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Differential contribution of transcriptomic
regulatory layers in the definition of neuronal
identity
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Previous transcriptomic profiling studies have typically focused on separately analyzing
mRNA expression, alternative splicing and alternative polyadenylation differences between
cell and tissue types. However, the relative contribution of these three transcriptomic reg-
ulatory layers to cell type specification is poorly understood. This question is particularly
relevant to neurons, given their extensive heterogeneity associated with brain location,
morphology and function. In the present study, we generated profiles for the three regulatory
layers from developmentally and regionally distinct subpopulations of neurons from the
mouse hippocampus and broader nervous system. Multi-omics factor analyses revealed
differing contributions of each transcriptomic layer in the discrimination of neurons based on
their stage of development, region, and function. Importantly, profiles of differential alter-
native splicing and polyadenylation better discriminated specific neuronal subtype popula-
tions than gene expression patterns. These results provide evidence for differential relative
contributions of coordinated gene regulatory layers in the specification of neuronal subtypes.
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he human and mouse brain are composed of ~86 billion!-2

and 71 million® neurons, respectively. Furthermore, it has

been estimated that neurons can contain thousands to tens
of thousands of synapses that are capable of forming billions to
trillions of synaptic connections*°. In contrast, C. elegans pos-
sesses 302 neurons that form ~7500 synaptic connections®. These
findings and the observation that metazoan species have com-
parable numbers of protein coding genes highlight the impor-
tance of the evolution of gene regulatory complexity as a
determinant of neuronal diversity. Neurons are categorized into
different subtypes depending on a multitude of related factors,
including molecular composition, morphology, location, and
physiology”, and hundreds of distinct subtypes have been defined
in the mammalian brain8. Previous efforts directed at classifying
neuronal subtypes using high-throughput RNA sequencing
(RNA-seq), most recently at a single-cell level, have largely
focused on profiling gene expression (GE) changes’.

Alternative splicing (AS) and alternative polyadenylation
(APA) play numerous critical and multifaceted roles in the ver-
tebrate nervous system!0-12, These forms of post-transcriptional
gene regulation generate multiple transcript isoforms from the
same gene by differential selection of splice sites and 3’ end poly
(A) sites, respectively. Both mechanisms are widespread in mul-
ticellular eukaryotes; more than 90% of human genes produce
transcripts that are alternatively spliced!>14 and ~80% of human
genes have multiple poly(A) sites!®>. The importance of coordi-
nated regulation of neural-differential AS is highlighted by the
concentration of AS programs in genes that function in key
processes associated with nervous system development and
function, such as neurogenesis, axonogenesis, synaptic biology,
neurotransmitter trafficking, and signaling. It has been estimated
that approximately one-third of neural-regulated exons function
in the remodeling of protein-protein interaction networks!®, with
many belonging to a class of neural microexons that are less than
27 nt in length!”. Moreover, to-date, dozens of individual neural-
differential exons, and the trans-acting factors that control them,
have been functionally characterized and shown to play critical
roles in these processes!S.

Cell type- and tissue-differential GE patterns have been largely
conserved during vertebrate evolution, whereas differential AS
patterns, overall (with the exception of conserved sub-networks of
AS events) have evolved rapidly and display increased complexity
during evolution, particularly in the nervous system!%20, More-
over, increasing examples have been reported of functionally
important neuronal subtype-specific AS patterns®!-23. APA also
shows extensive variation between tissues and species?»?°, with
pronounced changes in neural cells that predominantly result in
longer 3’ UTRs to facilitate extensive post-transcriptional
regulation?2>. For example, changes in the expression of 3’
UTR sequences through APA can regulate the localization of
messenger RNAs (mRNAs) to dendrites and axons, in part to
facilitate localized translation6. APA has been implicated in the
regulation of long-term potentiation of hippocampal neurons?’.
Hence, in conjunction with differential GE, AS and APA are
important and complementary regulatory layers that contribute
to the specification of neuronal subtypes. Yet, the relative degrees
to which these regulatory layers contribute to cell-type specifi-
cation in the nervous system has not been systematically
investigated.

In this study, we investigate how steady-state GE, AS, and APA
changes are coordinated in defining different classes of neurons
using high-throughput RNA sequencing (RNA-seq) data. To this
end, we first analyzed RNA-seq data?® generated from pyramidal
neurons purified from the discrete regions of the mouse
hippocampus, including proximal-distal, dorsal-ventral, and
superficial-deep axes of CAl and CA3 subfields. In addition to

recapitulating previously observed?® GE differences between
dorsal and ventral CA1 pyramidal neurons, we show that dif-
ferential AS and APA account for a significant proportion of the
variation between populations of this class of hippocampal neu-
ronal subtype. In particular, differential AS predominantly
accounts for transcriptomic variation between the proximal-distal
axis, and significantly contributes to patterns distinguishing
regionally separated CA1 and CA3 neurons, whereas differential
APA predominantly accounts for transcriptomic variation
between pyramidal neurons from other regions of the hippo-
campus. We next expanded our analysis to neurons across the
nervous system, which identified co-regulated patterns of GE, AS,
and APA that, to differing extents, discriminate neurons based on
their age, region, and function. While genes affected by each of
the three regulatory layers were concentrated in different subsets
of genes with overlapping functional categories, in certain cases
AS and APA uniquely controlled programs depending on the
specific neuronal population. Taken together, our results high-
light how GE, AS, and APA patterns collectively contribute to the
shaping of the transcriptomes that drive neuronal specification.
These findings highlight the importance of integrating multiple
types of measurements from the same transcriptomic data to
establish the molecular underpinnings of cell-type identity.

Results

Multiple transcriptomic regulatory layers contribute to neu-
ronal diversity in the hippocampus. The hippocampus is a cri-
tical and extensively studied brain region with important roles in
the limbic system, such as regulating memory formation, beha-
vior, and emotion. Hippocampal neurons are spatially organized
into regions or subfields, i.e., the Cornu Ammonis fields CAl,
CA2, CA3, and dentate gyrus (DG). Increasing evidence supports
functional differences between and within subfields??-30, yet the
molecular determinants underlying these differences are not well
understood. To investigate this question at the transcriptomic
level, we analyzed RNA-seq data’® from excitatory pyramidal
neurons isolated from different CA1 and CA3 regions of the
mouse hippocampus, including the dorsal, proximal-distal, and
ventral subsections (Fig. la and Supplementary Data 1). We
applied Salmon3! to profile GE, VAST-TOOLS!7-32 and Whip-
pet33 to profile AS, and QAPA34 to profile APA (Fig. 1a). In this
analysis, AS differences were separately quantified for exon
sequence-containing events (i.e., simple and complex cassette
exons, microexons, and alternative 5’ and 3’ splice sites) and
intron retention (IR) events.

To initially investigate global patterns in the data, principal
component analysis (PCA) was applied to each individual RNA-
Seq analysis output. This analysis distinguishes datasets based on
regional identities of neuronal subpopulations (Supplementary
Fig. 1a). For example, in addition to clear GE differences between
CA1l and CA3 regions, there were clusters corresponding to
dorsal and ventral CA1 regions, in line with previous observa-
tions?8, Furthermore, APA, AS, and IR differences captured
additional variation between subtypes. For example, APA
differences defined a distinct cluster of neurons belonging to
the proximal-distal axis, which is further explored below. Taken
together, these observations provide evidence that different layers
of post-transcriptional regulation differentially contribute to the
spatial identity of hippocampal pyramidal neurons.

Relative contributions of differential gene expression, alter-
native splicing, and alternative polyadenylation in the defini-
tion of neuronal subtypes. To further investigate how GE,
AS, and APA are coordinated in the definition of temporally
and spatially distinct subpopulations of pyramidal neurons, we
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Fig. 1 Multi-layered RNA-seq analysis for investigating neuronal subtype diversity. a Schematic of the mouse hippocampus (center) and the various
anatomical regions assayed by RNA-seq from Cembrowski et al.28. The hippocampus is broadly segmented into three subfields: CAT (purple), CA3
(green), and DG (orange, unlabeled). Computational methods were applied to generate multi-dimensional profiles of each transcriptome, including gene
expression (GE), exon sequence alternative splicing (AS), intron retention (IR), and alternative polyadenylation (APA). Hippocampus schematic by Rayna
Harris’’, distributed under a Creative Commons Attribution License. b MOFA was applied to investigate the sources of variation that describe the
differences between neuronal types. The total contributions of each layer, measured by total variance explained (R2), are summarized in the bar-plot (top
panel). The individual contributions of each layer to each latent factor (LF) are summarized in the heatmap (bottom panel). ¢ Beeswarm plots (one-
dimensional scatterplots) illustrating the variation described by the top four latent factors inferred by MOFA. Each sample is assigned a factor weight
(y-axis) signifying its involvement in explaining the factor. MOFA captures sources of variability found between different regions (color).

employed multiomics factor analysis (MOFA)3°, a statistical
framework for identifying principal sources of variation from
multiple data types in an unsupervised manner. Briefly, MOFA
jointly analyzes multiple data types using group factor analysis to
infer a set of hidden, latent factors unobserved by the data®”. In a
manner similar to PCA, each latent factor represents a compo-
nent of the unobserved structure of the data that is jointly
dependent on multiple input data sources. MOFA has distinct
advantages over other multiomics approaches, as it can handle
missing values, integrate data from multiple modalities, is robust
to differences in measurement scales across inputs, and identify
hidden sub-groups underlying the data, for example, those that
explain biological and technical sources of variablilty>>. In the
present study, we sought to identify distinct neuronal populations
based on one or more underlying data modalities. By inter-
rogating the latent factor scores or loadings assigned by MOFA,
the variation explained by each latent factor could be interpreted
and annotated, as described below.

To establish a MOFA model, the same set of features analyzed
by PCA—that is, quantitative profiles of GE, AS, and APA events

—were used as training data (see “Methods” for details). Overall,
MOFA inferred four latent factors (LF1, LF2, LF3, and LF4), each
of which have shared and unique contributions from each
transcriptomic regulatory layer (Fig. 1b). In total, GE accounted
for the majority of the total variance (R?=0.57), followed by
exonic AS (R2=0.37), IR (R?=0.35), and APA (R?=0.33).
These factors describe variability in line with the results from
PCA (Fig. 1c and Supplementary Fig. 1a), yet afford a quantitative
assessment of the contributions of each layer to neuronal identity.
Using the output from MOFA we further investigated LF1 and
LF2, which describe regional differences between CA1 and CA3
neurons, and between-axes differences, respectively.

Contributions of differential gene expression and alternative
splicing to regional differences between hippocampal CA1 and
CA3 subfields. We performed an in-depth examination of LF1, in
which GE, and AS contribute to regional differences between CA1l
and CA3 pyramidal neurons (Fig. 1¢). To quantify the correlation
between a feature (e.g., differential GE or AS event) from each
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layer and the variation described by a factor, MOFA assigns each
feature a score or loading. Hence, loadings with larger magnitudes
indicate a stronger correlation or anti-correlation with a factor.
To confirm that LF1 describes variation between CA1l and CA3,
we compared the loadings assigned to features in the GE layer
with the log, fold changes in GE (Supplementary Fig. 1b). Indeed,
we observe a strong correlation between these two measurements
(Pearson correlation R=0.9, p < 2.2 x 10716),

Next, to investigate whether the top scoring features associated
with LF1 are enriched for specific biological functions, we
performed Gene Ontology (GO) analysis for each regulatory layer
using the set of input features as background. Interestingly,
significant GO term enrichment was observed for GE and AS. For
GE, we observe enrichment for the GO term “transcription factor
activity” (FDR < 0.05, FDR-corrected hypergeometric test). This
prompted us to ask whether the top genes are enriched for
annotated transcription factors among a recently curated list of
1,816 transcription factors®®. Indeed, of 213 genes that were
upregulated in CA1 neurons as detected by DESeq2’” ([log,¢| > 1,
FDR < 0.05, where ¢ is the fold change in gene expression between
CAl and CA3), 21 are annotated transcription factors, which
represents a significant enrichment (p = 0.00844, hypergeometric
test; Fig. 2a, b).

In the AS (exonic sequence events) layer, we identified genes
encoding exons with differential splicing between CA1 and CA3,
as measured by the change in Percent Spliced In (APSI) values. As
validation, the loadings assigned to the AS events were consistent
with detected APSI differences between CA1l and CA3 (Supple-
mentary Fig. 1c, d). The genes representing the top loaded events
are enriched in GO terms associated with synaptic vesicles,
plasma membranes, and the cell surface (Fig. 2¢, p <0.05, FDR-
corrected hypergeometric test). Confirming the association of
these AS events in genes encoding membrane proteins, protein
sequences encoded by these exons showed strong enrichment for
overlap with extracellular regions (Fig. 2d, p =4.43 x 1073, two-
sided Fisher’s exact test).

Interestingly, among the AS events with the top weights
assigned by MOFA, we identified previously validated mutually
exclusive alternative exons in the . -amino-3-hydroxy-5-methyl-
4-isoxazolepropionic acid (AMPA) receptor genes Grial and
Gria2 that display differential splicing between CA1 and CA338
(Fig. 2e). In addition, we identified mutually exclusive exons in
Snap25 and an alternative VASE (VAriable domain Spliced Exon)
exon in Ncaml; notably both of these genes have important roles
in synaptic plasticity and the inhibition of neurite outgrowth,
respectively>>40, These results demonstrate that our analytical
approach using MOFA to analyze the RNA-seq data described
above identifies new, as well as previously validated, transcrip-
tomic differences between subregions of the hippocampus.

Differential expression of ribosomal protein genes distin-
guishes the proximal-distal axes of hippocampus. We next
investigated LF2, which captures differences between neurons on
the proximal-distal axis versus the other axes (i.e., dorsal-ventral
and superficial-deep). Interestingly, APA is the primary layer
contributing to this factor, followed by GE (Fig. 1b, see below).
We first examined the contributions of GE by inspecting the top
genes weighted by MOFA. GO analysis identified significantly
enriched terms related to the ribosome and metabolism (Fig. 3a,
FDR < 0.05, FDR-corrected hypergeometric test). To more gen-
erally assess whether the top genes regulated by APA, as weighted
by MOFA, relate to functions associated with post-transcriptional
regulation and translation, we asked whether these overlap with
annotated RNA-binding proteins (RBPs) using data from Castello
et al*l and Ray et al#2. Interestingly, among the genes

upregulated in the proximal-distal group, we observe significant
enrichment for RBPs (27/298, p =4.19 x 109, hypergeometric
test; Fig. 3b). This enrichment is unique to LF2, as no such
enrichment was detected among the top-weighted genes belong-
ing to the other factors. Interestingly, the majority (n = 15) of the
RBP genes encode ribosomal proteins, confirming the initial GO
analysis results (Fig. 3c). Additionally, eight of these ribosomal
protein genes show statistically significant upregulation in prox-
imal and distal neurons compared to dorsal, ventral, superficial,
and deep neurons (|log2 (/>| >1s, FDR < 0.05, where ¢ is the fold
change in gene expression between these two groups).

These observations prompted the question as to whether
additional ribosomal protein genes share a similar expression
pattern and may have been missed in the above analysis. To
address this, we examined the expression profiles of all annotated
ribosomal proteins by compiling genes associated with GO terms
containing the term “ribosomal subunit” (Supplementary Fig. 2).
Interestingly, an additional 29 ribosomal protein genes were
found to display upregulation in the proximal-distal versus
dorsal-ventral-superficial-deep axes comparisons. These findings
suggest that the composition of ribosomal components in
pyramidal neurons in the proximal-distal axis is distinct from
that of the dorsal, ventral, superficial, and deep pyramidal
neurons, consistent with increasing evidence for cell-type- and
condition-dependent quantitative and qualitative differences in
the translation machinery*3.

A is coupled to lengthening of 3’ UTRs in the proximal-distal
axis. Next, we investigated the contribution of APA in LF2. To
assess APA, we used QAPA to measure proximal poly(A) site
usage (PPAU), i.e, by quantifying the usage of proximal 3’ UTR
sequences relative to all 3/ UTR isoforms of a gene. Similar to the
observations for GE differences described above, the factor
loadings for APA were strongly correlated with APPAU changes
between proximal-distal pyramidal neurons versus pyramidal
neurons from the dorsal-ventral and superficial-deep regions of
the hippocampus (Pearson correlation R=0.9, p < 2.2x 1076;
Supplementary Fig. 3a). By examining the APPAU values of the
top-weighted 3’ UTRs, we observed that the majority of the
changes involve lengthening of 3’ UTR sequences in proximal-
distal neurons, compared to other pyramidal neurons (Fig. 3d
and Supplementary Fig. 3b).

APA can elicit coupled regulatory changes in neurons, for
example, by affecting where transcripts are localized for
translation, and/or by controlling the steady-state GE levels of
transcripts and corresponding protein products. To address
whether the APA differences detected above are coupled with
changes in steady-state GE, we performed a differential GE
analysis on the corresponding transcripts using DESeq2. Con-
sistent with previous studies indicating that APA is not
significantly correlated with steady-state GE changes during
neuronal differentiation3»444>, we do not observe a correlation
between APPAU and changes in transcript levels between
proximal-distal pyramidal neurons versus the other profiled
neurons (Supplementary Fig. 3c). This observation suggests that
APA represents a largely distinct regulatory layer with a more
prominent role in pyramidal neurons that form the proximal-
distal axis of the hippocampus.

To assess whether 3’ UTRs with APA changes could potentially
be involved in coupled changes in mRNA localization in neurons,
we determined the overlap between the genes from the top-
weighted APA events of each latent factor with a previously
reported set of transcripts from 2,550 genes found to be
preferentially localized to the dendrites and/or axons of mouse
hippocampal CA1 neurons®. Interestingly, only genes within
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Fig. 2 AS in LF1 distinguishes CA1 and CA3 subfields. a Bar-plot summarizing the proportion of down- and upregulated genes in CA1 versus CA3 that are
annotated transcription factors. Among 298 upregulated genes, the overlap with transcription factors (n = 27) was statistically significant (p = 0.00844,
hypergeometric test). b Heatmap showing normalized read counts of the upregulated transcription factors (rows) for each sample (columns). Each sample
is annotated according to region and area (horizontal bars above heatmap). The final number in name indicates the replicate number. ¢ Enrichment map’4
for GO, REACTOME and KEGG functional categories of genes from the top AS events with the largest absolute LF1 loading. Node size is proportional to the
number of genes associated with the GO category, and edge width is proportional to the number of genes shared between GO categories. d Overlap of AS
events mapped to extracellular regions for each latent factor (p = 4.43 x 103, two-sided Fisher's exact test). e Heatmap showing the percent spliced-in
(PSD) values of top AS events from LF1. These events include pairs of mutually exclusive cassette exons in Grial and Gria2 (rows), which are differentially

spliced between CA1 and CA3 regions (compare left CA3 cluster with right clusters). Row names consist of gene name and VAST-TOOLS event IDs.
Sample naming is as in Fig. 2b.
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Fig. 3 GE and APA changes in LF2 distinguish proximal-distal neurons from other axes. a Enrichment map displaying the functional enrichment analysis
of genes from top GE events with the largest absolute LF2 loading. See Fig. 2c for description of enrichment maps. b Bar-plot showing the proportion of top-
weighted genes that overlap known RNA-binding proteins (RBPs). When comparing the degree of overlap between each latent factor and known RBPs,
only LF2 has a significant overlap (27,/298, p = 4.19 x 10—, hypergeometric test). n.s.: not significant. ¢ Heatmap showing normalized read counts of top 15
RBPs (rows) observed in LF2 for each sample (columns). Each gene is annotated according to its differential expression status between proximal-distal and
dorsal-ventral-superficial-deep neurons (left vertical bar). Each sample is annotated according to region (top horizontal bar) and sample names are as in
Fig. 2b. PD = proximal-distal neurons. d Heatmap showing the APA profiles inferred by QAPA, measured by proximal poly(A) site usage (PPAU), of the
top-weighted 3’ UTRs (rows) for each sample (columns). e Bar-plot showing the proportion of top-weighted 3" UTRs from each latent factor with genes
known to localize to dendrites and axons#®. Similar to b, when comparing the degree of overlap between each latent factor and known localization genes,
only LF2 had a significant overlap (27/66, p = 3.85 x 10~5, hypergeometric test). Sample names are as in Fig. 2b. n.s.: not significant. f Scatterplot showing
the latent factor 2 loadings (y-axis) for each 3’ UTR in ascending order from left to right (x-axis). Lengthening 3’ UTRs (indicated by negative loadings,
Supplementary Fig. 3A) that belong to localized transcripts are represented by red dots. The bottom-right box shows genes with localized transcripts from

the indicated region of the plot.
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Fig. 4 Expanded analysis of whole-brain reveals coordinated regulation by all layers. a Summary of latent factors inferred by MOFA and the
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LF2 significantly overlapped with this set of genes (27/66, p =
3.85 x 107>, hypergeometric test; Fig. 3e, f). These results indicate
that changes in the length of 3’ UTRs between the proximal-distal
axis, relative to other hippocampal axes, are likely coupled to
transcript regulation through differential localization®.

Analysis of multiple layers of gene regulation facilitates iden-
tification of distinct drivers of neuronal specialization. We next
expanded our analysis of GE, APA, and AS to assess the relative
contributions of each of these regulatory layers to a more diverse
set of neuronal populations distributed across the mouse nervous
system, represented by more than one-hundred RNA-seq datasets.
These neuronal samples were annotated on the basis of a range of
phenotypic features including excitatory type, morphology, age,
and brain region (Supplementary Data 2). Applying MOFA
resulted in the inference of five latent factors, each of which have
shared and unique contributions representing each regulatory layer
(Fig. 4a). Importantly, surrogate variable analysis reveals that these
results are independent of batch effects (Supplementary Fig. 4a, b,
Supplementary Results, and Supplementary Methods) minimizing
the potential impact of ratio-based metrics*3. Similar to the hip-
pocampal sub-region analysis, GE accounted for the most variance
(R?2=0.55). The other layers also contributed substantially to the
observed variation (APA, R? = 0.49; exonic AS, R? = 0.44; and IR,
R?=0.37). Furthermore, these factors describe variability con-
sistent with the results from PCA (Supplementary Fig. 5a).

To further investigate the importance of interconnections
between the analyzed regulatory layers, we overlapped each latent
factor used with manually annotated phenotypic data associated
with individual neuronal datasets (Supplementary Data 2). This
analysis revealed that developmental stage was the major
contributor to distinctions between neuronal populations (LF1

in Fig. 4b, c). However, whereas previous work focused on the role
of GE in defining differences between neuronal subtypes*®, our
analysis suggests that each surveyed regulatory layer contributes
substantially to neuronal specification, thus highlighting the
contribution of multiple levels of regulatory coordination in
neuronal development and specialization (Fig. 4a and Supple-
mentary Fig. 5b). For example, APA differences predominantly
characterize the separation of inhibitory cortical GABA inter-
neurons from other neuronal subtype populations (LF2), GE
differences drive the clustering of the excitatory neurons of the
hippocampus and limbic system from other neuronal populations
(LF3), and AS is the main regulatory layer separating populations
of neurons from the central and peripheral nervous systems (LF4)
(Fig. 4¢). Altogether, this analysis reveals that through a combined
analysis of multiple layers of gene regulation we can identify, in an
unsupervised manner, distinct transcriptomic signatures that
distinguish neuronal populations on the basis of age, brain region
and electrophysiology.

Post-transcriptional regulatory layers distinguish neuronal
populations. Given the contributions of AS, APA, and IR to the
latent factors defined in the whole-brain analysis, we next asked
whether these post-transcriptional regulatory layers, indepen-
dently of GE, can distinguish different properties of neurons. We
therefore applied MOFA under two scenarios: one using data
from only AS, APA and IR, and one using data from GE alone
(Supplementary Fig. 5c; see Methods). To determine whether
similar groups of neuronal subtype populations were identified in
both situations, the latent factor weights assigned by MOFA for
each neuronal subtype population cluster were used to compute
pairwise correlations (Fig. 5a; see “Methods”). In line with a
major role for post-transcriptional regulation in determining
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neuronal fate!l:%0, the majority of the neuronal populations
identified by GE were also readily distinguished by MOFA using
data derived from post-transcriptional regulatory layers alone
(i.e., AS, APA, and IR).

Importantly, however, we observed that a number of neuronal
subtype populations defined by AS, APA, and IR were not
identified by the analysis of GE alone. In particular, AS, APA, and
IR distinguished excitatory and inhibitory neurons of the limbic
system, whereas GE data did not discriminate these classes of
neurons (Fig. 5b). In contrast, when only GE data were used,
olfactory system and the proprioceptor neurons clustered
separately, whereas AS, APA, and IR were only able to distinguish
neurons from the peripheral and central nervous system (Fig. 5¢).
This suggests that despite the importance of multi-layered
regulatory networks in defining the properties of the nervous
system, certain distinguishing characteristics of neuronal popula-
tions are more strongly associated with some layers than others.
Thus, consistent with findings from analyzing neurons from
different hippocampal regions described above, neuronal speci-
ficity more generally depends on the collective contribution of
multiple regulatory layers, but each layer may have a more
prominent relative contribution than other layers depending on
the specific spatial and functional properties of a neuronal
subtype population (Fig. 5d).

Discussion
An important goal of transcriptomics research is to understand
how different layers of gene regulation are integrated to

contribute to functional transcript and protein diversity®->2. The
mammalian nervous system is an important example illustrating
this concept!®11. Previously, Cembrowski et al.?8 used RNA-seq
data to demonstrate a continuous gradient of GE changes across
the dorsal-ventral axis of CAl field of the hippocampus. Other
studies have suggested that both continuous and discrete GE
changes are involved in the specification of neuronal subtypes
from different hippocampal regions>3>%. In the present study, we
analyzed RNA-seq data from mouse hippocampal neurons from
Cembrowski et al.8 to generate profiles of GE, AS, and APA. The
integration of these layers using MOFA3® revealed important
sources of additional regulatory variation between different hip-
pocampal neuronal subtypes.

A major focus of the present study was analyzing differences
between pyramidal neurons in the CA1l proximal-distal axis
versus neurons from other axes of the hippocampus. CA1 cells in
the hippocampus display location-specific firing>> defined by
differences in the bursting patterns of proximal versus distal CA1
neurons®®, which may be required for animals to track their
location in unfamiliar locations®. Proximal neurons are more
sensitive to processing spatial memories (e.g., location of an
object), whereas distal neurons are sensitive to non-spatial,
temporal memories (e.g., features of an object)®’. Our findings
suggests that biological differences between proximal-distal axis
neurons may primarily be driven by post-transcriptional reg-
ulatory factors?8,

Unexpectedly, we observed that the underlying variation
between proximal and distal neurons involves coordinated
programs of GE and APA changes, involving the differential
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expression of ribosomal protein genes and differential 3’ UTR
isoform usage of other gene sets, respectively. In the latter case,
genes associated with 3’ UTR isoform changes significantly
overlap genes encoding transcripts previously reported to localize
to dendrites and axons?0. This raises the question of how these
two correlated patterns combine to specify spatially distinct
neuronal functions. Previous studies have demonstrated extensive
heterogeneity in ribosome composition and function (reviewed in
ref. 43). These ‘specialized ribosomes’ enable spatial and temporal
translational control of selective mRNAs under different phy-
siological conditions and tissue types*3. Moreover, this speciali-
zation is important in neurons, where dendrites and axons are
distant from the cell body>®°°. Although ribosome assembly
generally occurs in the nucleolus, it has been observed that
components of the translational machinery can be transported in
the form of large ribonucleoprotein particles or granules, and
select ribosomal protein mRNAs are locally synthesized3.

The localized translation of individual synaptic mRNA tran-
scripts is highly regulated*!:°l. To efficiently carry out local
protein synthesis, mRNAs are transported to subcellular neuronal
compartments, where they are stored and translated on
demand?®. In many cases, localization is dependent on sequence
elements encoded in 3’ UTRs. As such, differential selection of
alternative 3’ UTR isoforms due to APA can regulate mRNA
localization to neuronal compartments?®-60-01, In summary, the
results from our analysis of hippocampal RNA-seq data suggest
coordinated functions of specialized local translation and locali-
zation of mRNAs to synaptic compartments occurring along the
proximal-distal axis, principally through the combined con-
tributions of GE and APA regulatory layers. Further research will
be required to determine the specific functional roles of differ-
ential mRNA localization and translational control in defining
proximal-distal hippocampal neurons.

Alternative splicing also plays an important role in the defi-
nition of specific neuronal subtypes?>%2. For example, previous
work has demonstrated neuronal-type-specific AS regulation in
the cortex??93. Expanding our analysis to multiple neuronal
subtype populations across the nervous system in the present
study revealed that AS is strongly correlated with various phe-
notypic features including the developmental stage, morphology,
and type of excitatory neuron. Similar to the analysis of hippo-
campal neurons, these results further demonstrate the importance
of integrating data from different post-transcriptional regulatory
layers to capture variation that is not observed by GE
differences alone.

Recent advances in the development of single-cell RNA-seq
methods have afforded the identification of rare and novel cell
types, and have contributed to the characterization of the
extensive cell diversity of the brain®*%°. However, to-date, these
studies have primarily relied on measuring GE changes. As dif-
ferential GE patterns between cell and tissue types are generally
more conserved than differences at the level of post-
transcriptional regulation!®20, single-cell RNA-seq studies rely-
ing on GE measurements alone likely underestimate cell-type
diversity. While efforts to develop methods for detecting AS and
APA from single-cell RNA-seq data have been described®®:¢7,
challenges remain, including technical limitations involving lim-
ited sequencing depth and read length®, It is also important to
note that our results are based on analyzing cell types initially
identified by gene expression markers and, therefore, probably
also underestimate neuronal diversity driven by post-
transcriptional regulation. Therefore, based in part on the find-
ings of the present study, in the future it can be anticipated that
additional spatially and functionally distinct neuronal subtypes
will be defined by integrating measurements from multiple
transcriptomic regulatory lawyers. Our results thus highlight the

importance of developing cost-effective approaches to measure
and incorporate the analyses of multiple regulatory layers when
identifying and characterizing distinct neuronal subtypes using
single-cell RNA-seq.

Methods
Datasets. The RNA-seq datasets used in this study were downloaded from the
NCBI Gene Expression Omnibus (https://www.ncbi.nlm.nih.gov/geo/). For the
mouse hippocampus analysis, the accession number is GSE6740328 (https://www.
ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE67403, Supplementary Data 1). For
the whole-brain analysis, a summary of the RNA-seq datasets and their accession
numbers can be found in Supplementary Data 2.

A list of RBPs was obtained from the Supplemental Information of Castello
et al.#! and from the CISBP-RNA database (http://cisbp-rna.ccbr.utoronto.ca/)*2.

A list of mRNAs localized to dendrites and axons was obtained from the
Supplemental Information of Cajigas et al.°.

A list of 1816 human transcription factors was obtained from Lambert et al.3.
Mouse orthologs for each transcription factor were determined using Ensembl
BioMart database (https://www.ensembl.org/biomart/martview).

RNA-seq pre-processing. Initial quality control was performed using FastQC
(http://www.bioinformatics.babraham.ac.uk/projects/fastqc/). To ensure accurate
AS and IR quantification, when necessary datasets were combined to ensure a
minimum depth of 40M paired-end reads. One amygdala sample (SRR2229946)
was discarded from this analysis, as it appeared to be a distinct outlier in pre-
liminary analysis by PCA.

Gene expression analysis. To measure steady-state gene expression levels, Sal-
mon?! was used to measure transcript abundance, based on mouse (mm10)
GENCODE whole transcript annotations®®. Gene-level abundance was then
computed by adding the estimated read counts mapping to each transcript isoform
using the R package tximport’0. To perform differential gene expression analysis
between pairs of neuronal subtypes, DESeq237 was applied on the gene-level counts
estimated from above. Differentially expressed genes are defined as those with a
[log, ¢| >1 and FDR < 0.05, where ¢ is the fold change between a pair of subtypes.

For downstream analysis, variance-stabilized read counts were computed using
the DESeq2 function varianceStabilizingTransformation()3’. After removing genes
with a median read count of <5, the top 5000 most variably expressed genes based
on standard deviation were retained for downstream analysis.

Alternative splicing analysis. To comprehensively detect and quantify AS and IR
events, we used the VAST-TOOLS multi-module analysis pipeline (https://github.
com/vastgroup/vast-tools), as previously described!”, as well as Whippet (https://
github.com/timbitz/Whippet.jl), a lightweight algorithm for event detection and
quantification®3.

VAST-TOOLS was used to detect and quantify AS and IR events in the
hippocampal datasets, as described previously”!. Briefly, reads were initially
mapped to genome assemblies (mm9) using Bowtie, (-m 1 -c 2 parameters) with
reads that mapped to the genome discarded for AS/IR quantificatio. For AS, unique
EE] (exon-exon junction) libraries were generated to derive measurements of exon
inclusion levels using the metric “Percent Spliced In” (PSI). This utilized all
hypothetically possible EEJ combinations from annotated and de novo splice sites,
including both cassette, mutually exclusive and microexon events. For intron
retention (IR), a comprehensive set of reference sequences comprising each IR
event was used: two exon-intron junctions (EIJs), intron mid-point sequences, and
EEJs formed by intron removal’2. Each IR event requires multiple reads mapping
to both the EIJ and the intron mid-point sequence, as described previously’2.

Whippet was used with default settings to analyze RNA-seq data from the
whole-brain datasets (see Supplementary Data 2). To create splice graphs required
for Whippet quantification, mm10 genome annotation files were extracted from
the Ensembl database. Whippet was used for AS to quantify all combinations of
EEJs, including cassette, mutually exclusive, microexon events, and acceptor and
donor splice sites, as well as for IR to quantify all combinations of EIJs.

Differential splicing analysis. Differential identification of percentage splicing in
(PSI) for AS events or percentage intron retained (PIR) for IR events were cal-
culated using the VAST-TOOLS diff module (-minReads = 10), as described
previously’!. Events were screened for sufficient read coverage by keeping those
with “OK/SOK” quality designation in 60% of samples.

Alternative polyadenylation analysis. APA analysis was performed using QAPA
(https://github.com/morrislab/qapa) as previously described?4, except that Salmon
was used to quantify 3’ UTR transcript abundance. Briefly, a mouse (mm10) 3’

UTR reference library was constructed using GENCODE gene model annotations.
To obtain a more comprehensive set of 3/ UTRs, the library was augmented by

additional poly(A) site annotations, which added new 3’ UTR isoforms not char-
acterized in GENCODE, or else updated the 3’ ends of existing isoforms. To avoid

| (2021)12:335 | https://doi.org/10.1038/s41467-020-20483-8 | www.nature.com/naturecommunications 9


https://www.ncbi.nlm.nih.gov/geo/
https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE67403
https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE67403
http://cisbp-rna.ccbr.utoronto.ca/
https://www.ensembl.org/biomart/martview
http://www.bioinformatics.babraham.ac.uk/projects/fastqc/
https://github.com/vastgroup/vast-tools
https://github.com/vastgroup/vast-tools
https://github.com/timbitz/Whippet.jl
https://github.com/timbitz/Whippet.jl
https://github.com/morrislab/qapa
www.nature.com/naturecommunications
www.nature.com/naturecommunications

ARTICLE

Table 1 Filtering criteria for each regulatory layer.

Layer Number of training examples Selection criteria

GE 5000 Top 5000 most variably expressed genes based on median of normalized read counts
AS 762 Splicing events with |APSI| > 20 between at least one pair of cell types

IR 1526 (same as above)

APA 1513 Multi-UTR genes |APPAU| > 20 between at least one pair of cell types

Each layer was pre-processed to retain the genes or AS/IR/APA event with the most variation.
PPAU proximal poly(A) site usage, PSI percent spliced-in.

the possibility of converging genes that have overlapping non-strand-specific RNA-
seq reads, converging genes with distal 3’ UTR poly(A) sites within 500 nt of each
other were excluded. Genes with 3’ UTR lengths of <100 nt were also excluded.

To further filter events for MOFA analysis (see below), the following steps were
performed. First, genes with total expression of at least 3 transcripts per million
(TPM) in 22 or more (out of 24) samples were retained. This ensures that genes are
expressed in the majority of samples studied. Second, these genes were further
filtered for those whose proximal 3’ UTR is expressed by at least 1 TPM in six or
more samples. This ensures that there are examples of APA where the proximal 3’
UTR is expressed (in comparison to other samples). Finally, we filtered for 3’ UTRs
with a [APPAU| > 20 between one or more pairs of cell types, where APPAU is
defined as the difference between the median PPAU of two cell types.

Principal component analysis. Principal component analysis (PCA) was per-
formed on mean-centered values using the R function prcomp().

Inference of hidden factors from combined data sources. MOFA3® was used to
infer the shared sources of variation between multiple data types. To prepare for
model training, four sets of regulatory layers were used: GE, APA, AS, and IR. The
AS layer included all exon-based events, including cassette exons and alternative 5/
and 3’ splice sites, while IR was treated as a separate layer. Each layer was filtered to
include features with sufficient variation across samples, as summarized in Table 1
and described above. Training of the model was carried out using the following
options: for hippocampal analysis, DropFactorThreshold = 0, tolerance = 0.01,
maxiter = 6000; for whole-brain analysis, DropFactorThreshold = 0.02,

tolerance = 0.01, maxiter = 5000.

To quantify the contribution of each sample in a latent factor, MOFA assigns
factor weights such that similar samples (in terms of the variance explained in the
low-dimensional latent space) will have similar weighting. To identify similar latent
factors between the GE-only and AS, APA, and IR-only models (Fig. 5a and
Supplementary Fig. 4c), pairwise Pearson correlations were computed between
latent factor weights using the R function cor.test().

To quantify the contribution of each feature in a latent factor, MOFA assigns
factor loadings that indicate its degree of correlation with the described latent
factor pattern. The loadings were then transformed into Z-scores and queried for
features with the top positive and negative scores.

Functional enrichment analysis. Functional enrichment analysis was performed
using g:Profiler’3. Genes enrichment sets were compared to a background of
expressed genes. Structured controlled vocabularies from Gene Ontology, as well as
information from the curated KEGG and Reactome databases were included in the
analysis. Only functional categorizes with more than five members and fewer than
2000 members were included in the analysis. Significant terms were summarized
using Enrichment Map’# in Cytoscape’”.

Protein features. Overlap of AS exons with extracellular regions and transmem-
brane domains were assessed using two approaches. (1) Annotation of protein in
Uniprot for extracellular protein expression; (2) Analysis by TMHMM (Trans-
membrane hidden markov model, http://www.cbs.dtu.dk/services/TMHMM/) for
extracellular location of amino acid residues within a transmembrane protein.

Ribosomal protein paralogs. A list of ribosomal protein paralogs were down-
loaded from the Ensembl Biomart database, using Ensembl Genes 94 and mouse
genes GRCm38.p6 databases. Genes were filtered for those associated with GO
terms containing the keyword “ribosomal subunit”.

Localization data. A list of 2550 genes reported to be localized in dendrites and
axons was obtained from Cajigas et al.#0. This was compared with the top APA
features in each factor (|Z|<1.96, p<0.05). To test for statistically significant
enrichment, a hypergeometric test was performed using the R function phyper().

Reporting summary. Further information on research design is available in the Nature
Research Reporting Summary linked to this article.

Data availability

All relevant data accession IDs used in study are referenced in Supplementary Data. Pre-
processed datasets for gene expression, alternative splicing and intron retention, and
alternative polyadenylation and other supporting data are available at https://doi.org/
10.6084/m9.figshare.1314132876. All data is available from the corresponding author
upon reasonable request.

Code availability
The data analysis R scripts used in this analysis are available at https://doi.org/10.6084/
m9.figshare.1314132876.

Received: 2 July 2020; Accepted: 25 November 2020;
Published online: 12 January 2021

References

1. Azevedo, F. A. C. et al. Equal numbers of neuronal and nonneuronal cells
make the human brain an isometrically scaled-up primate brain. J. Comp.
Neurol. 513, 532-541 (2009).

2. Herculano-Houzel, S. The remarkable, yet not extraordinary, human brain as
a scaled-up primate brain and its associated cost. Proc. Natl Acad. Sci. 109,
10661-10668 (2012).

3. Herculano-Houzel, S., Mota, B. & Lent, R. Cellular scaling rules for rodent
brains. Proc. Natl Acad. Sci. 103, 12138-12143 (2006).

4. DeFelipe, J., Alonso-Nanclares, L. & Arellano, J. I. Microstructure of the
neocortex: comparative aspects. J. Neurocytol. 31, 299-316 (2002).

5. Schiiz, A. & Palm, G. Density of neurons and synapses in the cerebral cortex of
the mouse. J. Comp. Neurol. 286, 442-455 (1989).

6.  White, J. G,, Southgate, E., Thomson, J. N. & Brenner, S. The structure of the
nervous system of the nematode Caenorhabditis elegans. Philos. Trans. R. Soc.
Lond. B. Biol. Sci. 314, 1-340 (1986).

7. Zeng, H. & Sanes, J. R. Neuronal cell-type classification: challenges,

opportunities and the path forward. Nat. Rev. Neurosci. 18, 530-546 (2017).

Masland, R. H. Neuronal cell types. Curr. Biol. CB 14, R497-R500 (2004).

9. Stuart, T. & Satija, R. Integrative single-cell analysis. Nat. Rev. Genet. 20,
257-272 (2019).

10. Miura, P., Sanfilippo, P., Shenker, S. & Lai, E. C. Alternative polyadenylation
in the nervous system: To what lengths will 3’ UTR extensions take us?
BioEssays 36, 766-777 (2014).

11. Raj, B. & Blencowe, B. J. Alternative splicing in the mammalian nervous
system: recent insights into mechanisms and functional roles. Neuron 87,
14-27 (2015).

12. Avgan, N., Wang, J. I, Fernandez-Chamorro, J. & Weatheritt, R. J.
Multilayered control of exon acquisition permits the emergence of novel
forms of regulatory control. Genome Biol. 20, 141 (2019).

13. Pan, Q, Shai, O,, Lee, L. J., Frey, B. J. & Blencowe, B. J. Deep surveying of
alternative splicing complexity in the human transcriptome by high-
throughput sequencing. Nat. Genet. 40, 1413-1415 (2008).

14. Wang, E. T. et al. Alternative isoform regulation in human tissue
transcriptomes. Nature 456, 470-476 (2008).

15. Hoque, M. et al. Analysis of alternative cleavage and polyadenylation by 3’
region extraction and deep sequencing. Nat. Methods 10, 133-139 (2013).

16. Ellis, J. D. et al. Tissue-specific alternative splicing remodels protein-protein
interaction networks. Mol. Cell 46, 884-892 (2012).

17. Irimia, M. et al. A highly conserved program of neuronal microexons is
misregulated in autistic brains. Cell 159, 1511-1523 (2014).

18. Ule, J. & Blencowe, B. J. Alternative splicing regulatory networks: functions,
mechanisms, and evolution. Mol. Cell 76, 329-345 (2019).

19. Barbosa-Morais, N. L. et al. The evolutionary landscape of alternative splicing
in vertebrate species. Science 338, 1587-1593 (2012).

I

10 | (2021)12:335 | https://doi.org/10.1038/s41467-020-20483-8 | www.nature.com/naturecommunications


http://www.cbs.dtu.dk/services/TMHMM/
https://doi.org/10.6084/m9.figshare.13141328
https://doi.org/10.6084/m9.figshare.13141328
https://doi.org/10.6084/m9.figshare.13141328
https://doi.org/10.6084/m9.figshare.13141328
www.nature.com/naturecommunications

ARTICLE

20.

21.

22.

23.

24.

25.

26.

27.

28.

29.

30.

31.

32.

33.

34.

35.

36.

37.

38.

39.

40.

41.

42.

43.

44.

45.

46.

47.

48.

49.

50.

Merkin, J., Russell, C., Chen, P. & Burge, C. B. Evolutionary dynamics of gene
and isoform regulation in mammalian tissues. Science 338, 1593-1599 (2012).
Wamsley, B. et al. Rbfox1 mediates cell-type-specific splicing in cortical
interneurons. Neuron 100, 846-859.e7 (2018).

Zhang, X. et al. Cell-type-specific alternative splicing governs cell fate in the
developing cerebral cortex. Cell 166, 1147-1162.e15 (2016).

Furlanis, E., Traunmiiller, L., Fucile, G. & Scheiffele, P. Landscape of
ribosome-engaged transcript isoforms reveals extensive neuronal-cell-class-
specific alternative splicing programs. Nat. Neurosci. 22, 1709-1717 (2019).
Miura, P., Shenker, S., Andreu-Agullo, C., Westholm, J. O. & Lai, E. C.
Widespread and extensive lengthening of 3> UTRs in the mammalian brain.
Genome Res. https://doi.org/10.1101/gr.146886.112 (2013).

Rodrigues, D. C. et al. MECP2 Is post-transcriptionally regulated during
human neurodevelopment by combinatorial action of RNA-binding proteins
and miRNAs. Cell Rep. 17, 720-734 (2016).

Glock, C., Heumiiller, M. & Schuman, E. M. mRNA transport & local
translation in neurons. Curr. Opin. Neurobiol. 45, 169-177 (2017).

Fontes, M. M. et al. Activity-dependent regulation of alternative cleavage and
polyadenylation during hippocampal long-term potentiation. Sci. Rep. 7,
17377 (2017).

Cembrowski, M. S. et al. Spatial gene-expression gradients underlie prominent
heterogeneity of CAl pyramidal neurons. Neuron 89, 351-368 (2016).
Igarashi, K. M., Ito, H. T., Moser, E. I. & Moser, M.-B. Functional diversity
along the transverse axis of hippocampal area CA1. FEBS Lett. 588, 2470-2476
(2014).

Strange, B. A., Witter, M. P, Lein, E. S. & Moser, E. I. Functional organization
of the hippocampal longitudinal axis. Nat. Rev. Neurosci. 15, 655-669 (2014).
Patro, R., Duggal, G., Love, M. L, Irizarry, R. A. & Kingsford, C. Salmon
provides fast and bias-aware quantification of transcript expression. Nat.
Methods 14, 417-419 (2017).

Tapial, J. et al. An atlas of alternative splicing profiles and functional
associations reveals new regulatory programs and genes that simultaneously
express multiple major isoforms. Genome Res. 27, 1759-1768 (2017).
Sterne-Weiler, T., Weatheritt, R. J., Best, A. J., Ha, K. C. H. & Blencowe, B. J.
Efficient and accurate quantitative profiling of alternative splicing patterns of
any complexity on a laptop. Mol. Cell 72, 187-200.e6 (2018).

Ha, K. C. H,, Blencowe, B. J. & Morris, Q. QAPA: a new method for the
systematic analysis of alternative polyadenylation from RNA-seq data.
Genome Biol. 19, 45 (2018).

Argelaguet, R. et al. Multi-omics factor analysis—a framework for unsupervised
integration of multi-omics data sets. Mol. Syst. Biol. 14, 8124 (2018).
Lambert, S. A. et al. The human transcription factors. Cell 172, 650-665 (2018).
Love, M. L, Huber, W. & Anders, S. Moderated estimation of fold change and
dispersion for RNA-seq data with DESeq2. Genome Biol. 15, 550 (2014).
Eastwood, S. L., Burnet, P. W. J., Beckwith, J., Kerwin, R. W. & Harrison, P. J.
AMPA glutamate receptors and their flip and flop mRNAs in human
hippocampus. NeuroReport 5, 1325 (1994).

Johansson, J. U. et al. An ancient duplication of exon 5 in the snap25 gene is
required for complex neuronal development/function. PLOS Genet. 4,
€1000278 (2008).

Walsh, F. S., Furness, J., Moore, S. E., Ashton, S. & Doherty, P. Use of the
neural cell adhesion molecule VASE exon by neurons is associated with a
specific down-regulation of neural cell adhesion molecule-dependent neurite
outgrowth in the developing cerebellum and hippocampus. J. Neurochem. 59,
1959-1962 (1992).

Castello, A. et al. Insights into RNA biology from an atlas of mammalian
mRNA-binding proteins. Cell 149, 1393-1406 (2012).

Ray, D. et al. A compendium of RNA-binding motifs for decoding gene
regulation. Nature 499, 172-177 (2013).

Genuth, N. R. & Barna, M. Heterogeneity and specialized functions of
translation machinery: from genes to organisms. Nat. Rev. Genet. 19, 431-452
(2018).

Lianoglou, S., Garg, V., Yang, J. L., Leslie, C. S. & Mayr, C. Ubiquitously
transcribed genes use alternative polyadenylation to achieve tissue-specific
expression. Genes Dey. 27, 2380-2396 (2013).

Gruber, A. R. et al. Global 3> UTR shortening has a limited effect on protein
abundance in proliferating T cells. Nat. Commun. 5, 5465 (2014).

Cajigas, L. J. et al. The local transcriptome in the synaptic neuropil revealed by
deep sequencing and high-resolution imaging. Neuron 74, 453-466 (2012).
Dermit, M. et al. Subcellular mRNA localization regulates ribosome biogenesis
in migrating cells. bioRxiv 829739, https://doi.org/10.1101/829739 (2019).
Phillips, J. W. et al. Pathway-guided analysis identifies Myc-dependent
alternative pre-mRNA splicing in aggressive prostate cancers. Proc. Natl Acad.
Sci. USA 117, 5269-5279 (2020).

Colantuoni, C. et al. Temporal dynamics and genetic control of transcription
in the human prefrontal cortex. Nature 478, 519-523 (2011).

Zheng, S. & Black, D. L. Alternative pre-mRNA splicing in neurons: growing
up and extending its reach. Trends Genet. 29, 442-448 (2013).

51.

52.

53.

54.

55.

56.

57.

58.

59.

60.

61.

62.

63.

64.

65.

66.

67.

68.

69.

70.

71.

72.

73.

74.

75.

76.

77.

78.

Blencowe, B. J. Alternative splicing: new insights from global analyses. Cell
126, 37-47 (2006).

Moore, M. J. & Proudfoot, N. J. Pre-mRNA processing reaches back
totranscription and ahead to translation. Cell 136, 688-700 (2009).
Thompson, C. L. et al. Genomic anatomy of the hippocampus. Neuron 60,
1010-1021 (2008).

Shah, S., Lubeck, E., Zhou, W. & Cai, L. In situ transcription profiling of single
cells reveals spatial organization of cells in the mouse hippocampus. Neuron
92, 342-357 (2016).

Henriksen, E. J. et al. Spatial representation along the proximodistal axis of
CA1l. Neuron 68, 127-137 (2010).

Jarsky, T., Mady, R., Kennedy, B. & Spruston, N. Distribution of bursting
neurons in the CA1 region and the subiculum of the rat hippocampus. J.
Comp. Neurol. 506, 535-547 (2008).

Beer, Z. et al. The memory for time and space differentially engages the
proximal and distal parts of the hippocampal subfields CA1 and CA3. PLoS
Biol. 16, €2006100 (2018).

Campenot, R. B. & Eng, H. Protein synthesis in axons and its possible
functions. J. Neurocytol. 29, 793-798 (2000).

Holt, C. E. & Schuman, E. M. The central dogma decentralized: new
perspectives on RNA function and local translation in neurons. Neuron 80,
648-657 (2013).

Tushev, G. et al. Alternative 3’ UTRs modify the localization, regulatory
potential, stability, and plasticity of mRNAs in neuronal compartments.
Neuron 1-17, https://doi.org/10.1016/j.neuron.2018.03.030 (2018).
Taliaferro, J. M. et al. Distal alternative last exons localize mrnas to neural
projections. Mol. Cell 61, 821-833 (2016).

Nguyen, T.-M. et al. An alternative splicing switch shapes neurexin repertoires
in principal neurons versus interneurons in the mouse hippocampus. eLife 5,
€22757 (2016).

Wamsley, B. & Fishell, G. Genetic and activity-dependent mechanisms
underlying interneuron diversity. Nat. Rev. Neurosci. 18, 299-309 (2017).
Chen, R, Wu, X, Jiang, L. & Zhang, Y. Single-cell RNA-seq reveals
hypothalamic cell diversity. Cell Rep. 18, 3227-3241 (2017).

Fan, X. et al. Spatial transcriptomic survey of human embryonic cerebral
cortex by single-cell RNA-seq analysis. Cell Res. 28, 730-745 (2018).

Song, Y. et al. Single-cell alternative splicing analysis with expedition reveals
splicing dynamics during neuron differentiation. Mol. Cell 67, 148-161.e5
(2017).

Velten, L. et al. Single-cell polyadenylation site mapping reveals 3’ isoform
choice variability. Mol. Syst. Biol. 11, 812 (2015).

Arzalluz-Luque, A. & Conesa, A. Single-cell RNAseq for the study of isoforms
—how is that possible? Genome Biol. 19, 110 (2018).

Harrow, J. et al. GENCODE: The reference human genome annotation for the
ENCODE project. Genome Res. 22, 1760-1774 (2012).

Soneson, C., Love, M. I. & Robinson, M. D. Differential analyses for RNA-seq:
transcript-level estimates improve gene-level inferences. F1000Research 4,
1521 (2016).

Weatheritt, R. J., Sterne-Weiler, T. & Blencowe, B. J. The ribosome-engaged
landscape of alternative splicing. Nat. Struct. Mol. Biol. 23, 1117-1123 (2016).
Braunschweig, U. et al. Widespread intron retention in mammals functionally
tunes transcriptomes. Genome Res. 24, 1774-1786 (2014).

Reimand, J. et al. g:Profiler-a web server for functional interpretation of gene
lists (2016 update). Nucleic Acids Res. 44, W83-W89 (2016).

Merico, D., Isserlin, R,, Stueker, O., Emili, A. & Bader, G. D. Enrichment map:
a network-based method for gene-set enrichment visualization and
interpretation. PLoS ONE 5, 13984 (2010).

Shannon, P. et al. Cytoscape: a software environment for integrated models of
biomolecular interaction networks. Genome Res. 13, 2498-2504 (2003).
Weatheritt, R. ]. & Ha, K.C.H. Differential contribution of transcriptomic
regulatory layers in the definition of neuronal identity. Figshare. https://doi.
0rg/10.6084/m9.figshare.13141328 (2020)

Harris, R. Mouse Dorsal Hippocampus DG CA3 CALl. https://figshare.com/
articles/Mouse_Dorsal_Hippocampus_DG_CA3_CA1/5027348 (2017).
Lynch, P. J. Brain and Brainstem Normal Human Diagram. https://commons.
wikimedia.org/wiki/File:Brain_stem_normal_human.svg (2006).

Acknowledgements

We gratefully acknowledge Shaghayegh Farhangmehr, Gabriela Rodriguez, and Guil-
lermo Parada for helpful discussions and feedback on this study. K.C.H. was supported
by an Ontario Graduate Scholarship and a CIHR Frederick Banting and Charles Best
Canada Graduate Scholarship. T.S.-W. was supported by a C.H. Best Postdoctoral Fel-
lowship. This research was supported by grants from Canadian Institutes for Health
Research (B.J.B. and Q.M.), Medicine by Design Canada First Research Excellence Fund
(B.J.B. and Q.M.), and a Marie Curie IOF Fellowship, an Australian Research Council
grant, and a Scrimshaw Family fellowship (R.J.W.). B.J.B. holds the University of Toronto
Banbury Chair in Medical Research.

| (2021)12:335 | https://doi.org/10.1038/s41467-020-20483-8 | www.nature.com/naturecommunications 1


https://doi.org/10.1101/gr.146886.112
https://doi.org/10.1101/829739
https://doi.org/10.1016/j.neuron.2018.03.030
https://doi.org/10.6084/m9.figshare.13141328
https://doi.org/10.6084/m9.figshare.13141328
https://figshare.com/articles/Mouse_Dorsal_Hippocampus_DG_CA3_CA1/5027348
https://figshare.com/articles/Mouse_Dorsal_Hippocampus_DG_CA3_CA1/5027348
https://commons.wikimedia.org/wiki/File:Brain_stem_normal_human.svg
https://commons.wikimedia.org/wiki/File:Brain_stem_normal_human.svg
www.nature.com/naturecommunications
www.nature.com/naturecommunications

ARTICLE

Author contributions

K.C.H. and RJ.W. designed and performed the computational analyses, with input from
the other authors. T.S.-W. and R.J.W. performed initial analyses classifying neuronal
subtypes by GE and AS. RJ.W. curated and pre-processed the RNA-seq datasets.
K.CH., RJ.W,, and B.J.B wrote the manuscript. Q. M, R.J.W., and B.].B supervised
the project.

Competing interests
The authors declare no competing interests.

Additional information
Supplementary information is available for this paper at https://doi.org/10.1038/s41467-
020-20483-8.

Correspondence and requests for materials should be addressed to R.J.W. or B.J.B.

Peer review information Nature Communications thanks Yi Xing and the other,
anonymous, reviewer(s) for their contribution to the peer review of this work.

Reprints and permission information is available at http://www.nature.com/reprints

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in
published maps and institutional affiliations.

Open Access This article is licensed under a Creative Commons
BY

Attribution 4.0 International License, which permits use, sharing,
adaptation, distribution and reproduction in any medium or format, as long as you give
appropriate credit to the original author(s) and the source, provide a link to the Creative
Commons license, and indicate if changes were made. The images or other third party
material in this article are included in the article’s Creative Commons license, unless
indicated otherwise in a credit line to the material. If material is not included in the
article’s Creative Commons license and your intended use is not permitted by statutory
regulation or exceeds the permitted use, you will need to obtain permission directly from
the copyright holder. To view a copy of this license, visit http://creativecommons.org/
licenses/by/4.0/.

© The Author(s) 2021

12 | (2021)12:335 | https://doi.org/10.1038/s41467-020-20483-8 | www.nature.com/naturecommunications


https://doi.org/10.1038/s41467-020-20483-8
https://doi.org/10.1038/s41467-020-20483-8
http://www.nature.com/reprints
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
www.nature.com/naturecommunications

	Differential contribution of transcriptomic regulatory layers in the definition of neuronal identity
	Results
	Multiple transcriptomic regulatory layers contribute to neuronal diversity in the hippocampus
	Relative contributions of differential gene expression, alternative splicing, and alternative polyadenylation in the definition of neuronal subtypes
	Contributions of differential gene expression and alternative splicing to regional differences between hippocampal CA1 and CA3�subfields
	Differential expression of ribosomal protein genes distinguishes the proximal-distal axes of hippocampus
	A is coupled to lengthening of 3′ UTRs in the proximal-distal axis
	Analysis of multiple layers of gene regulation facilitates identification of distinct drivers of neuronal specialization
	Post-transcriptional regulatory layers distinguish neuronal populations

	Discussion
	Methods
	Datasets
	RNA-seq pre-processing
	Gene expression analysis
	Alternative splicing analysis
	Differential splicing analysis
	Alternative polyadenylation analysis
	Principal component analysis
	Inference of hidden factors from combined data sources
	Functional enrichment analysis
	Protein features
	Ribosomal protein paralogs
	Localization data

	Reporting summary
	Data availability
	Code availability
	References
	Acknowledgements
	Author contributions
	Competing interests
	Additional information




