC) spokesman Mi Feng 
said that controls had started to rein in the virus (Reuters, 2020). On 
March 12, the peak of this outbreak originating in Wuhan was officially 
declared to be over (XinhuaNet, 2020). Therefore, going through both a 
rapid diffusion stage and an effective control process, China provides an 
ideal case to investigate the spatial diffusion of COVID-19 through an 
entire epidemic phase. Moreover, spatial scales matter in studying the 
spatial spread and spatial association of infectious diseases (Wang and 
Di, 2020; Mu et al., 2020). There are hundreds of cities in China, and 
they vary in their physical, social, cultural, and economic environments 
and COVID-19 outcomes. Thus, the city makes a potentially interesting 
research unit. However, studies on the spatial diffusion dynamics of 
COVID-19 across cities are rare. 

Spatial association is vital in understanding the spatial linkage and 
diffusion of infectious diseases (Kanga et al., 2020). Using spatial asso-
ciation as the primary analytic strategy, this study explored the spatial 
diffusion dynamics of COVID-19 across Chinese cities. Various spatial 
connection assumptions regarding the potential risk factors were 
considered. Sociodemographic factors, such as population, population 
density, household size, and socioeconomic factors, such as GDP per 
capita, urbanization, green space, and medical resources, whose signif-
icance in the diffusion of infectious diseases are widely documented 
(Meng et al., 2005; Kanga et al., 2020; Mu et al., 2020; Lee et al., 2021), 
were considered. Moreover, given the importance of population move-
ment in shaping the spatiotemporal patterns of epidemics (Balcan et al., 
2009), we also included large-scale mobile phone mobility data. Second, 
to identify the primary epidemic factors at different diffusion stages, the 
temporal evolution of spatial association was investigated. Finally, to 
detect high- and low-risk areas under various hypothetical diffusion 
processes, the geographical distribution of city clusters defined by 
various factors was presented. The originality of this study concerns an 
exploration of the spatial dynamics of COVID-19 across cities through an 
entire phase. Our findings provide a valuable reference in responding to 

another potential outbreak of infectious diseases in addition to 
COVID-19 in various settings. 

2. Methodology 

2.1. Research unit 

A total of 357 mainland cities were included. Among them, 4 were 
provincial-level municipal cities directly under the administration of the 
central government, 15 were vice-provincial cities, 318 were prefecture- 
level cities, and 20 were county-level cities directly under the admin-
istration of the province or autonomous region. Their geographical 
distribution can be seen in Supplementary Figure 1. 

2.2. Study period 

The study period was January 19, to March 15, 2020, which covered 
the whole contagion process of local cases. A brief timeline is listed. On 
January 19, Shenzhen city in Guangdong Province detected its first 
confirmed case, which was the first reported outside of Wuhan in 
mainland China. By January 23, a total of 117 cities in 29 of the 31 
provinces (or municipal cities) had confirmed cases. By January 29, a 
total of 288 cities in all 31 provinces (or municipal cities) had reported 
confirmed cases. By February 13, approximately 90 percent of cities had 
confirmed cases. With the transmission being brought gradually under 
control, China started to make dynamic adjustments on February 21 to 
support a flexible resumption of work and life and downgrade the 
emergency level. On March 12, the peak of the outbreak was declared to 
be over. At a press conference on March 16, Mi Feng said that curbing 
imported cases had become the top priority (National Health Commis-
sion, 2020). 

2.3. Data sources 

Epidemic data. Daily morbidity and newly confirmed cases were 
used. Morbidity was calculated by dividing accumulated confirmed 
cases by population. National-level daily aggregated data were acquired 
from the COVID-19 data repository operated by the Center for System 
Science and Engineering at Johns Hopkins University (JHU CSSE) (htt 
ps://github.com/CSSEGISandData/COVID-19). JHU CSSE data aggre-
gates local media and government reports to provide cumulative total 
cases in near real-time at the provincial level in China (Dong et al., 
2020). Except for county-level cities, city-level data were acquired from 
the China Data Lab (CDL) (https://projects.iq.harvard.edu/chinadatala 
b). CDL collects data from Ding Xiang Yuan (https://ncov.dxy.cn/ncov 
h5/view/pneumonia), a professional platform in the medical field 
providing authoritative public information. Both JHU CSSE and CDL are 
popular among the research communities in providing reliable 
officially-reported COVID-19 information (Muhareb and Giacaman, 
2020; Liu, 2021). Data for county-level cities were acquired from the 
official website of the local health commission. Given that imported 
cases were constantly reported since late February, to ensure accuracy, 
we manually crosschecked JHU CSSE and CDL data with daily issued 
official data. Any contradiction was fixed according to official data. 

Sociodemographic data. Living in crowded conditions and frequent 
human contact are major risk factors for infectious diseases (Kanga 
et al., 2020; Lee et al., 2021; Meng et al., 2005; Tian et al., 2018); thus, 
population scale, population density and household size were included 
as potential factors. Because this outbreak covered the Chinese Spring 
Festival, during which the enormous “floating” population returned to 
their home of origin to celebrate the Lunar New Year, we used the total 
number of registered household members as the measure of population. 
We divided the population by administrative area to generate popula-
tion density. Household size was the average number of family members 
per household. Sociodemographic data were collected from the 2019 
China City Statistical Yearbook (Department of Urban Surveys, 2019), 
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the 2019 China County Statistical Yearbook (Department of Rural Sur-
veys, 2019), and the annually posted Statistical Bulletin of National 
Economic and Social Development from the local government website. 

Socioeconomic data. Economically and socially marginalized areas 
and persons are more vulnerable to infectious diseases (Gardner et al., 
2018; Karimi et al., 2021; Mu et al., 2020). Therefore, indicators such as 
urbanization, GDP per capita and medical resources were included. 
Moreover, green space was also considered for being closely related to 
socioeconomic level and opportunities for outdoor activities without the 
fear of poor ventilation (Allen and Marr, 2020; Lee et al., 2021). Ur-
banization is measured by the proportion of the urban resident popu-
lation to the total population. Medical resources included the total 
number of hospitals, hospital beds, and licensed (assistant) doctors and 
the number of hospitals per 100 000 persons, hospital beds per 1000 
persons, and licensed (assistant) doctors per 1000 persons. Green space 
was measured by the percentage of green covered area to the completed 
area. Socioeconomic data were from the 2019 China City Statistical 
Yearbook, the provincial-level 2019 Statistical Yearbook, the 
county-level 2019 Statistical Yearbook, and the annually posted Statis-
tical Bulletin of National Economic and Social Development from the 
local government website. 

Migration data. Before Wuhan’s lockdown at 10 a.m. on January 
23, the number of reported cases was estimated to count merely 14% of 
the total confirmed cases (Li et al., 2020). According to Xianwang Zhou, 
Mayor of Wuhan, before the quarantine, more than 5 million people had 
left (The Guardian, 2020). Moreover, many of the early confirmed cases 
in other cities were epidemiologically related to Wuhan (Sun et al., 
2020). Therefore, the outflows from Wuhan to other cities before lock-
down are deemed important. Besides, given the infectious feature of 
COVID-19, migration data both between and within cities are essential. 
Because people in other cities were still moving, the intercity movement 
data are therefore important. Similarly, although under drastic control 
measures, there were people within cities still on the move, thus the role 
of intracity movement is also considered. 

Migration data were scraped from the Baidu Migration website 
(https://qianxi.baidu.com/). We collected daily outflows from Wuhan 
from January 1 to 23, which covered the massive migration period due 
to the festival (January 10 to 23, 2020) before the lockdown. We also 
collected each city’s inter- and intracity movement data from January 1 
to March 31. All the migration data were presented in a movement index 
with regional and temporal comparisons enabled. 

2.4. Methodology 

Mapping spatial distribution. There is an intrinsic variance insta-
bility in rate data, i.e., the precision of the rate is inversely proportional 
to the scale of the population at risk (Anselin et al., 2006). To minimize 
the potentially large standard error estimated from small populations, 
Empirical Bayes smoothing technique (EB) was applied. EB calculates a 
weighted average between the raw rate of each unit and their average, 
with weights proportionally related to the scale of the population 
(Anselin, 2018). The EB estimate for COVID-19 morbidity in city i is 

rEBM
i =ωiri + (1 − ωi)μ  

ωi =
σ2

(σ2 + μ/Ni)

with ri and rEBM
i as raw and EB smoothed morbidity, ωi as weight, which 

ranges from 0 to 1 and is positively related to population Ni, μ as the 
overall average of morbidity, and σ2 as the overall variance. 

The estimates of μ and σ2 are given by 

μ=
∑i=n

i=1
Ci

/
∑i=n

i=1
Ni  

σ2 =

∑i=n
i=1Ni(ri − μ)2

∑i=n
i=1Ni

−
μ

∑i=n
i=1Ni

/
n  

where n is the total number of cities, and Ci is the number of confirmed 
cases in city i. 

Measuring spatial diffusion. Spatial autocorrelation was used to 
explore daily spatial patterns. Being arguably the most commonly used 
indicator of global spatial autocorrelation (Anselin, 2020), Moran’s I 
with various definitions of distance was applied. The formula of Moran’s 
I is 

I =

∑
i
∑

jωij(yi − y)
(
yj − y

)/∑
i
∑

jωij
∑

i(yi − y)2/n  

with i and j as city indices, ωij as the distance between city i and j, yi and 
yj as the number of newly confirmed cases (formula for morbidity is 
illustrated later), and y as the daily mean of confirmed cases. Moran’s I 
ranges from − 1 to 1, with higher absolute values indicating stronger 
spatial autocorrelation. Moran’s I statistic with pseudo p-value being 
stably less than 0.05 under different permutations indicated 
significance. 

There are clear city-level differences in population density (see 
Supplementary Figure 2). For varying population densities, when the 
variable of interest is a rate, to acquire the correct Moran’s I, EB stan-
dardization was suggested (Assunção and Reis, 1999). Different from the 
EB smoothing technique, which computes for a smoothed version, EB 
standardization turns the crude rate into a transformed standardized 
random sample with zero mean and unit variance. Therefore, EB stan-
dardization minimizes the variance instability problems in rate data. 
The equation to calculate EB standardized morbidity rEBT is 

rEBT
i =

ri − μ
̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
σ2 + (μ/Ni)

√

A set of 17 models, namely, 17 different ways to define distance, 
were used to generate weights and to calculate spatial autocorrelation. 
The one-order queen contiguity-based weights were applied in Model 1. 
To further explore the impact of proximity, Model 2 used k-nearest 
neighbor weights (KNN) (k = 6 to avoid isolates). Model 3 used ur-
banization. Model 4 used GDP per capita. Population and population 
density were considered in Models 5 and 6. In Model 7, average 
household size was used. Model 8 considered the role of green covered 
areas. The roles of medical resources were investigated in Models 9 
through 14. Outflows from Wuhan were considered in Model 15. Spe-
cifically, in analyzing spatial diffusion from January 19 to 23, accu-
mulated outflows from January 1 to 18 were used. Since January 24, 
data from January 1 to 23 were used. Model 16 and Model 17 considered 
respectively the role of inter- and intracity mobility. A series of daily 
updated weight matrices were generated. Considering the approxi-
mately 4-day incubation period (Guan et al., 2020), the approximately 
3-day median time from symptom onset to diagnosis, and the 7-day time 
lag from infection to report in China since late January (WHO, 2020), we 
assumed that the reported outcome at Day t was associated with 
mobility data at Day t-7 or earlier. Therefore, in measuring the spatial 
diffusion of morbidity at Day t, accumulated data from January 1 to Day 
t-7 were applied. For newly confirmed cases at Day t, mobility data at 
Day t-7 were used. This strategy is in accordance with the extant liter-
ature (Mu et al., 2020). Given that different definitions of spatial weights 
may generate different matrices and therefore different results, to verify 
the robust role of proximity, we compared Moran’s I when the conti-
guity queen and rook, distance band, KNN, inverse distance band and 
inverse KNN were respectively used. 

In investigating the spillover between areas in subjects such as 
resource utilization efficiency and house price, previous studies argued 
that it was neither a simple function of spatial propinquity nor a simple 
function of socioeconomic factors. Instead, a combination of spatial and 
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economic distance might be more plausible (Sun et al., 2014). Similarly, 
in analyzing the spatial diffusion of COVID-19, we inferred that large 
cities might be less remote than their geographical separation would 
imply because of their smaller socioeconomic distance. Thus, we further 
used a set of compound weight matrices combining geographical dis-
tance with social factors. Referring to the literature (Anselin and Bera, 
1998; Fingleton and Le Gallo, 2008), compound matrix ωC

ij was a com-
bination of inverse socioeconomic distance and a negative exponential 
function of Euclidean distance dij between cities i and j 

ωC
ij =

[
1
/ ⃒
⃒xi − xj + 1

⃒
⃒
]
*exp

(
− β * dij

)

where xi and xj are observations on “meaningful” social characteristics. 
β is the distance decay rate and is set as 100 following the literature. 

To understand the location of clusters or outliers provided by global 
spatial autocorrelation, a local indicator of spatial association (LISA) 
was used to acquire the local Moran’s I statistic. The equation of the 
Local Moran statistic is given by 

Ii =

∑
jωij(yi − y)

(
yj − y

)/∑
i
∑

jωij
∑

i(yi − y)2/n 

Local Moran’s I was calculated for models having significant Moran’s 

I and exhibiting sharp temporal change (from significant to not signifi-
cant or vice versa). Given that in China, GDP per capita is closely related 
to many other factors, such as population, urbanization, population 
density, household size, medical facilities and mobility (see Supple-
mentary Table 1). To understand in-depth the spatial patterns of clus-
ters, we further applied conditional maps to present the distribution of 
LISA in cities divided by a combination of GDP per capita and certain 
risk factors. For example, in the conditional LISA map for outflows from 
Wuhan, we generated a matrix of maps determined by outflows from 
Wuhan on the horizontal axis and GDP per capita on the vertical axis 
(both axes were dichotomized by median values). In calculating the LISA 
for morbidity, EB standardization was applied. Reference distribution 
approach was used to assess significance. 

3. Results 

3.1. Descriptive information of COVID-19 and potential risk factors 

Cities situated in Central China had the highest value of total 
confirmed cases, followed by cities situated in Eastern China. In 
contrast, the majority of cities situated in Western and Northeastern 
China fell into the 1st or 2nd quartile (Fig. 1(a)). Compared to that of 
confirmed cases, regional differences in morbidity were more visible, 

Fig. 1. City-level total confirmed cases and morbidity in mainland China, March 15, 2020. (a) Total confirmed cases. (b) Crude morbidity. (c) EB smoothed 
morbidity. (d) Scatter plot of crude morbidity vs. EB smoothed morbidity. 
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with many Central China cities falling into the 4th quartile (Fig. 1(b) and 
(c)). The EB smoothing technique slightly changed the spatial pattern, 
lowering rates in some Western cities (Fig. 1(c)). EB smoothing tech-
nique mainly smoothed morbidity values less than 20 (1/100 000) 
(Fig. 1(d)). 

This epidemic lasted for approximately 8 weeks. There was a rapid 
increase in the number of confirmed cases until week 4 and a flattened 
curve thereafter (Fig. 2(a) and (b)). Fig. 2(c) depicts a rapid increase in 
cities involved from week 1–2 and a steady increase in morbidity from 
week 1–4. Combining Fig. 2(b) with 2(d), we can see a rapid increase in 
cities with newly confirmed cases in week 1 and a steady increase in 
newly confirmed cases until week 4. Fig. 2(d) also shows a considerable 
drop in the number of outliers and newly confirmed cases since week 5. 

The discrepancies in potential risk factors across cities were visible 
(Table 1 and Supplementary Figure 2). Fig. 3(a) and (b) indicate a 
gradual decrease in both inter- and intracity mobility in week 1, 
compared to two weeks earlier, and a sharpened decrease in both from 
week 2 to week 5. From week 6, with the resumption of work and 
production, both inter- and intracity mobility gradually recovered. 
Geographically, cities situated in Western and Northeastern provinces, 
such as Tibet, Xinjiang, and Heilongjiang and some cities in Hubei, had a 
visibly weaker intensity. In comparison, intensity was stronger among 
municipal cities such as Shanghai and Chongqing, and capital cities such 
as Changsha and some Eastern coastal cities. Fig. 3(c) and (d) map the 
accumulated outmigration from Wuhan to other cities. Generally, except 
for municipal, vice-provincial and some Northeastern cities, which had a 
higher level of outmigration independent of geographical separation, 
outflows to other cities decayed with increasing geographical distance. 

3.2. The temporal evolution of spatial autocorrelation under various 
assumptions 

Fig. 4(a) shows the temporal changes in Moran’s I for morbidity. 
Only risk factors showing any significance are listed. Generally, Moran’s 
I was significantly different from 0 at week 1 when GDP per capita, 
number of doctors, hospital beds per 1000 people, and intercity mobility 
were included. From early week 2, Moran’s I was significantly different 
from 0 when queen contiguity, KNN and outflows from Wuhan were 
used. In comparison, Moran’s I was significantly different from 0 since 
week 3 when intracity mobility was used. Specifically, when contiguity 
and KNN distance were applied, Moran’s I stayed above 0.4 before 
February 12 and stayed between 0.2 and 0.3 thereafter. When Wuhan 
outflows were used, Moran’s I stayed higher than 0.6 since January 26. 
The significant Moran’s Is were around 0.04 when GDP per capita, 
doctors, and hospital beds per 1000 people were used. Moran’s I 
decreased from more than 0.05 to no larger than 0.04 since January 24 
when intercity mobility was considered. In contrast, Moran’s I using 
intracity mobility increased to more than 0.05 - after February 11. 

Fig. 4(b) maps Moran’s I for newly confirmed cases. Since week 1, 
Moran’s I was significantly different from 0 when contiguity, KNN, GDP 
per capita, hospitals, doctors, beds, outflows from Wuhan, and intercity 
mobility were used. For contiguity, KNN and Wuhan outflows, the sig-
nificant Moran’s I lasted until week 6. For GDP per capita, doctors, 
hospital beds and intercity mobility, it lasted until week 2. For hospitals, 
Moran’s I was significant at week 1. For intracity mobility, Moran’s I was 
significantly different from 0 from the end of week 2 until week 7. 
Specifically, when contiguity and KNN were used, Moran’s I was no 
larger than 0.4. When outflows from Wuhan were used, Moran’s I was as 
large as 0.68. In comparison, for GDP per capita, hospitals, doctors and 

Fig. 2. The diffusion of COVID-19 from January 19 to March 15 by week. (a) Accumulated cases. (b) Newly confirmed cases. (c)Box chart of morbidity (logarithm 
transformed). (d) Box chart of newly confirmed cases (logarithm transformed). 

L. Gu et al.                                                                                                                                                                                                                                       



Social Science & Medicine 302 (2022) 114988

6

Table 1 
Descriptive statistics of potential risk factors.  

Variables Observations Mean Std. Dev. Min Max 

Urban (Urbanization, %) 357 55.21 1.47 21.00 99.75 
GDP (GDP/capita, yuan) 357 57626.68 35825.93 12094.00 300000.00 
Pop (Population, 10 000 people) 357 388.12 328.43 0.25 3397.00 
Popden (Population density, people/sq.km.) 357 374.15 353.09 0.36 2578.44 
Hsize (Household size, people) 357 3.12 0.51 1.18 4.75 
Green (Green covered area as % of completed area, %) 357 39.56 6.40 9.13 64.10 
Hospital (Number of hospitals) 357 98.59 104.90 1.00 892.00 
Bed (Number of beds) 357 18342.20 19268.44 30.00 162147.00 
Doctor (Number of licensed (assistant) doctors) 357 10107.15 11447.51 4.00 109376.00 
Ahospital (Number of hospitals/100 000 persons) 357 2.85 1.93 0.04 22.85 
Abed (Number of beds/1000 persons) 357 4.67 1.77 1.67 13.68 
Adoctor (Number of doctors/1000 persons) 357 2.56 1.16 0.91 8.83 
Flow (Migration from wuhan (Jan.1-Jan.23), index) 356 185.48 830.51 0 7939.31 
Inter (Accumulated inter-city movement (Jan.1-Mar.8), index) 356 48.29 53.98 0.15 389.58 
Intra (Accumulated intra-city movement (Jan.1-Mar.8), index) 356 250.39 44.45 121.12 378.06  

Fig. 3. The distribution of mobility data. (a) Inter-city move-in index by city by province by week. (b) Intra-city mobility by city by province by week. (c) Out-
migration from Wuhan (January 1 to 18). (d) Outmigration from Wuhan (Jan 1 to 23). (Note: Movement data two weeks earlier (week 0-Jan 12 to 18, week -1-Jan 5 
to 11) and later (week 9-March 16 to 22, week 10-March 23 to 29) were added in Fig. 3(a) and (b) for ease of comparison. BJ-Beijing, TJ-Tianjin, HeB-Hebei, SX- 
Shanxi, IM-Inner Mongolia, LN-Liaoning, JL-Jilin, HLJ-Heilongjiang, SH-Shanghai, JS-Jiangsu, ZJ-Zhejiang, AH-Anhui, FJ-Fujian, JX-Jiangxi, SD-Shandong, HeN- 
Henan, HB-Hubei, HN-Hunan, GD-Guangdong, GX-Guangxi, HaN-Hainan, CQ-Chongqing, SC-Sichuan, GZ-Guizhou, YN-Yunnan, TB-Tibet, SaX-Shaanxi, GS- 
Gansu, QH-Qinghai, NX-Ningxia, XJ-Xinjiang.). 
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beds, a significant Moran’s I did not exceed 0.13. For inter- and intra-city 
mobility, a significant Moran’s I did not exceed 0.03. 

Fig. 5 shows the changing Moran’s Is with the compound weight 
matrix. Fig. 5(a) indicates that combining distance with population 
density, green space, hospital beds per 1000 persons and mobility 
generated a significant Moran’s I for morbidity. It shows similar patterns 
across factors, with Moran’s I being significant since around January 24 
and remaining at some 0.8 from Jan 28. Compared with Fig. 4(a), using 
a compound weight matrix, the index of GDP per capita, hospitals, beds 

and doctors was no longer significant; the index of population density, 
green space and hospital beds per 1000 persons - became significant; 
and the index of mobility stayed significant. 

Fig. 5(b) lists the significant Moran’s I for newly confirmed cases 
when a compound matrix between distance and population density, 
green space, beds per 1000 persons, and mobility were used. Except for 
intracity mobility, the patterns of other factors were similar, with a 
significant nonzero Moran’s I from the end of week 1 to week 6 (− 0.02- 
0.88). This pattern, although of different scales, was similar to that of 
contiguity and KNN in Fig. 4(b). Comparing Fig. 5(b) with Fig. 4(b), GDP 
per capita and doctors were no longer significant, population density 
and green space became significant, and beds per 1000 persons and 

Fig. 4. Temporal change of Moran’s I statistics for morbidity and newly 
confirmed cases under various assumptions. (a) Daily morbidity rate. (b) Daily 
newly confirmed cases. (Single factor matrix. Black line with squares records 
Moran’s I value, red line with circles records the corresponding p-value, and 
dark blue dashed line is the 0.05 p-value line). (For interpretation of the ref-
erences to colour in this figure legend, the reader is referred to the Web version 
of this article.) 

Fig. 5. Temporal change of Moran’s I statistics for morbidity and newly 
confirmed cases under various assumptions. (a) Daily morbidity rate. (b) Daily 
newly confirmed cases. (Compound factor matrix. Black line with squares re-
cords Moran’s I value, red line with circles records the corresponding p-value, 
and dark blue dashed line is the 0.05 p-value line). (For interpretation of the 
references to colour in this figure legend, the reader is referred to the Web 
version of this article.) 
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mobility stayed significant. Moran’s Is for intracity mobility were sig-
nificant for only a couple of days. 

Except for the lower values when the distance band and inverse 
distance band were used (which might be caused by their zero threshold 
to define neighbors), temporal patterns of Moran’s I for both morbidity 
and newly confirmed cases using various spatial weights were similar 
(Supplementary Figure 3), indicating the robust role of proximity. 

3.3. Changing temporal evolution of local spatial autocorrelation under 
various assumptions 

Fig. 6 maps the spatiotemporal conditional clusters for morbidity. 
Fig. 6(a) depicts the distribution of clusters across cities divided by the 
median value of GDP per capita when Moran’s I turned from not sig-
nificant in early week 1 into steadily significant from week 2, when 
queen contiguity was used. The substantial increase in both high-high 
and low-low clusters is visible in Fig. 6(a2). High-high clusters were 
mainly situated in Central China, and low-low in Western and North-
eastern China. Fig. 6(b) maps clusters defined by GDP per capita in 

Fig. 6. Clusters of morbidity under various assumptions. (a) Queen_based contiguity. (b) GDP/capita. (c) Licensed (assistant) doctors. (d) Beds per 1000 people. (e) 
Outflows from Wuhan. (f) Accumulated inter-city mobility. (g) Accumulated intra-city mobility. Note: Cities at the right-hand side of the arrow have indicators with 
median or higher values, cities at the left-hand side of the arrow have indicators with lower than median values. 

L. Gu et al.                                                                                                                                                                                                                                       



Social Science & Medicine 302 (2022) 114988

9

middle week 1 and week 2, when Moran’s I turned into not significant. 
There was a decrease in high-high clusters in Fig. 6(b2). High-high 
clusters were mainly cities with higher GDP per capita. Fig. 6(c) maps 
clusters defined by doctors. In week 1, some high-high and low-low 
clusters were cities with more licensed (assistant) doctors. In week 2, 
a few high-high clusters remained in cities with both higher GDP and 
more doctors. Fig. 6(d) depicts clusters defined by hospital beds per 
1000 people from middle week 1 to week 2. A couple of high-high 
clusters situated in cities with higher GDP and more hospital beds per 
1000 people in Fig. 6(d1) were generally no longer significant in Fig. 6 
(d2). Fig. 6(e) maps clusters defined by Wuhan outflows. There was a 
clear increase in both high-high and low-low clusters from early week 1 
to week 2. High-high clusters were mainly cities in Central China with 
more outflows. Fig. 6(f) maps clusters defined by accumulated intercity 
mobility. A few high-high clusters in higher GDP and intercity mobility 
cities (Fig. 6(f1)) no longer existed in week 2 (Fig. 6(f2)). Clusters 
defined by accumulated intracity mobility are mapped in Fig. 6(g). 
Although Moran’s I became significant, some high-high clusters were 
found in cities with lower intracity mobility in both weeks. 

Fig. 7 depicts clusters of newly confirmed cases. Fig. 7(a) maps 
clusters in weeks 1 and 6 using queen-based contiguity. The substantial 
decrease in clusters in week 6 is visible. High-high clusters were mainly 
in Central China. Fig. 7(b) maps clusters in weeks 1 and 2 using GDP per 
capita. In week 1, there were some high-high clusters situated primarily 
in higher GDP cities. In week 2, there left a few high-high clusters mainly 
in higher GDP cities. Fig. 7(c) maps clusters with hospitals used in weeks 
1 and 2. High-high clusters were mainly cities with higher GDP and more 
hospitals, and low-low clusters were mainly cities with fewer hospitals 
in week 1 (Fig. 7(c1)). The number of clusters shrank considerably in 
week 2. Fig. 7(d) shows the distribution of clusters in weeks 1 and 3 with 
doctors being used. High-high clusters were mainly cities with more 
doctors and higher GDP (Fig. 7(d1)), and the number of high-high 
clusters dropped considerably in week 3 (Fig. 7(d2)). Fig. 7(e) maps 
clusters in weeks 1 and 3 with hospital beds. High-high clusters were 
mainly cities with higher GDP and more beds, and low-low clusters were 
mainly cities with fewer beds. Fig. 7(f) maps clusters in weeks 1 and 6 
when Wuhan outflows were used. High-high clusters were mainly cities 
with more outflows, and low-low clusters were mainly cities with fewer. 
Fig. 7(g) depicts clusters with intercity mobility. High-higher clusters 
were mainly cities with higher GDP and intercity mobility (Fig. 7(g1)). It 
is interesting to note that high-high clusters were mainly cities with 
higher intracity mobility in week 1 when intracity mobility was used 
(Fig. 7(h1)). In week 3, when Moran’s I turned significant, high-high 
clusters were mainly cities with lower intracity mobility (Fig. 7(h2)). 

Clusters and conditional clusters with a compound weight matrix are 
not presented in detail because of word limits and similar patterns across 
factors, with cities from Central China being high-high clusters (see 
Supplementary Figures 4 to 7 for details). 

4. Discussion 

Although investigating spatial epidemic dynamics is crucial in un-
derstanding the routine of spatial diffusion and in surveillance, predic-
tion, identification and prevention of another outbreak (Wang et al., 
2006), studies on the spatial analysis of COVID-19 transmission are still 
lagging. Using spatial association as the primary strategy, this study 
examined the spatial linkage of COVID-19 under various diffusion as-
sumptions. Moreover, the geographical distributions and characteristics 
of city clusters in various epidemic stages were also explored. 

We found significant Moran’s Is for morbidity and newly confirmed 
cases in week 1 (to January 26) and/or 2 (to February 2) when GDP per 
capita and indicators of medical resources were risk factors. Given the 
gradual establishment of countermeasures from January 23 to February 
2 and their lagged effects (Wang et al., 2020), this indicates the 
importance of GDP per capita and medical resources in diffusion before 
countermeasures take effect. Compared to morbidity, the spatial 

association of newly confirmed cases seems to be more sensitive with a 
longer period and higher values. These differences are understandable, 
given that as a direct measure of population, changes in newly 
confirmed cases are more flexible and sensitive. GDP per capita as a 
factor at an early stage is understandable, since development is normally 
correlated with timely confirmation (Gardner et al., 2018). The impor-
tant role of medical resources at an early stage echoes the findings of 
Meng et al. (2005) and Kanga et al. (2020), which argued the impor-
tance of doctors and hospitals in impacting the spread of SARS in Beijing 
and the spread of COVID-19 across provinces at an early stage. Before 
effective countermeasures were implemented, the exponential growth of 
infections and social panic often led to overloaded hospitals, and 
numerous hospital-acquired infections (Zhou, 2020), making hospitals 
the primary place of spreading and doctors a high-risk group (Wang 
et al., 2020). 

We found a significant Moran’s I for morbidity since early week 1 
and a significant Moran’s I for newly confirmed cases since January 20, 
when contiguity, distance and Wuhan outflows were used. This finding 
suggests the key role of these factors during the whole diffusion process. 
Moran’s I valued higher when outflows were used, compared to that of 
contiguity and distance, implying its dominant role. This finding echoes 
previous research (Li et al., 2020), which argued that before Wuhan’s 
lockdown, the number of reported confirmed cases counted merely 14% 
of the total confirmed cases; and that the majority of infections were 
transmitted through this group of people. Moreover, this finding also 
echoes previous studies on environmental factors of COVID-19 (Liu 
et al., 2021; Mu et al., 2020), which argued that variations between 
cities are mainly driven by Wuhan outflows. Our finding expands the 
prior work of Kanga et al. (2020), Liu et al. (2021) and Mu et al. (2020) 
by analyzing the whole epidemic period and by finding that the role of 
Wuhan outflows decreased since week 4 and was no longer significant 
since week 6. In line with previous research (Han et al., 2021; Kanga 
et al., 2020; Meng et al., 2005), the significant role of contiguity and 
distance in the study indicated the importance of proximity in epidemic 
diffusion. Our findings also extend prior research by indicating that, 
although the role of proximity is always important to morbidity, for 
newly confirmed cases under effective countermeasures, it may soon 
attenuate and gradually no longer be significant. 

We found a rapid increase in cities with reported cases before week 1 
(January 26) and a steadily rapid rise in both morbidity and newly 
confirmed cases from weeks 2–4. We also found a significant role of 
intercity mobility until the middle of week 2 (around January 30). 
Combining the role of intracity mobility, which was significant since late 
in week 2, as well as the roughly 7-day lag from infection to diagnosis in 
China since late January (WHO, 2020), we inferred a primary intercity 
diffusion (transfer transmission) stage before January 23, and a primary 
intracity diffusion (local or community transmission) stage later. Given 
the implementation of countermeasures since January 23 and the time 
lag, the significant role of intercity mobility until late January is un-
derstandable. This finding is in general agreement with that of Mu et al. 
(2020), which declared a major transfer diffusion before Chinese New 
Year (January 24) and a subsequent local diffusion thereafter. Given 
that previous studies on mobility and COVID-19 are limited and focused 
mainly on accumulated data on Wuhan outflows, this finding broadens 
our understanding of the spatial diffusion of COVID-19 by empirically 
illustrating its transmission stage with various categories of real-time 
mobility data. 

Our compound weight matrix combining spatial distance with social 
distance indicated partially different findings from that of the single 
weight matrix. Although the significant role of hospital beds per 1000 
persons and mobility remained, the role of population density and green 
space became significant, and GDP per capita, doctors and hospitals 
were no longer significant. Searching for literature, previous studies 
comparing the results of spatial analyses with respectively the com-
pound weight matrix and single weight matrix are rare. On reflection, 
we speculate that the geographical pattern of potential risk factors may 
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Fig. 7. Clusters of newly confirmed cases under various assumptions. (a) Queen_based contiguity. (b) GDP/capita. (c) Hospitals. (d) Licensed (assistant) doctors. (e) 
Beds. (f) Outflows from Wuhan. (g) Inter-city mobility. (h) Intra-city mobility. Note: Cities at the right-hand side of the arrow have indicators with median or higher 
values, cities at the left-hand side of the arrow have indicators with lower than median values. 

L. Gu et al.                                                                                                                                                                                                                                       



Social Science & Medicine 302 (2022) 114988

11

provide some reasonable explanations. In both Figs. 6 and 7, there was a 
scattered distribution of clusters with high-high clusters surrounded by 
other types when GDP per capita, hospitals and doctors were used. After 
combining these factors with spatial distance, the weights of those 
formally scattered high-value neighbors with long spatial distance 
decreased, and the weights of their nearby low-value neighbors 
increased. Therefore, with the compound weight matrix, the clusters 
disappeared and the roles of GDP per capita, hospitals and doctors were 
no longer significant. In comparison, the distribution of clusters when 
mobility and beds per 1000 persons were used were more clustered. 
Hence, the relative weights of neighbors should not change much with 
the consideration of spatial distance, and their significant role stayed. 
The significant role of population density and green space in the com-
pound matrix could be explained similarly. Our results indicated that 
although a compound matrix could highlight the importance of spatial 
lagging by improving the value of Moran’s I and facilitate the next-step 
analysis (such as spatial regression models adopted in Fingleton and Le 
Gallo (2008) and Sun et al. (2014)), it might also suppress the impact of 
some factors that were significant in a single matrix. 

We failed to find any significant role of population and household 
size, which is similar to Mu et al. (2020). Our findings are different from 
COVID-19 studies in the US (Hu et al., 2020; Lee et al., 2021) and pre-
vious studies on other infectious diseases (Dalziel et al., 2018; Meng 
et al., 2005; Tian et al., 2018), which underscores the important role of 
household size and population scale. On reflection, we infer that the 
instant intervention measures taken in China have minimized the role of 
these traditional factors. Searching for literature, the substantial impact 
of China’s suppression measures, such as the lockdown of Wuhan, strict 
movement restrictions, and mitigation measures, such as social 
distancing, in reducing case importations and local transmission is 
widely supported (Ferguson et al., 2020; Zhang et al., 2020). Different 
from previous studies that argued for the significant role of population 
density and green space in explaining COVID-19 variations (Han et al., 
2021; Lee et al., 2021), population density and green space were sig-
nificant risk factors only when combined with spatial distance. We 
believe that spatial distance might play a moderating role in influencing 
the effect of population density and green space. More in-depth studies 
are required to compare single and compound weight matrices in spatial 
analysis. 

We found a change in the geographical distribution of high-risk 
areas. At the early stage and before interventions took effect, high-risk 
areas were mainly cities adjacent to the epicenter, or with higher GDP 
per capita, or with a combination of higher GDP per capita and more 
medical resources, or more outflows from the epicenter, or more inter-
city mobilities. After intervention measures were effected, cities adja-
cent to the epicenter, cities with more outflows from the epicenter and 
cities with more intracity mobility were high-risk areas. Throughout the 
whole epidemic period, cities adjacent to Wuhan and cities with more 
outflows from Wuhan, which were mainly cities situated in Central 
China, were high-risk areas. This indicates Wuhan to be the only 
epicenter. By further exploring both the geographical distribution and 
characteristics of high-risk cities throughout the whole process, our 
findings have expanded current research cross-sectionally focusing on 
factors of transmission in a given period. 

Although understanding the spatial diffusion process of infectious 
diseases is vital in supporting decision-making pertaining to epidemic 
control, previous studies attempting to evaluate the spatial spread of 
COVID-19 during a whole transmission period are limited. As the first 
country detected with confirmed cases, China has managed to control 
the epidemic rapidly and effectively (Burki, 2020) and thus provides a 
good example to study the spatial diffusion of COVID-19. Using city as 
the study unit, this study has managed to explore the temporal change in 
primary risk factors influencing the spatial diffusion of COVID-19 under 
various diffusion assumptions and throughout the whole epidemic 
period. Moreover, this study has investigated both the characteristics 
and geographical distributions of high-risk areas in different epidemic 

stages, which enables more targeted intervention measures with the 
evolution of the epidemic process. 

Some limitations need to be mentioned. First, because various 
characteristics of a country, such as the speed of response, the health 
system, the epidemic curve, the coordination between government 
sectors, and civil compliance with regulations, may impact the effec-
tiveness of countermeasures (Burki, 2020), the spatial process and 
spatial association of this outbreak across the Chinese city system may 
not generalize to other settings. Therefore, the findings of this study 
merely provide a reference, or the possibility of a potential pattern, 
under the promise that there is timely implementation of both sup-
pression and mitigation countermeasures at an early stage. Second, 
although spatial association analyses enable us to understand the tem-
poral evolution of spatial diffusion under various assumptions, neither 
the potentially lagged effect of previously confirmed cases nor in-
teractions between possible risk factors were acquired. An innovative 
methodology combining spatiotemporal analysis and prospective and 
interactive investigation is therefore urgently needed. Third, similar to 
the strategy that many extant studies adopted (Liu et al., 2021; Mu et al., 
2020), officially reported data are the most available data source we can 
use in analyzing the spatiotemporal diffusion of COVID-19 and potential 
factors. However, because of limited case detection capacities at the 
early stage (Niehus et al., 2020), and the fact that asymptomatic cases 
and patients with very mild symptoms might not be identified (Baud 
et al., 2020), we are aware that official data closely pertain to clinically 
apparent and confirmed cases. Therefore, as indicated by the literature 
(Imai et al., 2020), an underestimation of prevalence is highly possible. 
Finally, as an ecological study at the city level, although our application 
of Baidu microphone-based mobility data that aggregated individual 
travel data could provide very useful information in understanding the 
role of mobility in disease diffusion, there is substantial heterogeneity in 
individual travel behaviors across socioeconomic groups and possibly 
also disparities in disease exposure and transmission rates (Brough et al., 
2021). Combining our ecological study with future individualistic 
studies linking COVID-19 outcomes to individual travel behavior will 
provide a more insightful understanding of disease diffusion. 

5. Conclusion 

This study seeks to arrive at an in-depth understanding of the spatial 
diffusion pattern of COVID-19 across Chinese cities and throughout the 
entire epidemic period. We found a rapid intercity diffusion process at 
the early stage and a primarily intracity diffusion process thereafter. 
Before countermeasures took effect, GDP per capita, medical resources, 
and intercity mobility significantly impacted the early diffusion process. 
With speedily effective countermeasures, intracity mobility played an 
important role. The roles of proximity and outflows from Wuhan were 
important throughout the entire stage. At the early stage, high-risk areas 
were mainly cities adjacent to the epicenter, or with higher GDP per 
capita, or a combination of higher GDP per capita and better medical 
resources, or more outflows from the epicenter, or more intercity 
mobility. After intervention measures took effect, cities adjacent to the 
epicenter, cities having more outflows from the epicenter or cities with 
more intracity mobility were high-risk areas. This study provides valu-
able insights into understanding the spatial diffusion patterns of COVID- 
19 across the city system. The findings are informative in effectively 
handling the recurrence of COVID-19 in China and abroad. 
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