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Prostate cancer (PCa) is themost commonly diagnosed cancer inmales in theWesternworld. Although prostate-
specific antigen (PSA) has been widely used as a biomarker for PCa diagnosis, its results can be controversial.
Therefore, new biomarkers are needed to enhance the clinical management of PCa. From publicly available mi-
croarray data, differentially expressed genes (DEGs)were identified bymeta-analysis with RankProd. Genetic al-
gorithm optimized artificial neural network (GA-ANN)was introduced to establish a diagnostic predictionmodel
and to filter candidate genes. The diagnostic and prognostic capability of the prediction model and candidate
genes were investigated in both GEO and TCGA datasets. Candidate genes were further validated by qPCR,West-
ern Blot and Tissue microarray. By RankProd meta-analyses, 2306 significantly up- and 1311 down-regulated
probes were found in 133 cases and 30 controls microarray data. The overall accuracy rate of the PCa diagnostic
predictionmodel, consisting of a 15-gene signature, reached up to 100% in both the training and test dataset. The
predictionmodel also showed good results for the diagnosis (AUC=0.953) and prognosis (AUCof 5 years overall
survival time = 0.808) of PCa in the TCGA database. The expression levels of three genes, FABP5, C1QTNF3 and
LPHN3, were validated by qPCR. C1QTNF3 high expression was further validated in PCa tissue by Western Blot
and Tissue microarray. In the GEO datasets, C1QTNF3 was a good predictor for the diagnosis of PCa (GSE6956:
AUC = 0.791; GSE8218: AUC = 0.868; GSE26910: AUC = 0.972). In the TCGA database, C1QTNF3 was signifi-
cantly associated with PCa patient recurrence free survival (P b .001, AUC= 0.57). In this study, we have devel-
oped a diagnostic and prognostic prediction model for PCa. C1QTNF3was revealed as a promising biomarker for
PCa. This approach can be applied to other high-throughput data fromdifferent platforms for the discovery of on-
cogenes or biomarkers in different kinds of diseases.

© 2018 Published by Elsevier B.V. This is an open access article under the CC BY-NC-ND license
(http://creativecommons.org/licenses/by-nc-nd/4.0/).
Keywords:
RankProd
Artificial neural network
Genetic algorithm
Prostate cancer
Biomarker
1. Introduction

Prostate cancer (PCa) is the most commonly diagnosed cancer in
males and one of the leading causes of cancer mortality in the West-
ern world. An estimated 164,690 Americans will be diagnosed with
prostate cancer and 29,430 will die of the disease in the United
States in 2018 [1]. In recent years the number of diagnosed prostate
cancer patients also increased rapidly in developing countries such
pen access article under the CC BY-N
as China [2]. Here it is one of the ten most common cancers diag-
nosed in men, with an estimated 60,300 new cases and 26,600
deaths in 2015 [3]. The 5-year relative survival rate of localized pros-
tate cancer patients approaches 100% but sharply decreases to 28%
for patients diagnosed at an advanced stage [4]. Therefore, early de-
tection and precise diagnosis for prostate cancer needs to advance
further.

At the moment, prostate specific antigen (PSA) testing is widely
used for PCa diagnosis at an early organ-confined stage. However, it oc-
casionally leads to unnecessary biopsies due to its poor specificity [5–7].
Therefore, other new biomarkers with high accuracy and specificity are
needed to improve diagnosis and prognosis of PCa. Cima et al. employed
a proteome method and identified a five-protein signature (GALNTL4,
C-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
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FN, AZGP1, GBA and ECM1) in PCa which could be used to improve
screening efficacy [8]. Ankerst et al. proposed that detection of PCA3, a
PCa-specific gene, combined with PSA testing could improve diagnostic
accuracy [9]. In addition, hypermethylation of some critical genes or
microRNAs likeGSTP1, PITX2, GABRE~miR-452~miR-224, and amethyl-
ated site (cg05163709) in ChromosomeY have been proposed as prom-
ising biomarkers of PCa [10,11]. Furthermore, a number of commercially
available products show potential, but there is still some way to go be-
fore there is enough data to convincingly demonstrate the added value
of these methods.

High-throughput microarray chip and second-generation sequenc-
ing technologies are powerful tools for discovering and studying novel
biomarkers for PCa. However, analyses based on high throughput data
may encounter the “curse of dimensionality” [12]. This refers to the phe-
nomena that the amount of dependent variables increases greatly while
the amount of samples is relative small, resulting in an increase of statis-
tical errors. Fortunately, increasing the sample size and using somema-
chine learning algorithm can effectively improve the problems caused
by this “curse” [12,13].

The geometric mean algorithm can integrate ranked lists from
various datasets produced by a wide variety of platforms, such as
Affymetrix oligonucleotide arrays, two-color cDNA arrays and other
custom-made arrays [14,15]. To increase the sample size, RankProd,
a non-parametric statistical method which can combine datasets
from different origins to increase the power of identification, has
been used to datamine various cancers. Suraj Peri et al. integrated
various data from kidney tissue microarrays for differential expres-
sion of genes (DEG) analysis and identified NF-κB and interferon sig-
natures as clinical features of clear cell renal cell carcinoma (ccRCC)
[16]. Many other studies also employed RankProd to extend their
sample size [17–19].

In recent years, some machine learning algorithms, such as sup-
port vector machines (SVM), principal component analysis (PCA),
least absolute shrinkage and selection operator (LASSO) and artifi-
cial neural network (ANN) also help with solving the curse of dimen-
sionality. When comparing thesemodels andmethods with ANN, the
latter showsmany advantages when handling high dimensional data
by dealing with non-linear relationships in data [20]. ANN is based
on a collection of connected units called artificial neurons (analo-
gous to axons in a biological brain). Neurons and synapses may also
have a weight that varies as learning proceeds, which can increase
or decrease the strength of the signal that it sends downstream.
This model is suitable for prediction even when the experimental
data are not subjected to Gaussian distribution for it is established
simply by construction of multiple layers of artificial neurons and
utilizes its network connections to deliver and process the required
input information. Due to its advantages in processing defective or
non-linear data, ANN is currently widely used in the diagnosis of can-
cer, survival analysis and estimation of intensive care [21–23]. Ge-
netic algorithm (GA) is a generally evolutionary algorithm that has
already been considered appropriate to solve the general optimiza-
tion problems [24]. GA is widely used in the selection of the variables
resulting in the best fit for the ANN models [25,26]. Although many
studies reported the use of ANN in classification gene expression mi-
croarray, integrating GA with ANN to establish prediction models
and filter candidate genes for cancer samples has few reports.

To solve the curse of dimensionality in high-dimensional gene ex-
pression data, we were trying to establish a data processing system
using these two methods. We firstly integrated data from different
independent datasets to expand the sample size by RankProd.
Based on that, we employed a GA-ANN model to establish a predic-
tion model and screen for candidate genes of PCa. The combination
of RankProd and GA-ANN in this study, allows us to develop a prom-
ising processing approach for discovering novel biomarkers and can-
didate gene patterns for the diagnosis and prognosis prediction of
PCa.
2. Materials and Methods

2.1. Data and Sample Collection

Public data was collected from the Gene Expression Omnibus (GEO)
dataset and The Cancer Genome Atlas (TCGA) dataset. Only microarray
data that met the following criteria were included; (1) Datasets were
produced by Genome-wide mRNA expression profiling by microarray,
(2) The experimental platform was single-channel; (3) All cases were
pathologically diagnosed to be prostate cancer tissues while the con-
trols were identified as para-carcinoma or normal prostate tissues; (4)
The minimum number of cases and controls was 3. Finally, available
datasets from the following cohort were included. Wallace et al.
contained gene expression profiles of primary prostate tumors resected
from 33 African-American and 36 European-American patients. It also
contained 18 normal prostate tissues from 7 African-American and 11
European-American patients [27]. Wang et al. contained 148 prostate
samples [28]. Planche et al. [29] contained 6 prostate cancer and
matched normal samples. Taylor et al. contained 218 PCa samples and
149 matched normal samples from patients treated by radical prosta-
tectomy [30]. Ross-Adams et al. contained 99 prostate cancer samples
from patients with follow-up data [31]. For the TCGA dataset, we in-
cluded the TCGA-PRAD which contained 500 PCa patients.

We also analyzed 69 primary prostate cancer patients and paired ad-
jacent normal tissues by a tissue microarray obtained from Shanghai
Outdo Biotech, China (Supplementary file 1: Table S1). Another 28 inde-
pendent PCa and paired adjacent normal tissueswere analyzed by qPCR
andwestern blot (Supplementaryfile 2: Table S2). All fresh tissueswere
obtained with informed consent from patients hospitalized at the De-
partment of Urology, Longgang Central Hospital and the Department
of Urology, Third Affiliated Hospital of Sun Yat-Sen University. All tissue
specimenswere confirmed by pathology and immediately frozen in liq-
uid nitrogen. All experiments in this study were approved by the ethics
committee of Longgang Central Hospital and Third Affiliated Hospital of
Sun Yat-Sen University.

2.2. Individual Participant Data Processing

In order to integratemicroarray data fromdifferent platforms, meta-
analysis was carried out by RankProd. The annotation files correspond-
ing to the types of microarrays were downloaded from the official
Affymetrix website. To pre-process Affymetrix microarray data,
RMAExpress1.0.5 was introduced for background adjustments, normal-
ization was done by Quantile and summarization byMedian Polish. The
output files were composed of the normalized expression values of
every probe. Shared probes were extracted from different platforms
using Perl 5.10 and RankProd package installed in R (v3.4.0) was run.
Probe signals with percentage of false prediction (pfp) value lower
than 0.05would be considered as DEGs. GO enrichment and KEGG anal-
ysis were carried out using clusterProfiler package in R (v3.4.0) [32].

2.3. Development of GA-ANN PCa Prediction Model

After acquiring the DEG list, we constructed the ANN model in
MATLAB (MathWorks, Massachusetts, USA) by setting the clinical phe-
notype of 163 microarray samples as the output variable (normal or
cancer patients) and the expression values of the top 500 up- and
down-regulated probes as the input variables. A training set was built
with 100 randomly selected microarray samples and the other 63 mi-
croarray samples were used as a test set. The model was composed of
3 layers with 1000 nodes as the input layer (each representing an ex-
pression value of a probe) and 1 node as the output layer (the clinical
phenotype).We set themaximum recursive time to 100 and the thresh-
old of mean square error to 0.005. The weight-corrected learning rate
was 0.1 and the transfer function from input layer to hidden layer was
tansig while purelin was configured as the transfer function from
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hidden layer to output layer. In terms of optimization by GA, the num-
ber of initial populationwas 100 and themaximumevolutionary gener-
ation was 50. During each round of calculation, GA-ANN randomly
selected the useful input variables keeping the computational accuracy
stable. Therefore, the number of input variables could reduce nearly half
every round. After 6 rounds of calculations, 15 candidate input variables
(probes) were obtained.

2.4. Diagnosis Assay for 15-Gene Signature in Independent Dataset

The prediction accuracy was calculated both in the training and test
set.We employed the genes from the TCGA cohort to assay their relative
risk and capacity of diagnosis by logistic regression. This test was per-
formed on “glm” function in R software. Then, a linear model was con-
structed by combining the gene expressions. A coefficient of logistic
regression and index by combination was assigned to each sample. Fi-
nally, the area under curve (AUC) of the receiver operating characteris-
tic (ROC) curves was employed to estimate the performance of the
model with the “ROCR” package in R.

2.5. Prognostic Index of 15-Gene Signature in Prognosis of Survival of PCa

Aprognostic index (PI) [33]was constructed as an integrated indica-
tor of the 15 candidate genes selected by the ANN model for each PCa
patient. The PI was calculated as a linear combination of the expression
value of the genes weighted by univariate Cox regression coefficients.
The standard form of PI was defined as follow:

Prognostic index PIð Þ ¼
X

i

βi � Xið Þ

βi is the regression coefficient of the ith variable and Xi is the value of
the ith variable. For the form of PI, Xi is the log2-transformed expression
value of eachmRNA and βi is the univariate Cox regression coefficient of
the ith RNA.

2.6. Investigation of Diagnosis and Prognosis Capacity of C1QTNF3 in PCa

The capacity of C1QTNF3 to diagnose PCa was evaluated by measur-
ing the AUC of the ROC curves using the “ROCR” package in R. To inte-
grate and combine the results from three C1QTNF3 probes, the
“aggregate” function of R was applied. Differential expression of
C1QTNF3 in tumor and normal tissue was computed by the “limma”
package in R. Logistic regressionwasmeasured using the “glm” function
in R (Version is 3.4.0). C1QTNF3 was validated by analyzing available
PCa samples in the TCGA database with the cBioPortal web tool
(http://www.cbioportal.org/index.do) [34]. Survival analysis was calcu-
lated automatically by this tool.

2.7. Quantitative Real-Time PCR Analysis (qRT-PCR)

Total RNAwas extracted frompatients' tissues sampleswith TRIzol re-
agent (Invitrogen, USA) and treated with DNase I (Merck, Sigma, USA). A
total of 2 μg of RNA was reverse transcribed into cDNA with oligo (dT)
primers using the cDNA synthesis kit (Takara, Japan). Quantitative PCR
was performed in 20 μl reactions using SYBR Green qPCR Master Mix
(Takara, Japan) according to manufacturer's instruction. β-actin mRNA
levels were used for normalization. The following primers were used to
amplify a 110-bp PCR product for C1QTNF3: forward, 5′- GGCAACACA
GTCTTCAGCAT-3′; reverse, 5′- ATTCGCAGCCAAACCTCATC-3′, a 98-bp
PCR product for FABP5: forward, 5′-AGATGGTGCATTGGTTCAGC-3′; re-
verse, 3′-TCATGACACACTCCACCACT-5′, a 115-bp PCR product for
LPHN3: forward, 5′-CACACCTTCCATCAGCATCG-3′; reverse, 3′-GGCTGC
TTTGCTATCTGTCC-5′ and a 120-bp PCR product for ACTB: forward, 5′-
ACTCTTCCAGCCTTCCTTCC-3′; reverse, 5′- CGTACAGGTCTTTGCGGATG-
3′. The PCR amplification program was as follow; initial denaturing at
95 °C for 10min, and thendenature at 95 °C for 10min, followedby 40 cy-
cles of 95 °C for 15 s and60 °C for 45 s. ThemRNA level ofC1QTNF3, FABP5,
and LPHN3was measured using the Applied Biosystems 7500 Real-Time
PCR System (ABI, USA). Measurements were repeated 3 times and rela-
tive quantification analysis was performed using the comparative CT
(2^-ΔΔCT) method.

2.8. Western Blot

Cancer or paired normal tissue (0.2 g)was crushed in liquid nitrogen
and lysed in RIPA lysis buffer (CelLytic, Sigma-Aldrich) in the presence
of a proteinase inhibitor cocktail (Merck Millipore, USA). Total protein
extracts were separated by SDS-PAGE and transferred to PVDF mem-
branes (Merck Millipore, USA). Immunoblotting was done with rabbit
polyclonal antibody against C1QTNF3 (ab36870, Abcam, 1:1500 dilu-
tion) in accordance with the manufacturer's instruction. Signals were
visualized using enhanced chemiluminescent substrate (ECL, BioRad,
Richmond, CA, USA) and the Western Breeze chromogenic detection
system (Invitrogen).

2.9. Tissue Microarray and Immunohistochemistry Staining

The human PCa tissue microarray (HPro-Ade180PG-02; Shanghai
Outdo Biotech, China) was constructed with formalin-fixed, paraffin-
embedded PCa tissues and paired adjacent normal tissues. Immunohis-
tochemistry stainingwas performed by Shanghai OutdoBiotech Co., Ltd.
Tissue microarray sections were blocked with goat serum, incubated
with anti-C1QTNF3 (ab36870, Abcam, 1:200 dilution), deparaffinized,
rehydrated, and subjected to heat-induced antigen retrieval, as previ-
ously described [35]. The expression of C1QTNF3 in each tissue was
semi quantitatively graded by two independent pathologists according
to staining intensity (0, negative, 1, weakly positive; 2, moderately pos-
itive; or 3, strongly positive).

3. Results

3.1. RawMicroarray Data and Overall ProcessingMethodology Description

The microarray assays enrolled in this study included GSE6956 [27],
GSE8218 [28], GSE26910 [29], GSE21032 [30] and GSE70769 [31].
GSE6956 is composed of 69 primary prostate tumors and 18 non-
tumor prostate tissues (Platform: GPL571 Affymetrix Human Genome
U133A 2.0 Array). GSE8218 contained 148 prostate samples with vari-
ous amount of different cell types of which 10 were normal (Platform:
Affymetrix Human Genome U133A Array). By filtering out unidentified
cellular component samples from GSE8218, we obtained 133 cases and
30 controls in total. GSE26910 contained 6 samples of stroma surround-
ing invasive prostate primary tumors and 6matched samples of normal
stroma samples (Platform: GPL570 Affymetrix Human Genome U133
plus 2.0 Array) and was used for validation. A detailed description of
GEOdatasets is available in Supplementaryfile 3: Table S3. Gene expres-
sion profile from the TCGAwas used for verification. After screening the
clinical data (excludingNA in survival time), 466 patients' sampleswere
selected. Furthermore, two independent datasets were used to validate
prognostic capability of the 15-gene signature. From the Taylor dataset,
gene expression and follow-up data of 140 patients with primary pros-
tate cancerwere collected fromGSE21032. The Ross-Adamsdatasetwas
collected from GSE70769. After matching gene expression and clinical
data samples, 92 primary prostate cancer patients were included for
analysis. The flowchart in Fig. 1 shows the data analysis process.

3.2. DEG Identification by RankProd

RankProd was performed to detect DEGs. When we restricted the
conditions to pfp≈0, the number of up-regulated probes dropped to
2306 and down-regulated to 1311. The top 500 up- and down-

http://www.cbioportal.org/index.do
ncbi-geo:GSE6956
ncbi-geo:GSE8218
ncbi-geo:GSE26910
ncbi-geo:GSE6956
ncbi-geo:GSE8218
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ncbi-geo:GSE26910


Fig. 1. Flowchart for the systematic analysis and validation of key genes in PCa.
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regulated probes are shown in a heatmap plot (Fig. 2) (Supplementary
file 4: Table S4). ThewholeDEG lists are available in additionalfile (Sup-
plementary file 5: Table S5).

3.3. Gene Ontology Enrichment and Pathway Enrichment

Differential expressed genes were annotated using the
ClusterProfiler package. GO and KEGG analysis indicated that up-regu-
lated genes enriched in pathways were obviously different from
down-regulated genes (Supplementary file 6: Table S6). For example,
KEGG analysis showed that the up-regulated genes related to cancer
Fig. 2. Heatmap plot of top 1000 differentially expressed genes (DEG) from Rankprod. The b
pathways included proteins that were involved in protein processing
in the endoplasmic reticulum and lysosome, while downregulated
genes were mainly involved in cancer pathways including focal adhe-
sion, and complement and coagulation cascades (Fig. 3).

3.4. GA-ANN Screening for Candidate PCa Biomarker Genes

Afterwe obtained theDEGs fromRankProd,we adjusted the number
of nodes in the hidden layer to improve the prediction accuracy of the
ANN model. As this can also lead to dramatic complexity of the neural
network and an increase in modeling duration, we fixed the optimal
lue shade represented normal tissue and red shade represented patients tumor tissue.



Fig. 3. GO enrichment and KEGG pathway analysis for up and down-regulated genes in PCa (a) Biological process (b) Molecular function (c) Cellular component (d) KEGG pathway.
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number of nodes in the hidden layer at 5 (Fig. 4a, b). Furthermore, we
noticed a significant advantage of genetic algorithm optimized ANN
over general ANN in the performance of prediction and modeling dura-
tion. The prediction accuracy of both the training and test set reached
100% with high modeling speed (1.326 s). The process of training and
testing are listed in Table 1.

Finally, we obtained 15 genes (Table 2) as a minimum candidate
gene list to let the ANN model predict whether a prostate sample was
normal or tumor tissue (Fig. 4c, d, e).

3.5. Diagnosis and Prognosis Capacity of Candidate Genes (15-gene signa-
ture) for PCa in TCGA Datasets

The expression distribution of the 15 genes in the TCGA PCa cohort is
shown by boxplot (Fig. 5a). The P values, hazard ratios (HR) and coeffi-
cients of the 15 genes in overall survival prediction model for TCGA
cohort are listed (Table 2). These genes have a high AUC value
(0.953), which represents the high diagnosis capacity in this model
(Fig. 5b). The patients in the TCGA PCa cohort were ranked according
to the PI. Using the median value of PI as the cutoff, 466 patients
were divided into 2 groups: a high-risk group with 233 patients
and low-risk group with 233 patients (Supplementary file 7: Fig.
S1). The PI was significantly associated with PCa patient 5 years over-
all survival (OS) (Fig. 5c) and recurrence-free survival (RFS) (Fig.
5d). The survival rates of the high-risk group in OS and RFS were
both significantly lower than that of the low-risk group (log-rank P
value = .003). We used the 5 years OS and RFS survival rate to com-
pare the prognostic capacity of the 15-gene signature model, PSA
screening and the Gleason score. The Gleason score is the most pop-
ular pathology grade for PCa and is ameasure of how likely the tumor
will grow invasively. The results suggested that the 15-gene signa-
ture was the best index for predicting PCa in 5 years OS with an



Fig. 4. ANNmodel training process (a) The number of hidden layer nodes affects the accuracy of the ANN and GA-ANNmodel (b) The number of hidden layer nodes affects themodeling
time in the ANN and GA-ANN model. (c) The configuration of the final ANN (d) The plot of mean squared error in training ANN. After six epochs, the mean squared error of prediction
model trained by ANN descends below the threshold 0.005 (e) The regression plot shows the relationship between outputs of prediction model trained by ANN and targets. The
regression plot suggests the training of prediction model is perfect; the outputs are nearly equal to the targets.
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AUC = 0.808. The AUC of PSA screening and the Gleason score were
0.631 and 0.692 respectively (Fig. 5e). As for the 5 years RFS, AUCs of
the three indicators demonstrated that the 15-gene signature model
(AUC = 0.614), PSA screening (AUC = 0.702) and the Gleason score
(AUC = 0.740) have similar capacity, and the Gleason score per-
formed best (Fig. 5f).

To further validate the performance of the 15-gene signature, two
independent datasets of Taylor et al. and Ross-Adams et al. were
employed. The results showed that the 15-gene signature performed
well in both independent datasets. PI calculated from the15-gene signa-
ture can significantly classify patients into low- and high-risk (Taylor
cohort: HR = 2.893, p value = .003, AUC = 0.74; Ross-Adams cohort:
HR = 1.886, p value = .03, AUC = 0.67). The Kaplan-Meier and ROC
curve for the two datasets are shown in Supplementary file 8 (Fig. S2).

3.6. Validation of Candidate Genes in Prostate Cancer Tissues

From the 15 genes, we selected 3 genes (FABP5, C1QTNF3 and
LPHN3) for further analysis (Table 2). To analyze mRNA levels of
FABP5, C1QTNF3 and LPHN3, qRT-PCR was performed on tissues from
28 prostate cancer patients. The mRNA level of FABP5 and C1QTNF3
was in all prostate cancer tissues higher than in the paired adjacent



Table 1
Table of parameter of ANN, accuracy rate of prediction and number of genes filtered from GA-ANN.

Nodes of Input layer popu = 100, gen = 50 popu = 50, gen = 50 popu = 20, gen = 50 15-gene signature

S = 1000 S = 478 S = 229 S = 122 S = 54 S = 27

Training(normal/tumor) 100(22/78) 100(20/80) 100(19/81) 100(16/84) 100(17/83) 100(21/79) 100(22/78)
Testing(normal/tumor) 63(8/55) 63(10/53) 63(11/52) 63(14/49) 63(13/50) 63(9/54) 63(8/55)
Testing results of ANN

Normal(accuracy rate) 8(100%) 9(90%) 11(100%) 14(100%) 10(76.92%) 9(100%) 8(100%)
Tumor(accuracy rate) 55(100%) 52(98.11%) 52(100%) 49(100%) 50(100%) 54(100%) 55(100%)

Time cost for modeling 23.525 s 4.3524 s 2.5428 s 3.2448 s 1.3416 s 1.9032 s 1.326 s
Testing results of GA-ANN

Normal(accuracy rate) 8(100%) 10(100%) 11(100%) 14(100%) 13(100%) 9(100%)
Tumor(accuracy rate) 55(100%) 52(98.11%) 52(100%) 48(97.96%) 50(100%) 54(100%)

Time cost for modeling 3.822 s 1.5132 s 0.96721 s 0.93601 s 0.5616 s 0.6864 s
Iterations 2 3 3 6 3 6 6
Candidate genes 478 229 122 54 27 15
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normal tissues (average fold change of 9.19 (P b .01) and 8.23 (P b .01)
respectively, Fig. 6) and the level of LPHN3 was lower (average fold
change of 0.72 (P b .01), Fig. 6).

Immunohistochemical staining of a tissue microarray containing an
additional 69 pairs of PCa and their paired adjacent normal tissues
showed that C1QTNF3 levels were significantly higher in PCa tissues
when compared with the paired adjacent normal tissues (P b .001, Fig.
7a, b). Western blot assay for another 28 paired tissues samples was
performed to confirm the protein levels of C1QTNF3. All PCa tissues
showed a higher C1QTNF3 protein expression than in the paired adja-
cent normal tissues (Fig. 7c). Overall, these data suggest that C1QTNF3
is constantly overexpressed in PCa.
3.7. Diagnostic and Prognostic Capacity of C1QTNF3 for PCa Prediction in
Various Datasets

C1QTNF3 expression was analyzed in GEO datasets GSE6956,
GSE8218 and GSE26910 (Fig. 8a). The AUC of the ROC curve showed
that C1QTNF3 showed good performance on diagnosis for PCa in all
three datasets (GSE6956: OR = 1.253, 95% CI: 0.872–1.636, P = .001,
AUC = 0.791; GSE8218: OR = 2.848, 95% CI: 1.365–4.331, P = .055,
AUC = 0.868; GSE26910: OR = 5.332, 95% CI: 2.062–8.602, P = .105,
AUC=0.972, Fig. 8b). Additionally, we also tested the prognostic ability
of C1QTNF3 in the TCGA dataset. The results showed that C1QTNF3
overexpression is closely associated with recurrence-free survival time
(P b .001, AUC = 0.57) (Fig. 8c, d).
Table 2
The P values, HR and coefficients of 15 genes in overall survival prediction model for the
TCGA cohort.

Gene symbol P value HR (95% CI) Coefficient

FKRP 0.727 1.032 (0.865–1.231) 0.031
SEL1L 0.580 1.073(0.837–1.375) 0.070
IGFALS 0.742 1.027(0.877–1.202) 0.026
PNMA2 0.801 1.015(0.901–1.144) 0.015
ARHGAP8 0.693 1.015(0.944–1.090) 0.014
PHF3 0.284 1.093(0.929–1.287) 0.089
HMG20B 0.338 1.205(0.822–1.766) 0.187
LPHN3 0.869 0.991(0.895–1.098) −0.009
NPY 0.372 0.989(0.966–1.013) −0.011
EPHB2 0.225 0.925(0.815–1.049) −0.078
NNMT 0.670 0.991(0.950–1.034) −0.009
C1QTNF3 0.247 0.940(0.848–1.043) −0.061
FABP5 0.485 0.986(0.947–1.026) −0.014
MTRR 0.144 1.069(0.978–1.168) 0.066
ITPR1 0.322 1.028(0.973–1.086) 0.028
4. Discussion

Prediction and diagnosis is the most important step in PCa manage-
ment for patients. In order to screen candidate biomarkers which may
be helpful for diagnoses and prognosis for PCa, we have combined
RankProd with GA-ANN to create a prediction model. This process
could also provide a general framework for rational cancer gene signa-
ture discovery based on high throughput data. To datamine oncogenes,
biomarkers or gene signature prediction models for prostate cancer,
high throughput data from microarray or next generation sequencing
is a fundamental source. Data processing approach plays a crucial part
in such studies. Since the ANN model can fit any nonlinear function it
has more advantages in processing high-throughput data. At the mo-
ment, depth neural networks have been applied to a variety of artificial
intelligence applications. In the future, neural networks are bound to be
used more in molecular medicine.

In this study, a 15-gene signature was identified by our data pro-
cessing system that exhibited a great capacity for diagnosis and prog-
nosis of PCa. The AUCs of the 15 genes signature showed a perfect
diagnostic ability in PCa gene expression samples from datasets from
both GEO and TCGA. Although the genes individual were not signifi-
cant in the 5-year OS prognostic test, the 15-gene signature can effec-
tively classify PCa patients into high- and low-risk groups, and showed
a good prediction of the 5-year survival rate in the PCa cohort from
TCGA, Taylor et al. and Ross-Adams et al. Other studies also tried to es-
tablish prediction models for diagnosis or prognosis of PCa. Cima et al.
combined bioinformatic prioritization with targeted proteomics and
machine learning to build predictive regression models for tissue
PTEN status and diagnosis and grading of PCa [8]. Wu et al. con-
structed a 32-gene signature model which could predict PSA recur-
rence of post-radical prostatectomy patients via PCA coupling with
Cox regression [36]. In 2014, Bismar et al. used a singular value de-
composition (SVD) method to identify an ETS transcription factor
(EGR) relative 10 genes signature for establishing a prognostic predic-
tion model to predict patients' clinical outcome [37]. Our work here
provides a different approach to establish prediction model and select
the candidate oncogenes or biomarkers.

From the 15-gene signature model, we selected 3 candidate genes
(FABP5, LPHN3 and C1QTNF3) for further analysis. FABP5 has been dem-
onstrated as a target of PCa in previous studies [38,39]. Latrophilin 3
(LPHN3) is a brain-specific member of the G-protein coupled receptor
family associated to both attention-deficit/hyperactivity disorder
(ADHD) genetic susceptibility and methylphenidate (MPH) pharmaco-
genetics [40] and was down regulated in PCa. Interestingly, we found
C1q and tumor necrosis factor related protein 3 (C1QTNF3, alias as
CTRP3), a highly expressed gene in PCa tissue, in the 15-gene list. In ad-
dition, the three probes (209424_s_at, 209426_s_at, 209425_at)
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Fig. 5.Diagnostic and prognostic capacity of the 15-gene signature for PCa in TCGA dataset. (a) 15-gene expression value distribution in TCGA PCa cohort by boxplots. The line within the
box indicates themedian value; the box spans the interquartile range. (b) ROC curve for the 15-gene signature for PCa diagnosis (c) Kaplan-Meier curves for the low- and high-risk groups
separated by the PI of the 15-gene signature in the TCGAPCa cohort. Significant differences in overall survival between the 2 groupswere analyzed by log-rank test (P= .003). (d) Kaplan-
Meier curves for the low-risk and high-risk groups of the 15-gene signature in the TCGA PCa cohort. Significant differences in DFS between the two groups were determined by the log-
rank test (P = .003). (e) ROC curves for the prediction of the 5 years overall survival among the 15-gene signature model, PSA screening and the Gleason score. (f) ROC curves for the
5 years DFS among 15-gene signature, PSA screening and the Gleason score.
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standing for C1QTNF3 respectively ranked the first, third and fourth
place among the significantly up-regulated probes. These hints have in-
spired us to explore the role of C1QTNF3 as a susceptibility gene in PCa.
Our previous studies have demonstrated that C1QTNF3 stimulated pro-
liferation and anti-apoptosis in prostate cells through the protein kinase
C signaling pathway [41]. Furthermore, C1QTNF3 regulated 14-3-3
sigma and GLRX3 which has functions in various kinds of tumors as
well as in prostate cancer [41]. It suggests that C1QTNF3 may promote
the transformation from prostate cells to malignant cells.
To confirm our findings, we validated C1QTNF3 by qPCR, Western
Blot and tissue microarray. We were able to draw the conclusion that
C1QTNF3was significantly overexpressed in prostate tumor tissues. Be-
sides, in the GEO dataset, the AUCs of ROC demonstrated C1QTNF3 had
good performance for PCa diagnosis. The TCGA dataset showed that
C1QTNF3 expression is closely associated with DFS time of prostate can-
cer patients. These results together indicate that C1QTNF3, as a bio-
marker for diagnosis and prognosis of PCa, has a high reliability and
accuracy.



Fig. 6. qPCR assay of FABP5, C1QTNF3 and LPHN3 genes in PCa and normal adjacent tissues. Scatter diagram of the gene expression and fold changed distribution of gene expression in
different samples.
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The data processing approach presented here provides a new
view for the discovery of biomarkers with the aim of promoting di-
agnostic and prognostic prediction of PCa. This approach can also
be applied to other high-throughput data for the discovery of onco-
genes or biomarkers in different kinds of diseases and different plat-
forms. In our study, we have established a diagnostic and prognostic
Fig. 7. Validation of C1QTNF3 expression in tissues microarray andWestern blot. (a). Pathologic
significantly increased when compared with para-carcinoma tissues. (c) C1QTNF3 expression
prediction model and revealed C1QTNF3 as a promising biomarker
for prostate cancer. However, more studies are warranted to deter-
mine the roles of the 15-gene signature prediction model and
C1QTNF3 for PCa.

Supplementary data to this article can be found online at https://doi.
org/10.1016/j.ebiom.2018.05.010.
al sections of PCa and para-carcinoma tissue. (b) C1QTNF3 expression in tumor tissue was
assayed byWestern blot.
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Fig. 8.Diagnostic and prognostic capacity ofC1QTNF3 for PCa inGEO and TCGAdatasets. (a) C1QTNF3 expression in three datasets (GSE6956, GSE8218, GSE26910) of GEOdatabase. (b) The
AUC of the ROC curve showed diagnostic capacity of C1QTNF3 for PCa in GSE6956, GSE8218 and GSE26910 datasets. (c) C1QTNF3 expressionwas associatedwith DFS time (log-rank test, P
value b .001). (d) AUC of C1QTNF3 in DFS time is 0.57.
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