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SUMMARY

Norovirus is one of the leading causes of viral gastroenteritis worldwide and responsible for
substantial morbidity, mortality and healthcare costs. To further understanding of the
epidemiology and control of norovirus, there has been much recent interest in describing the
transmission dynamics of norovirus through mathematical models. In this study, we review the
current modelling approaches for norovirus transmission. We examine the data and methods
used to estimate these models that vary structurally and parametrically between different
epidemiological contexts. Many of the existing studies at population level have focused on the
same case notification dataset, whereas models from outbreak settings are highly specific and
difficult to generalise. In this review, we explore the consistency in the description of norovirus
transmission dynamics and the robustness of parameter estimates between studies. In particular,
we find that there is considerable variability in estimates of key parameters such as the basic
reproduction number, which may mean that the effort required to control norovirus at the
population level may currently be underestimated.

Key words: Basic reproduction number, estimating disease prevalence, mathematical modelling,
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INTRODUCTION

Norovirus is an important cause of acute gastroenter-
itis (AGE) worldwide, and is associated with consider-
able morbidity, mortality and healthcare costs. In
Africa and South East Asia, almost a quarter of
deaths in children under 5 are caused by AGE [1, 2].
The majority of non-bacterial outbreaks, and an esti-
mated 18% of all endemic AGE, are caused by

norovirus [1, 3–5]. The virus was first described in
1969 and first identified in 1972 [6, 7]. Today, noro-
virus is estimated to cost healthcare services and
patients 81 million a year in the UK alone [8, 9].

Noroviruses are a genus within the Caliciviridae
family which is divided into five genogroups (GI–
GV) [10–12]. GII is the most prevalent genogroup
worldwide, accounting for over 81% of all outbreaks
in the USA reported to Calicinet in 2017 [13].
Genotype II, type 4 viruses are the predominant strain
and the leading cause of epidemic AGE in children
and adults worldwide. It is responsible for 70–80%
of reported outbreaks in the last decade [4, 11, 12,
14]. There may be considerable antigenic variation
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in GII.4 with a new pandemic strain appearing every
2–3 years [15, 16]. However, the GII.17 genotype
has recently become the predominant strain in some
parts of Asia [17], and 2016 saw the emergence of
new recombinant GII P16-GII.2 in Germany [18].

The main transmission route for norovirus is faecal–
oral, particularly for the epidemic strain GII.4, and
transmission may be enhanced by vomiting incidents
[3, 19–21]. However, other strains are more commonly
associated with environmentally transmitted outbreaks
[4, 22]. This can be through contamination of food,
water or surfaces and there have been examples where
outbreaks have been driven by environmental transmis-
sion both on cruise ships and air planes [9, 23–25]. There
is a dose–response relationship whereupon individuals
exposed to a higher number of viral particles experience
a higher attack rate [25]. However, the infectious dose is
low, with a 49% probability of infection from one par-
ticle, which means the dose response is unlikely to be
rate limiting [26, 27].

Norovirus transmission and resulting illness can be
exacerbated by many factors. The virus exhibits strong
seasonality with over half of cases occurring in winter
months [28]. There are both environmental drivers
and population behaviours cited as reasons for sea-
sonal variation. For example, norovirus is more read-
ily transmitted in colder temperatures and may be
facilitated by increased rainfall [28–30]. Other popula-
tion attributes can also affect the severity of norovirus
outbreaks. The virus affects all age groups but the
highest incidence is found in children under 5 years
old [9, 31]. Serological surveys also suggest that the
first norovirus infection occurs early in life [5, 32–
35]. Elderly and immunocompromised individuals
are more likely to experience severe complications
and death [36, 37]. As such, whilst infection is self-
limiting in healthy individuals, the effects experienced
by certain high-risk groups can be severe. It has also
been found that these groups can have far longer shed-
ding durations which could prolong an outbreak [31,
38, 39].

A vital tool for understanding disease transmission
and predicting the effectiveness of new control mea-
sures is mathematical modelling. Mathematical models
must strike a balance between the biological realism of
their representation of the natural history of infection,
and the strength of their link to data [40–42]. Models
of noroviruses developed at different scales, from the
outbreak to population levels, have found a remark-
able variability in the estimates of reproduction num-
bers. In this review, we examine the current status of

mathematical modelling in norovirus transmission
with particular focus on estimates of the reproduction
number. We highlight knowledge gaps and suggest
important new directions for development.

AIMS

Published models of norovirus transmission demon-
strate a broad range of relevant settings and character-
istics, from local transmission within healthcare settings
to the population level. The first aim of this paper is to
review model structures and data in norovirus model-
ling and highlight areas that are relatively unexplored.

The second aim of this review is to compare and con-
trast the current estimates of the basic reproduction
number for norovirus. Perhaps the most important epi-
demiological parameter, the basic reproduction num-
ber quantifies the risk of an epidemic, the potential for
spread of a disease and the level of effort required for
control.

The basic reproduction number, or R0, is defined as
the expected number of secondary infections per gener-
ation given one infected individual is introduced to an
entirely susceptible population [42].

Some authors, including those from studies consid-
ered in this review, do not clearly distinguish R0 from
effective reproduction numbers. Effective reproduc-
tion numbers, RE, can be defined for partially suscep-
tible populations where the potential for transmission
of a pathogen is limited by ‘herd immunity’. When the
population is well mixed, the relationship between
effective and basic reproduction numbers is linear,
where RE = (S/N)R0 if S is the number of susceptible
individuals in a population of size N. We would expect
variation in the values of R0 and RE for different set-
tings. A key objective of this review is to clarify this
distinction between and separate the likely range of
these key measures for norovirus.

REVIEW METHODS

A literature search was conducted on articles pub-
lished before April 2017 using the search engines
Google scholar and PubMed with additional results
found through reference tracing, see Supplementary
Material for flow diagram referring to PubMed search
and search terms. We did not aim to conduct a sys-
tematic review, but did refer to PRISMA guidelines
to follow good practice. The key words used in the
search included ‘Norovirus’, ‘Norwalk’, ‘models, the-
oretical’, ‘transmission dynamics’, ‘R0’ and ‘basic
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reproduction number’ with a full list of MeSH terms
as specified in the Supplementary Material. Only
English language papers were included in the litera-
ture review, with a focus on mathematical modelling
studies of norovirus transmission and estimation of
key quantities such as reproduction numbers. After
our initial review was conducted, the key reference
list was compared to a separate review commissioned
by Takeda Pharmaceuticals and performed by Amaris
(10 August 2015) to check for additional references.
The Amaris review searched MEDLINE and
Cohrane databases, with the aim of identifying clinical
and epidemiological parameters used in economic and
epidemiological models for norovirus, and yielded 13
epidemiological modelling and six economic model-
ling studies. From this, we identified one additional
paper [43], for inclusion in our review.

The reviewed works included in our study are
shown in a citation map in Figure 1 with search strat-
egy summarised in Figure S1 in the Supplementary
Material. This visualisation allows us to trace how
model structures and assumptions have flowed
through different norovirus modelling studies.

GENERAL FEATURES

The majority of norovirus transmission models take a
compartmental approach where the population is split
by disease state. Most commonly, the population is
divided into susceptible, infected and recovered classes
(SIR). A latent, or exposed, compartment (E) is also
commonly included in models for norovirus. The
latent compartment is necessary to examine the poten-
tial effectiveness of controls targeting infected indivi-
duals [44]. Within such an SEIR model, the
population is distributed into four states where suscep-
tible individuals may become exposed if they come
into contact with infected individuals. Once exposed,
individuals progress to be infectious and then recov-
ered or removed. In the simplest case, transitions are
assumed to occur at a rate inversely proportional to
the duration of time spent in each compartment [45].
The number of individuals in each disease state at
any time can be described by a set of coupled ordinary
differential equations, see (1).

Ṡ= μN − βSI − μS,

Ė= βSI − αE − μE,

İ = αE − γI − μI ,

Ṙ= γI − μR,

(1)

where μ is the per-capita birth or death rate; β, the
transmission rate; α, the rate of latency loss and γ,
the recovery rate. This basic framework can be
adapted to include age or spatial structure, stochastic
transitions or additional infectious states such as
asymptomatic infection. The duration of immunity
to re-infection with norovirus is likely to be short
lived. This basic SEIR structure may suffice for
describing single epidemics of norovirus, but model-
ling the longer term between season dynamics of nor-
ovirus requires additional flows to describe this
waning of immunity. We include a table detailing
model features, data used and form of any estimated
reproduction number, see Table 1. The values of cur-
rent reproduction number estimates are shown in
Figure 2, with multiple values shown where a study
has used different models to arrive at their estimates.

IN OUTBREAK SETTINGS

Outbreaks are typically defined as a number of cases
that is in excess of what would be commonly seen in
that season or location. Norovirus is commonly asso-
ciated with outbreaks in healthcare settings such as
hospitals or long-term care facilities (LTCFs).
However, outbreaks are also regularly documented

Fig. 1. Diagram of citations between reviewed works
divided by setting [10, 20, 21, 31, 35, 43, 46–48, 52–54, 59,
69]. Boxes show first authors of each study. Arrows denote
that the study may have been influenced by earlier studies,
established through citation, and arrow colour varies for
ease of reading. Boxes with white backgrounds indicate a
study has estimated and provided a novel value of a
reproduction number. Superscript symbols denote co-
authorship with * indicating co-authorship with Lopman;
° Simmons and ∼ Zelner.
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Table 1. Summary of reviewed studies and their reproduction number estimates where appropriate [10, 20, 31, 35, 43, 46, 48, 52–54, 59, 69]

Reference Setting Data Model type(s) R form
Basic/
effective Definitions

Lawrence et al. [43] Population IID [57] Deterministic R= βN/γ Basic β transmission rate
N population size
γ recovery rate

O’Neill and Marks
[20]

School Absence information and
questionnaires

Discrete time
Reed-Frost

Vanderpas et al. [48] Long- term
care facility

Incidence data from stool
samples

Deterministic R=Tg(y(t)/t) + 1 Effective Tg Generation time y(t) incidence at time t

Heijne et al. [47] Scout
jamboree

Case numbers and onset
times

N/A R(t) = (G(th− t) +
(1−G(th− t))ρ)Ru

Effective th time enhanced hygiene measure are
introduced G CDF of generation time
distribution ρ relative reduction in R due to
hygiene measures Ru effective reproduction
number without hygiene measures

Sukhrie et al. [52] Hospital and
care homes

Surveys and incidence data
from stool samples

Serial intervals
and transmission
trees

N/A Effective

Simmons et al. [35] Population IID2 [57] Deterministic R= ρ(−TE−1) Basic lead eigenvalue of matrix M
T transmission matrix
E transition matrix.

Lopman et al. [10] Population IID2 [57] Deterministic

Milbrath et al. [31] Population Published shedding
durations from challenge
studies and outbreak
investigations

Deterministic and
stochastic

R= βN((1− ρ/γR) +
(ρ/γL))

Basic β transmission rate

γi recovery of long, i=L, or regular, i =R,
shedders

ρ proportion of population that are long
shedders

Zelner et al. [46] Households Incidence data from phone
surveys

Discrete stochastic

Lane [59] Population IID2 [57] Deterministic
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on cruise ships, planes, schools and restaurants [20,
24, 25, 46, 47]. Models of norovirus in outbreak set-
tings usually utilise primary data which may be
extremely heterogeneous. This is because outbreaks
affect a subset of the population that may not be rep-
resentative of the whole; for example, an outbreak in a
school will only affect certain age groups. As such, the
model dynamics and value of any estimated reproduc-
tion number will be highly specific to the particular
dataset and epidemiological setting. The nature of
the data and population in these settings mean that
stochastic effects are extremely important. In a small
population such as a hospital ward, the influence of
a random effect could spell the end of the outbreak.
As such, models of outbreaks are generally stochastic
which means that transitions are defined by probabil-
ity distributions rather than fixed values, allowing for
different dynamics at every simulation. An exception
to this generalisation is the deterministic model of
Vanderpas et al., which was estimated using stool
confirmed case numbers from an outbreak in four
wards of a LTCF [48]. An issue with a deterministic
model for such a small population is that there is a
high probability of stochastic epidemic extinction
which will not be accounted for. As such, the pre-
dicted case numbers of Vanderpas et al. may be over-
estimated [48]. No information on susceptibility was
available, or informed this estimate, thus it should
be considered as an effective reproduction number.
We would therefore expect that the corresponding
value of the basic reproduction ratio, accounting for
pre-existing immunity, would be greater for this
outbreak.

Norovirus is colloquially known as winter vomiting
disease and vomiting has been shown to be important
when modelling outbreaks. A vomiting incident may
not be noticeable in a large population, but in a
small, closed population, vomiting can drastically
affect the course of an epidemic. Vomiting incidents
can produce airborne viral particles and contaminate
fomites, surfaces that can act as vehicles of transmis-
sion [49, 50]. Models explicitly including vomiting,
or an altered infectiousness profile, have been found
to more accurately represent outbreak data. In a
school, a model including infections caused explicitly
by vomiting incidents better reflected survey data on
absences and self-reported onset times [20]. Similarly,
in a household setting, an initial spike in infectiousness
of infected individuals was shown to be a key aspect to
reflect survey data [46]. As such, the inclusion of het-
erogeneity in symptomatic individuals is an importantT
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consideration when estimating models from outbreak
data. However, it should be noted that a varying
infectiousness profile was found to be less influential
in models estimated from data at the community
level [31].

In healthcare settings, outbreaks of norovirus are par-
ticularly prevalent. This may be partly due to the
immunocompromised status of the patient population
or a high number of individuals who may struggle to
sustain hygiene levels due to their condition.
Additionally, it may be due to the increased rate of hos-
pitalisation due to norovirus gastroenteritis experienced
by individuals with pre-existing chronic medical condi-
tions [51]. However, we might also expect the level of
hygiene in these settings to be above average, at least
for healthcare workers. This leads to the question of
whether healthcare workers contribute to transmission
in the same way as patients do. Through comparison
of effective reproduction numbers for individuals in
nosocomial outbreaks, Sukhrie et al. found that trans-
mission was driven by patients rather than healthcare
workers, particularly when patients were symptomatic
[52]. The values were calculated from estimated onset
times and serial intervals using a Bayesian framework
for symptomatic or asymptomatic patients or healthcare

workers. The highest effective reproduction numbers
were found for symptomatic patients and the lowest,
deemed negligible, were found for asymptomatic health-
care workers. Therefore, whilst the specific inclusion of
asymptomatic individuals in models of norovirus may
be an important consideration in the community in gen-
eral, discussed later, the differentiation may not be
required for models of nosocomial transmission as
their specific contribution is very small.

An issue with outbreaks in healthcare settings or
outbreaks in general are the size of datasets and spe-
cificity of estimated parameters to the specific loca-
tion. Multiple outbreak data may be used to address
this problem and arrive at an estimate that applies
to general healthcare settings whilst accounting for
uncertainty caused by differing situations. A tech-
nique for utilising multiple outbreak data was applied
by O’Dea et al. and shown to be improved by the
inclusion of an increasing number of outbreak data-
sets [53]. In this situation, individual outbreaks are
assumed to be separate realisations within a given set-
ting, allowing the reproduction number to be esti-
mated for each facility, with ranges shown in Figure 2.

However, there may be biases in reporting with lar-
ger outbreaks reported over smaller ones. One such

Fig. 2. Reproduction number values for the subset of studies, shown in Fig. 1, where reproduction numbers are explicitly
mentioned; the x-axis denotes first author [10, 21, 31, 35, 43, 47, 48, 52–54, 69]. Squares denote individual values of the
basic reproduction number according to the definition given in the Aims section; circles denote individual values of the
effective reproduction number according to the definition given in the Aims section. Filled shapes denote that the value
was estimated, empty shapes denote that the value was assumed and lines denote 95% confidence interval ranges if
provided. Where mutliple reproduction number values are estimated for different situations, detailed in text, all values are
shown.
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outbreak on a larger scale was that in a scout jambo-
ree, Heijne et al. examined transmission of norovirus
in an outbreak where 329 individuals became infected.
Heijne et al. used this dataset to estimate reproduction
numbers from generation times and to establish the
effectiveness of hygiene measures. The range of values
extended from a minimum of just over 2 to a max-
imum of over 14 without health interventions. The
three values plotted in Figure 2 show the estimate
with hygiene interventions of 2·13, the estimate at
the start of the epidemic of 7·26 and the estimate of
the effective reproduction number in the absence of
any intervention of 14·05. The high values could be
in part due to the generally younger population of
individuals at the jamboree both because of their
immunological naïvety and their levels of hygiene.

Whilst outbreaks in hospitals and LTCFs appear to
be isolated occurrences, healthcare facilities form a
vibrant network. Bartsch et al. compared transmission
settings through values of the basic reproduction num-
ber taken from Simmons et al. and Vanderpas et al. to
assess the potential for norovirus to jump between
nodes in a hospital network via patient sharing [35,
48, 54]. They found this transferral of patients propa-
gates epidemics between facilities with a probability
directly related to the basic reproduction number
[54]. Therefore, the reproduction number is not only
an assessment of risk within a facility but also the
risk of between facility spread.

IN THE COMMUNITY

Community- or population-level models apply on a
large scale, for example, in a city or country. In gen-
eral, models at community level are more likely to
be deterministic and this is true for norovirus models;
only Milbrath et al. consider the effect of stochasticity
[31]. This pragmatic choice trades off the computa-
tional and analytical benefits of deterministic models
against more realistic, but complex, stochastic formu-
lations [55]. However, the validity of this argument
depends on the nature of the stochasticity driving
the system. Whilst the impact of demographic stocha-
city – uncertainty in the timing of events occurring at
a constant rate – is generally less in large populations,
so-called environmental sources of stochasticity may
still dominate dynamics in a large population and
more subtle effects like stochastic resonance may fur-
ther undermine the common assumption of equiva-
lence between deterministic and stochastic models
[56]. The referenced works all use the SEIR structure

with an additional compartment for asymptomatic
individuals. Another similarity is that most of the
shown works are estimated from the second
Infectious Intestinal Disease, IID2, study data from
the UK [57]; Lawrence et al. use data from the first
IID study.

The infectious intestinal disease surveys examine
reports of infectious intestinal disease in the commu-
nity as reported by recruited individuals, general
practitioners (GPs), practise nurses, through database
searches and through retrospective telephone surveys
in the UK [58]. Infectious intestinal disease is
extremely under-reported and this is partly due to a
reduction in individuals visiting their GPs over
time; between the first and second IID surveys, the
number of GP visits for gastroenteritis fell by 50%.
Yet, the rate of IID was 43% higher in 2008, at the
time of the second IID survey, than at the time of
first. Norovirus was the most common pathogen pre-
senting to GPs in the survey with 2 905 278 cases in
2008–2009; however Tam et al. estimate that for
every one case reported to national surveillance,
288 more occur in the community without being
reported [57]. The IID studies give a comprehensive
overview of reported cases and the number of cases
that may go unaccounted for has been estimated.
As such, they provide a wealth of information for
model estimation that has been rightly exploited
over recent years.

The first work in Figure 1, Lawrence et al. utilised
IID data to estimate the proportional contribution
of food-borne transmission to norovirus prevalence
[43]. In all studies shown in Figure 1, primary trans-
mission is assumed to be direct person-to-person.
However, this emphasis fails to acknowledge the
potential importance of food-borne transmission to
case numbers [58] as well as the role of environmental
contamination [23]. Initial efforts were aimed at
defining a limit for the number of exogenously gener-
ated cases required to maintain the disease in the
population [43]. This quantity was derived from the
basic reproduction number calculated from the esti-
mated model (see Table 1). The value was highly sen-
sitive to the duration of immunity experienced by
recovered individuals and the limit was found to be
between 0·23 and 1·8 million cases per year in
England. The wide variation shown in these two
values was as a result of assumed under-reporting in
the first IID survey, a problem that was addressed in
complementary work by Lane using IID2 [59]. The
updated infectious intestinal disease survey data led
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to a reassessment of the proportion of asymptomatic
individuals. In the first study, the estimated propor-
tion of asymptomatic infected individuals is 0·3%;
however, Lane substantially revised this estimate to
12% based on expert opinion at the Food Standards
Agency rather than estimation from the IID survey
data. The new estimate not only prompted consider-
ation of the effect of asymptomatic norovirus infec-
tion in the community but altered the estimates of
food-borne contribution to transmission to 2·9 mil-
lion/year in England.

The difference between human-to-human and food-
borne cases were further assessed in Japan by
Matsuyama et al. [21]. They linked final epidemic
sizes with effective reproduction numbers to measure
transmissability of norovirus through different trans-
mission routes. Using outbreak data from 2000 to
2016, they evaluated the yearly effective reproduction
number under different sampling assumptions. They
concluded that, in Japan, person-to-person transmis-
sion of norovirus is increasing and with it, the effective
reproduction number.

Asymptomatic individuals have been found to have
negligible effects on transmission in certain outbreak
settings; however, the models estimated from the IID
surveys imply that it may be important in the commu-
nity and there have been instances where asymptom-
atic individuals have seeded outbreaks. In all the
cited works shown in Figure 1, asymptomatic indivi-
duals are explicitly included at the community level.
This is partly as a result of the work of Simmons
et al. who considered differing model formulations
with varying levels of contribution from asymptom-
atic individuals and asymptomatic reinfection of
recovered individuals [35]. The IID2 survey data are
best reflected by models including both asymptomatic
individuals and asymptomatic reinfection of recovered
individuals. Furthermore, asymptomatic individuals
may act as a reservoir of infection within the popula-
tion for different transmission settings [10]. As such,
the inclusion of an asymptomatic compartment within
community models for norovirus is likely to be
important.

The real focus of the different model formulations
in the work of Simmons et al. is an assessment of
the duration of immunity [35]. They found that the
duration of immunity was not sensitive to asymptom-
atic reinfection and generally much higher than previ-
ous estimates. In the work of Lane and Lawrence
et al., the duration of immunity was assumed to be
between 6 months and a year; however, Simmons

et al. found the duration to be in the region of 5
years. This difference could be due, in part, to differ-
ences in model structure, for example, Simmons et al.
assume an age-structured model in all formulations. It
may also be related to additional use of challenge
study data to estimate the proportion of the popula-
tion that is immune to infection. This more varied
approach to estimation leads to a more robust result
which has been used in many of the subsequent stud-
ies. It should also be noted that through the construc-
tion and estimation of different norovirus transmission
models, different values of R0 were calculated with
values ranging from 1·64 to over 7. These were heavily
influenced by the model structure and particularly the
weighting of asymptomatic and latent individual
infectiousness.

The weighting of contribution from asymptomatic
and exposed individuals may also be important
when modelling norovirus transmission. Viral parti-
cles shed from an individual may be viable for infec-
tion [60]. Additionally, it has been found that
asymptomatic individuals shed a 1–2 log smaller con-
centration of viral particles in their stool than symp-
tomatic individuals but may shed for a long
duration [3, 61]. Therefore, it is important to establish
the relative shedding quantities of individuals in dif-
ferent states in mathematical models. Initially, the
contribution of asymptomatic and symptomatic indi-
viduals was considered equal in the work of
Lawrence et al.; however, the asymptomatic carriage
was assumed to be so low that the model would
have not appeared sensitive to any scaling of asymp-
tomatic contribution. When Lane reassessed the
asymptomatic carriage in the population, he also dis-
cussed different weights of contribution from asymp-
tomatic individuals but assumed equal contribution.
A fuller examination of the difference in weighting
for asymptomatic and latent individuals was con-
ducted in the work of Simmons et al.. In this case, a
model where asymptomatic and exposed individuals
are 5% as infectious as symptomatic individuals was
a better reflection of the IID2 data than one with
either a 25% or 0% weighting. They did not assess
the effect of a 100% weighting; however, the basic
reproduction number estimate was higher when
asymptomatic individuals had a greater contribution
to the force of infection, a trend seen also for rotavirus
[62]. As such, the contribution of asymptomatic indi-
viduals to the basic reproduction number is important
and yet hugely uncertain as they are a large and unob-
served component of the system.
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There are operational differences between the shed-
ding of asymptomatic and symptomatic individuals.
As such, the explicit inclusion of variation in shedding
duration was found to be extremely important. Long
shedding individuals, either defined functionally or
operationally, can increase the value of R0 by 50–
80%, see Figure 2 for values [31]. Additionally, indivi-
duals shedding for a longer duration may increase the
probability of an epidemic. As such, the inclusion of
asymptomatic-but-shedding individuals with hetero-
geneous shedding durations may be necessary to be
consistent with the data from outbreak investigations
and challenge studies. It should be noted that
Milbrath et al. use challenge studies and outbreak
investigations to estimate their community model
which may lead to overestimation of shedding dur-
ation. However, it has been found that robust estima-
tion of models using viral shedding data can be
comparable with community-level estimates [63].

DISCUSSION

By examining published mathematical models of nor-
ovirus transmission, we found a divided picture of cur-
rent modelling approaches, dictated by setting and
context. At a population level, the deterministic
model structures were largely similar across different
settings, and most were underpinned by data from
the IID survey [64]. In outbreak settings, the models
are far more diverse, reflecting the setting and popula-
tion they are approximating, although these models
generally (and appropriately) took a stochastic
approach. With these disparities in model approach
and radical differences in the outbreak contexts,
there is likely to be some variation in reproduction
number estimates. However, we found that the values
of the basic reproduction number for norovirus varied
widely, from 1·1 to 7·2. In general, population-based
estimates of R0 are around 2, with higher values esti-
mated for particular outbreaks. Whilst norovirus in
a subset of a population in a confined environment
may have a different transmission potential to the
population as a whole, other data sources and charac-
teristics of norovirus suggest that the basic reproduc-
tion number may be underestimated at the
population level. Examination of population sero-
prevalence data shows that the first infection with nor-
ovirus occurs very early in life, before 5 years of age.
As such, a simple calculation, given the mean age at
first infection is 2 years and assuming the duration
of immunity is 5 years, see Simmons et al., gives

R0≈ (A +D/A) = 3·5 [42]. Additionally, the low infec-
tious dose, potentially long shedding durations and
the high level of asymptomatic carriage imply that
transmission potential is extremely high. The best fit
estimate of R0 for rotavirus, an enteric pathogen
with a similarly low infectious dose, for comparison
is 26·2 in [62], with estimates ranging from 1·23 to
26·2, but between 23·3 and 191 in [65].

Further research could help to address such import-
ant inconsistencies and information gaps identified in
this review. In particular, some features of the natural
history of norovirus infection are not well described. A
more thorough examination of seroprevalence data in
different settings is warranted and may well improve
our estimates of R0 [66]. The models that we have
reviewed have also made some key assumptions
regarding asymptomatic individuals. The proportion
of individuals without symptoms has been assumed
to be as low as 0·3% and as high as 30% [10, 35, 43,
52, 59]. This is an important distinction as asymptom-
atic individuals have been found to shed a 1–2 log
smaller concentration of viral particles and can shed
for long durations [3, 31, 61]. Empirical evidence on
the role of asymptomatic individuals in ongoing trans-
mission will better inform future models. The duration
of immunity to norovirus is also not well established
for norovirus. In the earliest studies, immunity was
assumed to be complete and short-lived, in the region
of 6 months to a year leading to an approximate value
or R0 of 1·25 by the same, simple calculation. Yet, in
later studies, immunity was robustly shown to be
leaky and last far longer, around 5 years. The differ-
ence is significant as a longer immune period will
lead to a force of infection that is proportionally
higher in order for the system to see the same numbers
of reported cases; as such, the duration of immunity
can have a direct effect on the basic reproduction
number. Another remedy for inconsistencies may lie
in model comparison similar to that of Pitzer et al.,
where different approaches were brought together
for the same dataset [62]. A final, and vital, omission
from the current literature are models and estimates
applying to lower and middle-income countries
(LMIC). There have been some studies into the differ-
ences in norovirus across varying country profiles, for
example [19]; however, there have been no mathemat-
ical models of the transmission of norovirus in LMIC
settings. We may expect the estimates of key quantities
such as the basic reproduction number to vary sub-
stantially; we know that there are substantial differ-
ences in contact structures and environmental
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hygiene. The incidence of norovirus gastroenteritis
seems universally high in children in developed and
developing countries, with an incidence or around
20% per year [67, 68]. However, there is still reason
to think that the R0 is higher in developing country
settings because of higher exposure through (a)
person-to-person transmission because of greater
population density/contact rates or (b) environmen-
tal/food transmission because of lower levels of clean
water, sanitation and hygiene.

Establishing more robust models for norovirus is
particularly important in the context of the develop-
ment of new vaccines. Questions regarding the poten-
tial impact of vaccination and their optimal use can be
efficiently addressed using mathematical modelling.
Mathematical models are vital for examining these
questions because a much broader range of strategies
(and model assumptions) can be tested in silico than in
real-life clinical trials. The basic reproduction number
can be central to this as it captures the efforts required
to control an infection. An initial modelling study,
conducted by Steele et al., suggested that targeting
infants may be the most efficacious strategy [69].
However, updated estimation and examination of
more varied control strategies may give us further
insight into regulating norovirus. For example, the
strong seasonality exhibited by norovirus would affect
time-dependant control measures and, whilst season-
ality has been included in models, the interplay
between it and intervention measures have not yet
been examined. An examination of the effect of tem-
poral control measures on seasonal norovirus could
find interesting dynamics such as changing periodicity
or varying synchrony either spatially or temporally.
Given the varying setting and approaches, there are
currently a myriad of model formulations for noro-
virus. However, we have highlighted some key knowl-
edge gaps that, if filled, could give a far better outlook
for modelling and therefore understanding norovirus
transmission.

SUPPLEMENTARY MATERIAL

The supplementary material for this article can be
found at https://doi.org/10.1017/S0950268817002692.
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